import cv2 import numpy as np import dlib from tqdm import tqdm from reportlab.lib.pagesizes import A4 from reportlab.lib import colors from reportlab.lib.styles import getSampleStyleSheet from reportlab.lib.units import inch from reportlab.platypus import SimpleDocTemplate, Paragraph, Table, TableStyle, Spacer,Image from io import BytesIO import matplotlib.pyplot as plt def extract_face(image, net, predictor): (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(cv2.resize(image, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0)) net.setInput(blob) detections = net.forward() for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] # Filter out weak detections if confidence > 0.5: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") # Convert bounding box to dlib rectangle format dlib_rect = dlib.rectangle(int(startX), int(startY), int(endX), int(endY)) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) landmarks = predictor(gray, dlib_rect) landmarks_np = np.array([[p.x, p.y] for p in landmarks.parts()]) x, y, w, h = cv2.boundingRect(landmarks_np) x -= 25 y -= 25 w += 50 h += 50 x = max(0, x) y = max(0, y) w = min(w, image.shape[1] - x) h = min(h, image.shape[0] - y) face_crop=image[y:y+h,x:x+w] # Crop and resize the face try: face_crop = cv2.resize(face_crop, (224, 224)) except: face_crop = cv2.resize(image, (224, 224)) return face_crop,landmarks_np,(w,h) return None,None,None def extract_faces_from_frames(frames, net, predictor): faces_list = [] landmarks_list = [] sizes_list = [] for image in tqdm(frames): face_crop, landmarks_np, size = extract_face(image, net, predictor) # Append the results to the respective lists faces_list.append(face_crop) landmarks_list.append(landmarks_np) sizes_list.append(size) return faces_list, landmarks_list, sizes_list def make_pdf(file_path,data,buf,buf2): doc = SimpleDocTemplate(file_path, pagesize=A4) # Define styles styles = getSampleStyleSheet() content = [] # Adding title content.append(Paragraph("Facial Emotion Recognition Report", styles['Title'])) content.append(Spacer(1, 12)) # Section 1: Facial Emotion Recognition content.append(Paragraph("Facial Emotion Recognition", styles['Heading2'])) table_data = [["Emotion", "Frame Count"]] for emotion, count in data["facial_emotion_recognition"]["class_wise_frame_count"].items(): table_data.append([emotion.capitalize(), str(count)]) table = Table(table_data, hAlign='LEFT') table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.grey), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('BOTTOMPADDING', (0, 0), (-1, 0), 12), ('BACKGROUND', (0, 1), (-1, -1), colors.beige), ('GRID', (0, 0), (-1, -1), 1, colors.black), ])) content.append(table) content.append(Spacer(1, 12)) # Section 2: Audio Analysis content.append(Paragraph("Audio Analysis", styles['Heading2'])) content.append(Paragraph(f"Transcript: {data['audio']['transcript']}", styles['BodyText'])) sentiment = data['audio']['sentiment'][0] content.append(Paragraph(f"Sentiment: {sentiment['label']} (Score: {sentiment['score']})", styles['BodyText'])) audio_features = [ f"Video Duration:{data['duration']}", f"Sound Intensity: {data['audio']['sound_intensity']}", f"Fundamental Frequency: {data['audio']['fundamental_frequency']}", f"Spectral Energy: {data['audio']['spectral_energy']}", f"Spectral Centroid: {data['audio']['spectral_centroid']}", f"Zero Crossing Rate: {data['audio']['zero_crossing_rate']}", f"Average Words per Minute: {data['audio']['avg_words_per_minute'] if data['duration']>60 else -1}", f"Average Unique Words per Minute: {data['audio']['avg_unique_words_per_minute'] if data['duration']>60 else -1}", f"Unique Word Count: {data['audio']['unique_word_count']}", f"Filler Words per Minute: {data['audio']['filler_words_per_minute']}", f"Noun Count: {data['audio']['noun_count']}", f"Adjective Count: {data['audio']['adjective_count']}", f"Verb Count: {data['audio']['verb_count']}", f"Pause Rate: {data['audio']['pause_rate']}" ] for feature in audio_features: content.append(Paragraph(feature, styles['BodyText'])) content.append(Spacer(1, 12)) plot_image = Image(buf) plot_image.drawHeight = 600 # Adjust height plot_image.drawWidth = 600 # Adjust width content.append(plot_image) plot_image = Image(buf2) plot_image.drawHeight = 600 # Adjust height plot_image.drawWidth = 600 # Adjust width content.append(plot_image) # Build the PDF doc.build(content) def plot_facial_expression_graphs(smile_data, ear_data, yawn_data, thresholds, path): """ Plots multiple subplots (smile, EAR, and yawn ratios) in one figure. Parameters: - smile_data: List of smile ratios. - ear_data: List of eye aspect ratios (EAR). - yawn_data: List of yawn ratios. - thresholds: List containing thresholds for smile, EAR, and yawn. - path: Path to save the combined plot. Returns: - buf: BytesIO buffer containing the saved plot. """ buf = BytesIO() plt.figure(figsize=(12, 8)) # Create a figure of appropriate size # Plot smile data plt.subplot(3, 1, 1) plt.plot(smile_data, label='Smile Ratio (Width/Face Width)') plt.axhline(y=thresholds[0], color='black', linestyle='--', label='Threshold') plt.title('Smile Ratio Over Time') plt.ylabel('Ratio') plt.legend() # Plot EAR data plt.subplot(3, 1, 2) plt.plot(ear_data, label='Eye Aspect Ratio (EAR)', color='orange') plt.axhline(y=thresholds[1], color='black', linestyle='--', label='Threshold') plt.title('Eye Aspect Ratio (EAR) Over Time') plt.ylabel('Ratio') plt.legend() # Plot yawn data plt.subplot(3, 1, 3) plt.plot(yawn_data, label='Yawn Ratio (Mouth Height/Face Height)', color='red') plt.axhline(y=thresholds[2], color='black', linestyle='--', label='Threshold') plt.title('Yawn Ratio Over Time') plt.xlabel('Frames') plt.ylabel('Ratio') plt.legend() plt.tight_layout() # Adjust layout to prevent overlap plt.savefig(buf, format='png') # Save to buffer plt.clf() # Clear the figure after saving buf.seek(0) # Rewind the buffer to the beginning return buf