Rahulk2197's picture
Upload 28 files
959739d verified
import speech_recognition as sr
import librosa
import os
import nltk
import matplotlib.pyplot as plt
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
import tensorflow
from tensorflow.keras.models import load_model # type: ignore
import numpy as np
import pandas as pd
import soundfile as sf
import statistics
from pyAudioAnalysis import audioSegmentation as aS
import nltk
nltk.download('punkt_tab')
nltk.download('averaged_perceptron_tagger_eng')
label_mapping = {
0: 'angry',
1: 'disgust',
2: 'fear',
3: 'happy',
4: 'neutral',
5: 'sad',
6: 'surprise',
}
def features_extractor(file_name):
audio, sample_rate = librosa.load(file_name, res_type='kaiser_best')
mfccs_features = librosa.feature.mfcc(y=audio, sr=sample_rate, n_mfcc=40)
mfccs_scaled_features = np.mean(mfccs_features.T, axis=0)
# Extract Chroma Features
chroma = librosa.feature.chroma_stft(y=audio, sr=sample_rate,n_chroma=12)
chroma_scaled_features = np.mean(chroma.T, axis=0)
# Extract Mel Spectrogram Features
mel = librosa.feature.melspectrogram(y=audio, sr=sample_rate)
mel_scaled_features = np.mean(mel.T, axis=0)
# Concatenate all features into a single array
features = np.hstack((mfccs_scaled_features, chroma_scaled_features, mel_scaled_features))
return features
def predict_emotions(audio_path, interval,model_s):
audio_data, samplerate = sf.read(audio_path)
duration = len(audio_data) / samplerate
emotions = []
for start in np.arange(0, duration, interval):
end = start + interval
if end > duration:
end = duration
segment = audio_data[int(start*samplerate):int(end*samplerate)]
segment_path = 'segment.wav'
sf.write(segment_path, segment, samplerate)
# Extract features
feat = features_extractor(segment_path)
if feat is not None:
feat = feat.reshape(1, -1)
predictions = np.argmax(model_s.predict(feat),axis=1)
emotions.append(label_mapping[predictions[0]])
return emotions
def recognize_speech_from_file(audio_file_path):
recognizer = sr.Recognizer() # Create a recognizer instance
audio_file = sr.AudioFile(audio_file_path) # Load the audio file
with audio_file as source: # Use the audio file as the source
audio = recognizer.record(source) # Record the audio
try:
# Recognize the speech using Google's Web Speech API
transcript = recognizer.recognize_google(audio)
return transcript # Return the transcript
except sr.UnknownValueError: # If the speech is unintelligible
return None
except sr.RequestError as e: # If there's an error with the API request
print(f"Could not request results from Google Speech Recognition service; {e}")
return None
def count_words(text):
words = text.split() # Split the text into words
return len(words) # Return the number of words
def estimate_syllables(text):
syllable_count = 0 # Initialize syllable count
words = text.split() # Split the text into words
for word in words: # Iterate through each word
# Count the vowels in the word to estimate syllables
syllable_count += len([c for c in word if c.lower() in 'aeiou'])
return syllable_count # Return the syllable count
def get_speaking_rate(file_path, transcript):
y, sr = librosa.load(file_path, sr=None) # Load the audio file
total_duration = len(y) / sr # Calculate the total duration of the audio
num_syllables = estimate_syllables(transcript) # Estimate the number of syllables
speaking_rate = num_syllables / total_duration if total_duration > 0 else 0 # Calculate the speaking rate
return speaking_rate # Return the speaking rate
def calculate_pause_metrics(file_path):
y, sr = librosa.load(file_path, sr=None) # Load the audio file
# Remove silence and get the segments
segments = aS.silence_removal(y, sr, 0.020, 0.020, smooth_window=1.0, weight=0.3, plot=False)
total_duration = len(y) / sr # Calculate the total duration
speech_duration = sum([end - start for start, end in segments]) # Calculate the speech duration
pause_duration = total_duration - speech_duration # Calculate the pause duration
num_pauses = len(segments) - 1 if len(segments) > 0 else 0 # Calculate the number of pauses
average_pause_length = pause_duration / num_pauses if num_pauses > 0 else 0 # Calculate the average pause length
return average_pause_length # Return the average pause length and number of pauses
def calculate_articulation_rate(file_path, transcript):
y, sr = librosa.load(file_path, sr=None) # Load the audio file
# Remove silence and get the segments
segments = aS.silence_removal(y, sr, 0.020, 0.020, smooth_window=1.0, weight=0.3, plot=False)
speech_duration = sum([end - start for start, end in segments]) # Calculate the speech duration
num_syllables = estimate_syllables(transcript) # Estimate the number of syllables
articulation_rate = num_syllables / speech_duration if speech_duration > 0 else 0 # Calculate the articulation rate
return articulation_rate # Return the articulation rate
def pos_tag_and_filter(transcript):
words = nltk.word_tokenize(transcript)
pos_tags = nltk.pos_tag(words)
# Define important POS tags
important_tags = {'NN', 'NNS', 'NNP', 'NNPS', 'VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ', 'JJ', 'JJR', 'JJS', 'RB', 'RBR', 'RBS'}
filtered_words = []
for word, tag in pos_tags:
if tag in important_tags:
filtered_words.append((word, tag))
return filtered_words
def load_values(file_path):
values_dict = {}
with open(file_path, 'r') as file:
for line in file:
word, value = line.strip().split('\t')
values_dict[word.lower()] = float(value)
return values_dict
# Map values to filtered words
def map_values_to_filtered_words(filtered_words, valence_dict, arousal_dict, dominance_dict):
mapped_values = []
word_weights = {}
for word in filtered_words:
valence = valence_dict.get(word.lower())
arousal = arousal_dict.get(word.lower())
dominance = dominance_dict.get(word.lower())
if valence is not None and arousal is not None and dominance is not None:
valence=(valence+1)/2
arousal=(arousal+1)/2
mapped_values.append((word, valence, arousal,dominance,1))
# Calculate importance weight (sum of valence, arousal, and dominance)
word_weights[word] = valence + arousal + dominance
else:
mapped_values.append((word, 'not found', 'not found','not found',0))
word_weights[word] = 0
return mapped_values,word_weights
def generate_word_cloud(word_weights):
if len(word_weights)>0:
return word_weights
def analyze_audio(file_path,valence_dict,arousal_dict,dominance_dict):
# Get the transcript of the audio
# transcript = "I want you to act like he's coming back, both of you. Don't think I haven't noticed you since he in..."
transcript = recognize_speech_from_file(file_path)
print(transcript)
if not transcript: # If transcript is not available
transcript = "I want you to act like he's coming back, both of you. Don't think I haven't noticed you since he in..."
filtered_words_with_tags = pos_tag_and_filter(transcript)
filtered_words = [word for word, tag in filtered_words_with_tags]
mapped_values,word_weights = map_values_to_filtered_words(filtered_words, valence_dict, arousal_dict, dominance_dict)
# Calculate various metrics
word_weights=generate_word_cloud(word_weights)
word_count = count_words(transcript) # Count the number of words
speaking_rate = get_speaking_rate(file_path, transcript) # Calculate the speaking rate
average_pause_length = calculate_pause_metrics(file_path) # Calculate pause metrics
articulation_rate = calculate_articulation_rate(file_path, transcript) # Calculate the articulation rate
word={}
word['word_count']=word_count
word['word_weights']=word_weights
word['speaking_rate']=speaking_rate
word['average_pause_length']=average_pause_length
word['articulation_rate']=articulation_rate
word['mapped_values']=mapped_values
return word
def speech_predict(audio_path,model_s,valence_dict,arousal_dict,dominance_dict):
interval = 3.0 # Set the interval for emotion detection segments
emotions = predict_emotions(audio_path, interval,model_s)
# Save emotions to a log file
# Extrapolate major emotions
major_emotion = statistics.mode(emotions)
word = analyze_audio(audio_path,valence_dict,arousal_dict,dominance_dict)
return emotions,major_emotion,word