CV_Project / models /random_forest_sr1.py
R2454's picture
Updated random_forest.py
c3de973
raw
history blame
2.29 kB
import numpy as np
from skimage import transform, util
from sklearn.ensemble import RandomForestRegressor
from skimage.util import view_as_windows
from PIL import Image
# CONFIGURATION
PATCH_SIZE = (5, 5)
STEP = 1
N_ESTIMATORS = 50
MAX_DEPTH = 20
SCALE_FACTOR = 2
def extract_patches(img, patch_size, step):
patches = view_as_windows(img, patch_size, step)
h, w = patches.shape[:2]
return patches.reshape(h * w, -1)
def train_rf(X, y):
rf = RandomForestRegressor(n_estimators=N_ESTIMATORS, max_depth=MAX_DEPTH, n_jobs=-1)
rf.fit(X, y)
return rf
def predict_and_reconstruct(model, lr_img, patch_size, step, out_shape):
lr_patches = extract_patches(lr_img, patch_size, step)
preds = model.predict(lr_patches)
patch_h, patch_w = patch_size
img_h = (lr_img.shape[0] - patch_h) // step + 1
img_w = (lr_img.shape[1] - patch_w) // step + 1
result = np.zeros(out_shape)
weight = np.zeros(out_shape)
idx = 0
for i in range(img_h):
for j in range(img_w):
patch = preds[idx].reshape(patch_h, patch_w)
result[i*step:i*step+patch_h, j*step:j*step+patch_w] += patch
weight[i*step:i*step+patch_h, j*step:j*step+patch_w] += 1
idx += 1
weight[weight == 0] = 1
return result / weight
def random_forest_upscale(pil_img: Image.Image) -> Image.Image:
img = np.array(pil_img) / 255.0 # Normalize
if img.ndim == 2:
img = np.expand_dims(img, axis=-1)
hr_shape = (img.shape[0] * SCALE_FACTOR, img.shape[1] * SCALE_FACTOR)
sr_channels = []
for c in range(img.shape[2]):
channel = img[:, :, c]
hr_channel = transform.resize(channel, hr_shape)
lr_channel = transform.resize(hr_channel, (hr_shape[0] // SCALE_FACTOR, hr_shape[1] // SCALE_FACTOR))
lr_channel_up = transform.resize(lr_channel, hr_shape)
X = extract_patches(lr_channel_up, PATCH_SIZE, STEP)
y = extract_patches(hr_channel, PATCH_SIZE, STEP)
rf_model = train_rf(X, y)
sr = predict_and_reconstruct(rf_model, lr_channel_up, PATCH_SIZE, STEP, hr_shape)
sr_channels.append(sr)
sr_image = np.stack(sr_channels, axis=-1)
sr_image = np.clip(sr_image * 255, 0, 255).astype(np.uint8)
return Image.fromarray(sr_image)