Spaces:
Runtime error
Runtime error
Commit
·
61ffd48
1
Parent(s):
b1c39fd
initial commit
Browse files- main-model.pt +3 -0
- res18-unet.pt +3 -0
- web_app.py +417 -0
main-model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9117325fed27284a7e1fcd27b01ad3d6840ec6f14fe792c1004e8329eca264ea
|
| 3 |
+
size 135587239
|
res18-unet.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:245439ac4c6bacd91752800f98a425922fb4fc73fd107a3772ae6dab0e2ea3ca
|
| 3 |
+
size 124507223
|
web_app.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastai.vision.models.unet import DynamicUnet
|
| 2 |
+
from torchvision.models.resnet import resnet18
|
| 3 |
+
from fastai.vision.learner import create_body
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import cv2 as cv
|
| 7 |
+
|
| 8 |
+
# ---------Backend--------------------------------------------------------------
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import glob
|
| 12 |
+
import time
|
| 13 |
+
import numpy as np
|
| 14 |
+
from PIL import Image
|
| 15 |
+
from pathlib import Path
|
| 16 |
+
from tqdm.notebook import tqdm
|
| 17 |
+
import matplotlib.pyplot as plt
|
| 18 |
+
from skimage.color import rgb2lab, lab2rgb
|
| 19 |
+
|
| 20 |
+
# pip install fastai==2.4
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
from torch import nn, optim
|
| 24 |
+
from torchvision import transforms
|
| 25 |
+
from torchvision.utils import make_grid
|
| 26 |
+
from torch.utils.data import Dataset, DataLoader
|
| 27 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 28 |
+
use_colab = None
|
| 29 |
+
|
| 30 |
+
SIZE = 256
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ColorizationDataset(Dataset):
|
| 34 |
+
def __init__(self, paths, split='train'):
|
| 35 |
+
if split == 'train':
|
| 36 |
+
self.transforms = transforms.Compose([
|
| 37 |
+
transforms.Resize((SIZE, SIZE), Image.BICUBIC),
|
| 38 |
+
transforms.RandomHorizontalFlip(), # A little data augmentation!
|
| 39 |
+
])
|
| 40 |
+
elif split == 'val':
|
| 41 |
+
self.transforms = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
|
| 42 |
+
|
| 43 |
+
self.split = split
|
| 44 |
+
self.size = SIZE
|
| 45 |
+
self.paths = paths
|
| 46 |
+
|
| 47 |
+
def __getitem__(self, idx):
|
| 48 |
+
img = Image.open(self.paths[idx]).convert("RGB")
|
| 49 |
+
img = self.transforms(img)
|
| 50 |
+
img = np.array(img)
|
| 51 |
+
img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
|
| 52 |
+
img_lab = transforms.ToTensor()(img_lab)
|
| 53 |
+
L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
|
| 54 |
+
ab = img_lab[[1, 2], ...] / 110. # Between -1 and 1
|
| 55 |
+
|
| 56 |
+
return {'L': L, 'ab': ab}
|
| 57 |
+
|
| 58 |
+
def __len__(self):
|
| 59 |
+
return len(self.paths)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# A handy function to make our dataloaders
|
| 63 |
+
def make_dataloaders(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
| 64 |
+
dataset = ColorizationDataset(**kwargs)
|
| 65 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
| 66 |
+
pin_memory=pin_memory)
|
| 67 |
+
return dataloader
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
class UnetBlock(nn.Module):
|
| 71 |
+
def __init__(self, nf, ni, submodule=None, input_c=None, dropout=False,
|
| 72 |
+
innermost=False, outermost=False):
|
| 73 |
+
super().__init__()
|
| 74 |
+
self.outermost = outermost
|
| 75 |
+
if input_c is None:
|
| 76 |
+
input_c = nf
|
| 77 |
+
downconv = nn.Conv2d(input_c, ni, kernel_size=4,
|
| 78 |
+
stride=2, padding=1, bias=False)
|
| 79 |
+
downrelu = nn.LeakyReLU(0.2, True)
|
| 80 |
+
downnorm = nn.BatchNorm2d(ni)
|
| 81 |
+
uprelu = nn.ReLU(True)
|
| 82 |
+
upnorm = nn.BatchNorm2d(nf)
|
| 83 |
+
|
| 84 |
+
if outermost:
|
| 85 |
+
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
| 86 |
+
stride=2, padding=1)
|
| 87 |
+
down = [downconv]
|
| 88 |
+
up = [uprelu, upconv, nn.Tanh()]
|
| 89 |
+
model = down + [submodule] + up
|
| 90 |
+
elif innermost:
|
| 91 |
+
upconv = nn.ConvTranspose2d(ni, nf, kernel_size=4,
|
| 92 |
+
stride=2, padding=1, bias=False)
|
| 93 |
+
down = [downrelu, downconv]
|
| 94 |
+
up = [uprelu, upconv, upnorm]
|
| 95 |
+
model = down + up
|
| 96 |
+
else:
|
| 97 |
+
upconv = nn.ConvTranspose2d(ni * 2, nf, kernel_size=4,
|
| 98 |
+
stride=2, padding=1, bias=False)
|
| 99 |
+
down = [downrelu, downconv, downnorm]
|
| 100 |
+
up = [uprelu, upconv, upnorm]
|
| 101 |
+
if dropout:
|
| 102 |
+
up += [nn.Dropout(0.5)]
|
| 103 |
+
model = down + [submodule] + up
|
| 104 |
+
self.model = nn.Sequential(*model)
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
if self.outermost:
|
| 108 |
+
return self.model(x)
|
| 109 |
+
else:
|
| 110 |
+
return torch.cat([x, self.model(x)], 1)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
class Unet(nn.Module):
|
| 114 |
+
def __init__(self, input_c=1, output_c=2, n_down=8, num_filters=64):
|
| 115 |
+
super().__init__()
|
| 116 |
+
unet_block = UnetBlock(
|
| 117 |
+
num_filters * 8, num_filters * 8, innermost=True)
|
| 118 |
+
for _ in range(n_down - 5):
|
| 119 |
+
unet_block = UnetBlock(
|
| 120 |
+
num_filters * 8, num_filters * 8, submodule=unet_block, dropout=True)
|
| 121 |
+
out_filters = num_filters * 8
|
| 122 |
+
for _ in range(3):
|
| 123 |
+
unet_block = UnetBlock(
|
| 124 |
+
out_filters // 2, out_filters, submodule=unet_block)
|
| 125 |
+
out_filters //= 2
|
| 126 |
+
self.model = UnetBlock(
|
| 127 |
+
output_c, out_filters, input_c=input_c, submodule=unet_block, outermost=True)
|
| 128 |
+
|
| 129 |
+
def forward(self, x):
|
| 130 |
+
return self.model(x)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class PatchDiscriminator(nn.Module):
|
| 134 |
+
def __init__(self, input_c, num_filters=64, n_down=3):
|
| 135 |
+
super().__init__()
|
| 136 |
+
model = [self.get_layers(input_c, num_filters, norm=False)]
|
| 137 |
+
model += [self.get_layers(num_filters * 2 ** i, num_filters * 2 ** (i + 1), s=1 if i == (n_down-1) else 2)
|
| 138 |
+
for i in range(n_down)] # the 'if' statement is taking care of not using
|
| 139 |
+
# stride of 2 for the last block in this loop
|
| 140 |
+
# Make sure to not use normalization or
|
| 141 |
+
model += [self.get_layers(num_filters * 2 **
|
| 142 |
+
n_down, 1, s=1, norm=False, act=False)]
|
| 143 |
+
# activation for the last layer of the model
|
| 144 |
+
self.model = nn.Sequential(*model)
|
| 145 |
+
|
| 146 |
+
# when needing to make some repeatitive blocks of layers,
|
| 147 |
+
def get_layers(self, ni, nf, k=4, s=2, p=1, norm=True, act=True):
|
| 148 |
+
# it's always helpful to make a separate method for that purpose
|
| 149 |
+
layers = [nn.Conv2d(ni, nf, k, s, p, bias=not norm)]
|
| 150 |
+
if norm:
|
| 151 |
+
layers += [nn.BatchNorm2d(nf)]
|
| 152 |
+
if act:
|
| 153 |
+
layers += [nn.LeakyReLU(0.2, True)]
|
| 154 |
+
return nn.Sequential(*layers)
|
| 155 |
+
|
| 156 |
+
def forward(self, x):
|
| 157 |
+
return self.model(x)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class GANLoss(nn.Module):
|
| 161 |
+
def __init__(self, gan_mode='vanilla', real_label=1.0, fake_label=0.0):
|
| 162 |
+
super().__init__()
|
| 163 |
+
self.register_buffer('real_label', torch.tensor(real_label))
|
| 164 |
+
self.register_buffer('fake_label', torch.tensor(fake_label))
|
| 165 |
+
if gan_mode == 'vanilla':
|
| 166 |
+
self.loss = nn.BCEWithLogitsLoss()
|
| 167 |
+
elif gan_mode == 'lsgan':
|
| 168 |
+
self.loss = nn.MSELoss()
|
| 169 |
+
|
| 170 |
+
def get_labels(self, preds, target_is_real):
|
| 171 |
+
if target_is_real:
|
| 172 |
+
labels = self.real_label
|
| 173 |
+
else:
|
| 174 |
+
labels = self.fake_label
|
| 175 |
+
return labels.expand_as(preds)
|
| 176 |
+
|
| 177 |
+
def __call__(self, preds, target_is_real):
|
| 178 |
+
labels = self.get_labels(preds, target_is_real)
|
| 179 |
+
loss = self.loss(preds, labels)
|
| 180 |
+
return loss
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
def init_weights(net, init='norm', gain=0.02):
|
| 184 |
+
|
| 185 |
+
def init_func(m):
|
| 186 |
+
classname = m.__class__.__name__
|
| 187 |
+
if hasattr(m, 'weight') and 'Conv' in classname:
|
| 188 |
+
if init == 'norm':
|
| 189 |
+
nn.init.normal_(m.weight.data, mean=0.0, std=gain)
|
| 190 |
+
elif init == 'xavier':
|
| 191 |
+
nn.init.xavier_normal_(m.weight.data, gain=gain)
|
| 192 |
+
elif init == 'kaiming':
|
| 193 |
+
nn.init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
|
| 194 |
+
|
| 195 |
+
if hasattr(m, 'bias') and m.bias is not None:
|
| 196 |
+
nn.init.constant_(m.bias.data, 0.0)
|
| 197 |
+
elif 'BatchNorm2d' in classname:
|
| 198 |
+
nn.init.normal_(m.weight.data, 1., gain)
|
| 199 |
+
nn.init.constant_(m.bias.data, 0.)
|
| 200 |
+
|
| 201 |
+
net.apply(init_func)
|
| 202 |
+
print(f"model initialized with {init} initialization")
|
| 203 |
+
return net
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def init_model(model, device):
|
| 207 |
+
model = model.to(device)
|
| 208 |
+
model = init_weights(model)
|
| 209 |
+
return model
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class MainModel(nn.Module):
|
| 213 |
+
def __init__(self, net_G=None, lr_G=2e-4, lr_D=2e-4,
|
| 214 |
+
beta1=0.5, beta2=0.999, lambda_L1=100.):
|
| 215 |
+
super().__init__()
|
| 216 |
+
|
| 217 |
+
self.device = torch.device(
|
| 218 |
+
"cuda" if torch.cuda.is_available() else "cpu")
|
| 219 |
+
self.lambda_L1 = lambda_L1
|
| 220 |
+
|
| 221 |
+
if net_G is None:
|
| 222 |
+
self.net_G = init_model(
|
| 223 |
+
Unet(input_c=1, output_c=2, n_down=8, num_filters=64), self.device)
|
| 224 |
+
else:
|
| 225 |
+
self.net_G = net_G.to(self.device)
|
| 226 |
+
self.net_D = init_model(PatchDiscriminator(
|
| 227 |
+
input_c=3, n_down=3, num_filters=64), self.device)
|
| 228 |
+
self.GANcriterion = GANLoss(gan_mode='vanilla').to(self.device)
|
| 229 |
+
self.L1criterion = nn.L1Loss()
|
| 230 |
+
self.opt_G = optim.Adam(self.net_G.parameters(),
|
| 231 |
+
lr=lr_G, betas=(beta1, beta2))
|
| 232 |
+
self.opt_D = optim.Adam(self.net_D.parameters(),
|
| 233 |
+
lr=lr_D, betas=(beta1, beta2))
|
| 234 |
+
|
| 235 |
+
def set_requires_grad(self, model, requires_grad=True):
|
| 236 |
+
for p in model.parameters():
|
| 237 |
+
p.requires_grad = requires_grad
|
| 238 |
+
|
| 239 |
+
def setup_input(self, data):
|
| 240 |
+
self.L = data['L'].to(self.device)
|
| 241 |
+
self.ab = data['ab'].to(self.device)
|
| 242 |
+
|
| 243 |
+
def forward(self):
|
| 244 |
+
self.fake_color = self.net_G(self.L)
|
| 245 |
+
|
| 246 |
+
def backward_D(self):
|
| 247 |
+
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
| 248 |
+
fake_preds = self.net_D(fake_image.detach())
|
| 249 |
+
self.loss_D_fake = self.GANcriterion(fake_preds, False)
|
| 250 |
+
real_image = torch.cat([self.L, self.ab], dim=1)
|
| 251 |
+
real_preds = self.net_D(real_image)
|
| 252 |
+
self.loss_D_real = self.GANcriterion(real_preds, True)
|
| 253 |
+
self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5
|
| 254 |
+
self.loss_D.backward()
|
| 255 |
+
|
| 256 |
+
def backward_G(self):
|
| 257 |
+
fake_image = torch.cat([self.L, self.fake_color], dim=1)
|
| 258 |
+
fake_preds = self.net_D(fake_image)
|
| 259 |
+
self.loss_G_GAN = self.GANcriterion(fake_preds, True)
|
| 260 |
+
self.loss_G_L1 = self.L1criterion(
|
| 261 |
+
self.fake_color, self.ab) * self.lambda_L1
|
| 262 |
+
self.loss_G = self.loss_G_GAN + self.loss_G_L1
|
| 263 |
+
self.loss_G.backward()
|
| 264 |
+
|
| 265 |
+
def optimize(self):
|
| 266 |
+
self.forward()
|
| 267 |
+
self.net_D.train()
|
| 268 |
+
self.set_requires_grad(self.net_D, True)
|
| 269 |
+
self.opt_D.zero_grad()
|
| 270 |
+
self.backward_D()
|
| 271 |
+
self.opt_D.step()
|
| 272 |
+
|
| 273 |
+
self.net_G.train()
|
| 274 |
+
self.set_requires_grad(self.net_D, False)
|
| 275 |
+
self.opt_G.zero_grad()
|
| 276 |
+
self.backward_G()
|
| 277 |
+
self.opt_G.step()
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
class AverageMeter:
|
| 281 |
+
def __init__(self):
|
| 282 |
+
self.reset()
|
| 283 |
+
|
| 284 |
+
def reset(self):
|
| 285 |
+
self.count, self.avg, self.sum = [0.] * 3
|
| 286 |
+
|
| 287 |
+
def update(self, val, count=1):
|
| 288 |
+
self.count += count
|
| 289 |
+
self.sum += count * val
|
| 290 |
+
self.avg = self.sum / self.count
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def create_loss_meters():
|
| 294 |
+
loss_D_fake = AverageMeter()
|
| 295 |
+
loss_D_real = AverageMeter()
|
| 296 |
+
loss_D = AverageMeter()
|
| 297 |
+
loss_G_GAN = AverageMeter()
|
| 298 |
+
loss_G_L1 = AverageMeter()
|
| 299 |
+
loss_G = AverageMeter()
|
| 300 |
+
|
| 301 |
+
return {'loss_D_fake': loss_D_fake,
|
| 302 |
+
'loss_D_real': loss_D_real,
|
| 303 |
+
'loss_D': loss_D,
|
| 304 |
+
'loss_G_GAN': loss_G_GAN,
|
| 305 |
+
'loss_G_L1': loss_G_L1,
|
| 306 |
+
'loss_G': loss_G}
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
def update_losses(model, loss_meter_dict, count):
|
| 310 |
+
for loss_name, loss_meter in loss_meter_dict.items():
|
| 311 |
+
loss = getattr(model, loss_name)
|
| 312 |
+
loss_meter.update(loss.item(), count=count)
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
def lab_to_rgb(L, ab):
|
| 316 |
+
"""
|
| 317 |
+
Takes a batch of images
|
| 318 |
+
"""
|
| 319 |
+
|
| 320 |
+
L = (L + 1.) * 50.
|
| 321 |
+
ab = ab * 110.
|
| 322 |
+
Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
|
| 323 |
+
rgb_imgs = []
|
| 324 |
+
for img in Lab:
|
| 325 |
+
img_rgb = lab2rgb(img)
|
| 326 |
+
rgb_imgs.append(img_rgb)
|
| 327 |
+
return np.stack(rgb_imgs, axis=0)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
def visualize(model, data, dims):
|
| 331 |
+
model.net_G.eval()
|
| 332 |
+
with torch.no_grad():
|
| 333 |
+
model.setup_input(data)
|
| 334 |
+
model.forward()
|
| 335 |
+
model.net_G.train()
|
| 336 |
+
fake_color = model.fake_color.detach()
|
| 337 |
+
real_color = model.ab
|
| 338 |
+
L = model.L
|
| 339 |
+
fake_imgs = lab_to_rgb(L, fake_color)
|
| 340 |
+
real_imgs = lab_to_rgb(L, real_color)
|
| 341 |
+
for i in range(1):
|
| 342 |
+
# t_img = transforms.Resize((dims[0], dims[1]))(t_img)
|
| 343 |
+
img = Image.fromarray(np.uint8(fake_imgs[i]))
|
| 344 |
+
img = cv.resize(fake_imgs[i], dsize=(
|
| 345 |
+
dims[1], dims[0]), interpolation=cv.INTER_CUBIC)
|
| 346 |
+
# st.text(f"Size of fake image {fake_imgs[i].shape} \n Type of image = {type(fake_imgs[i])}")
|
| 347 |
+
st.image(img, caption="Output image",
|
| 348 |
+
use_column_width='auto', clamp=True)
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def log_results(loss_meter_dict):
|
| 352 |
+
for loss_name, loss_meter in loss_meter_dict.items():
|
| 353 |
+
print(f"{loss_name}: {loss_meter.avg:.5f}")
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
# pip install fastai==2.4
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
def build_res_unet(n_input=1, n_output=2, size=256):
|
| 360 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 361 |
+
body = create_body(resnet18(), pretrained=True, n_in=n_input, cut=-2)
|
| 362 |
+
net_G = DynamicUnet(body, n_output, (size, size)).to(device)
|
| 363 |
+
return net_G
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
net_G = build_res_unet(n_input=1, n_output=2, size=256)
|
| 367 |
+
net_G.load_state_dict(torch.load("res18-unet.pt", map_location=device))
|
| 368 |
+
model = MainModel(net_G=net_G)
|
| 369 |
+
model.load_state_dict(torch.load("main-model.pt", map_location=device))
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
class MyDataset(torch.utils.data.Dataset):
|
| 373 |
+
def __init__(self, img_list):
|
| 374 |
+
super(MyDataset, self).__init__()
|
| 375 |
+
self.img_list = img_list
|
| 376 |
+
self.augmentations = transforms.Resize((SIZE, SIZE), Image.BICUBIC)
|
| 377 |
+
|
| 378 |
+
def __len__(self):
|
| 379 |
+
return len(self.img_list)
|
| 380 |
+
|
| 381 |
+
def __getitem__(self, idx):
|
| 382 |
+
img = self.img_list[idx]
|
| 383 |
+
img = self.augmentations(img)
|
| 384 |
+
img = np.array(img)
|
| 385 |
+
img_lab = rgb2lab(img).astype("float32") # Converting RGB to L*a*b
|
| 386 |
+
img_lab = transforms.ToTensor()(img_lab)
|
| 387 |
+
L = img_lab[[0], ...] / 50. - 1. # Between -1 and 1
|
| 388 |
+
ab = img_lab[[1, 2], ...] / 110.
|
| 389 |
+
return {'L': L, 'ab': ab}
|
| 390 |
+
|
| 391 |
+
|
| 392 |
+
# A handy function to make our dataloaders
|
| 393 |
+
def make_dataloaders2(batch_size=16, n_workers=4, pin_memory=True, **kwargs):
|
| 394 |
+
dataset = MyDataset(**kwargs)
|
| 395 |
+
dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=n_workers,
|
| 396 |
+
pin_memory=pin_memory)
|
| 397 |
+
return dataloader
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
# st.set_option('deprecation.showfileUploaderEncoding', False)
|
| 401 |
+
# @st.cache(allow_output_mutation= True)
|
| 402 |
+
st.write("""
|
| 403 |
+
# Image Recolorisation
|
| 404 |
+
"""
|
| 405 |
+
)
|
| 406 |
+
file_up = st.file_uploader("Upload an jpg image", type=["jpg", "jpeg", "png"])
|
| 407 |
+
|
| 408 |
+
if file_up is not None:
|
| 409 |
+
im = Image.open(file_up)
|
| 410 |
+
st.text(body=f"Size of uploaded image {im.shape}")
|
| 411 |
+
a = im.shape
|
| 412 |
+
st.image(im, caption="Uploaded Image.", use_column_width='auto')
|
| 413 |
+
test_dl = make_dataloaders2(img_list=[im])
|
| 414 |
+
for data in test_dl:
|
| 415 |
+
model.setup_input(data)
|
| 416 |
+
model.optimize()
|
| 417 |
+
visualize(model, data, a)
|