Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from collections import OrderedDict | |
| import numpy as np | |
| from PIL import Image,ImageOps | |
| class ResidualBlock(nn.Module): | |
| def __init__(self, channels): | |
| super().__init__() | |
| self.block = nn.Sequential( | |
| nn.Conv2d(channels, channels, 3, 1, 1), | |
| nn.BatchNorm2d(channels), | |
| nn.PReLU(), | |
| nn.Conv2d(channels, channels, 3, 1, 1), | |
| nn.BatchNorm2d(channels) | |
| ) | |
| def forward(self, x): | |
| return x + self.block(x) | |
| class Generator(nn.Module): | |
| def __init__(self, in_channels=3, num_res_blocks=16): | |
| super().__init__() | |
| self.conv1 = nn.Sequential( | |
| nn.Conv2d(in_channels, 64, kernel_size=9, stride=1, padding=4), | |
| nn.PReLU() | |
| ) | |
| self.res_blocks = nn.Sequential(*[ResidualBlock(64) for _ in range(num_res_blocks)]) | |
| self.conv2 = nn.Sequential( | |
| nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), | |
| nn.BatchNorm2d(64) | |
| ) | |
| # Upsampling by 2x β 256x256, then another 2x β 512x512 | |
| self.upsample = nn.Sequential( | |
| nn.Conv2d(64, 256, kernel_size=3, stride=1, padding=1), | |
| nn.PixelShuffle(2), # 128 β 256 | |
| nn.PReLU(), | |
| nn.Conv2d(64, 256, kernel_size=3, stride=1, padding=1), | |
| nn.PixelShuffle(2), # 256 β 512 | |
| nn.PReLU() | |
| ) | |
| self.conv3 = nn.Conv2d(64, in_channels, kernel_size=9, stride=1, padding=4) | |
| def forward(self, x): | |
| initial = self.conv1(x) | |
| res = self.res_blocks(initial) | |
| res = self.conv2(res) | |
| out = initial + res | |
| out = self.upsample(out) | |
| out = self.conv3(out) | |
| return torch.clamp(out, 0.0, 1.0) # to keep output in [0,1] | |
| def srgan_upscale(image): | |
| image = Image.fromarray(image) | |
| target_size = (128, 128) | |
| pad_color=(0, 0, 0) | |
| ImageOps.pad(image, target_size, method=Image.BICUBIC, color=pad_color) | |
| image = np.array(image) | |
| image = image/255 | |
| image = torch.from_numpy(image).float().unsqueeze(dim=0).permute(0,3,1,2) | |
| model = Generator() | |
| checkpoint = torch.load("weights/model_srgan.pth", map_location=torch.device('cpu')) # or 'cuda' if using GPU | |
| state_dict = checkpoint['G_state_dict'] | |
| new_state_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| new_key = k.replace("module.", "") # Remove "module." from each key | |
| new_state_dict[new_key] = v | |
| model.load_state_dict(new_state_dict) | |
| model.eval() | |
| with torch.no_grad(): | |
| output = model(image) | |
| output = output.squeeze(0).permute(1, 2, 0).cpu().numpy() | |
| output = (output * 255.0).clip(0, 255).astype("uint8") | |
| return output |