Spaces:
Running
Running
Update rapidocr_onnxruntime
Browse files- resources/fonts/FZYTK.TTF → FZYTK.TTF +0 -0
- app.py +19 -19
- config.yaml +0 -72
- rapidocr_onnxruntime/__init__.py +0 -4
- rapidocr_onnxruntime/ch_ppocr_v2_cls/__init__.py +0 -4
- rapidocr_onnxruntime/ch_ppocr_v2_cls/config.yaml +0 -14
- rapidocr_onnxruntime/ch_ppocr_v2_cls/text_cls.py +0 -117
- rapidocr_onnxruntime/ch_ppocr_v2_cls/utils.py +0 -80
- rapidocr_onnxruntime/ch_ppocr_v3_det/__init__.py +0 -4
- rapidocr_onnxruntime/ch_ppocr_v3_det/config.yaml +0 -29
- rapidocr_onnxruntime/ch_ppocr_v3_det/text_detect.py +0 -127
- rapidocr_onnxruntime/ch_ppocr_v3_det/utils.py +0 -452
- rapidocr_onnxruntime/ch_ppocr_v3_rec/__init__.py +0 -4
- rapidocr_onnxruntime/ch_ppocr_v3_rec/config.yaml +0 -12
- rapidocr_onnxruntime/ch_ppocr_v3_rec/text_recognize.py +0 -120
- rapidocr_onnxruntime/ch_ppocr_v3_rec/utils.py +0 -128
- rapidocr_onnxruntime/rapid_ocr_api.py +0 -176
- requirements.txt +1 -8
- resources/fonts/.gitkeep +0 -0
- resources/models/.gitkeep +0 -0
- resources/models/ch_PP-OCRv3_det_infer.onnx +0 -3
- resources/models/ch_PP-OCRv3_rec_infer.onnx +0 -3
- resources/models/ch_ppocr_mobile_v2.0_cls_infer.onnx +0 -3
resources/fonts/FZYTK.TTF → FZYTK.TTF
RENAMED
|
File without changes
|
app.py
CHANGED
|
@@ -5,24 +5,18 @@ os.system('pip install -r requirements.txt')
|
|
| 5 |
|
| 6 |
import math
|
| 7 |
import random
|
| 8 |
-
from pathlib import Path
|
| 9 |
import time
|
|
|
|
| 10 |
|
| 11 |
import cv2
|
| 12 |
import gradio as gr
|
| 13 |
-
from rapidocr_onnxruntime import TextSystem
|
| 14 |
import numpy as np
|
| 15 |
from PIL import Image, ImageDraw, ImageFont
|
| 16 |
-
|
| 17 |
-
text_sys = TextSystem('config.yaml')
|
| 18 |
|
| 19 |
|
| 20 |
def draw_ocr_box_txt(image, boxes, txts, font_path,
|
| 21 |
scores=None, text_score=0.5):
|
| 22 |
-
if not Path(font_path).exists():
|
| 23 |
-
raise FileNotFoundError(f'The {font_path} does not exists! \n'
|
| 24 |
-
f'Please download the file in the https://drive.google.com/file/d/1evWVX38EFNwTq_n5gTFgnlv8tdaNcyIA/view?usp=sharing')
|
| 25 |
-
|
| 26 |
h, w = image.height, image.width
|
| 27 |
img_left = image.copy()
|
| 28 |
img_right = Image.new('RGB', (w, h), (255, 255, 255))
|
|
@@ -31,12 +25,14 @@ def draw_ocr_box_txt(image, boxes, txts, font_path,
|
|
| 31 |
draw_left = ImageDraw.Draw(img_left)
|
| 32 |
draw_right = ImageDraw.Draw(img_right)
|
| 33 |
for idx, (box, txt) in enumerate(zip(boxes, txts)):
|
| 34 |
-
if scores is not None and scores[idx] < text_score:
|
| 35 |
continue
|
| 36 |
|
| 37 |
color = (random.randint(0, 255),
|
| 38 |
random.randint(0, 255),
|
| 39 |
random.randint(0, 255))
|
|
|
|
|
|
|
| 40 |
draw_left.polygon(box, fill=color)
|
| 41 |
draw_right.polygon([box[0][0], box[0][1],
|
| 42 |
box[1][0], box[1][1],
|
|
@@ -73,10 +69,9 @@ def draw_ocr_box_txt(image, boxes, txts, font_path,
|
|
| 73 |
return np.array(img_show)
|
| 74 |
|
| 75 |
|
| 76 |
-
def visualize(image_path, boxes,
|
|
|
|
| 77 |
image = Image.open(image_path)
|
| 78 |
-
txts = [rec_res[i][0] for i in range(len(rec_res))]
|
| 79 |
-
scores = [rec_res[i][1] for i in range(len(rec_res))]
|
| 80 |
|
| 81 |
draw_img = draw_ocr_box_txt(image, boxes,
|
| 82 |
txts, font_path,
|
|
@@ -96,18 +91,23 @@ def visualize(image_path, boxes, rec_res, font_path="resources/fonts/FZYTK.TTF")
|
|
| 96 |
def inference(img, box_thresh, unclip_ratio, text_score):
|
| 97 |
img_path = img.name
|
| 98 |
img = cv2.imread(img_path)
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
img_save_path = visualize(img_path, dt_boxes, rec_res)
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
-
title = '
|
| 108 |
description = 'Gradio demo for RapidOCR. Github Repo: https://github.com/RapidAI/RapidOCR'
|
| 109 |
article = "<p style='text-align: center'> Completely open source, free and support offline deployment of multi-platform and multi-language OCR SDK <a href='https://github.com/RapidAI/RapidOCR'>Github Repo</a></p>"
|
| 110 |
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
|
|
|
|
|
|
|
|
|
| 111 |
gr.Interface(
|
| 112 |
inference,
|
| 113 |
inputs=[
|
|
|
|
| 5 |
|
| 6 |
import math
|
| 7 |
import random
|
|
|
|
| 8 |
import time
|
| 9 |
+
from pathlib import Path
|
| 10 |
|
| 11 |
import cv2
|
| 12 |
import gradio as gr
|
|
|
|
| 13 |
import numpy as np
|
| 14 |
from PIL import Image, ImageDraw, ImageFont
|
| 15 |
+
from rapidocr_onnxruntime import RapidOCR
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def draw_ocr_box_txt(image, boxes, txts, font_path,
|
| 19 |
scores=None, text_score=0.5):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
h, w = image.height, image.width
|
| 21 |
img_left = image.copy()
|
| 22 |
img_right = Image.new('RGB', (w, h), (255, 255, 255))
|
|
|
|
| 25 |
draw_left = ImageDraw.Draw(img_left)
|
| 26 |
draw_right = ImageDraw.Draw(img_right)
|
| 27 |
for idx, (box, txt) in enumerate(zip(boxes, txts)):
|
| 28 |
+
if scores is not None and float(scores[idx]) < text_score:
|
| 29 |
continue
|
| 30 |
|
| 31 |
color = (random.randint(0, 255),
|
| 32 |
random.randint(0, 255),
|
| 33 |
random.randint(0, 255))
|
| 34 |
+
|
| 35 |
+
box = [tuple(v) for v in box]
|
| 36 |
draw_left.polygon(box, fill=color)
|
| 37 |
draw_right.polygon([box[0][0], box[0][1],
|
| 38 |
box[1][0], box[1][1],
|
|
|
|
| 69 |
return np.array(img_show)
|
| 70 |
|
| 71 |
|
| 72 |
+
def visualize(image_path, boxes, txts, scores,
|
| 73 |
+
font_path="./FZYTK.TTF"):
|
| 74 |
image = Image.open(image_path)
|
|
|
|
|
|
|
| 75 |
|
| 76 |
draw_img = draw_ocr_box_txt(image, boxes,
|
| 77 |
txts, font_path,
|
|
|
|
| 91 |
def inference(img, box_thresh, unclip_ratio, text_score):
|
| 92 |
img_path = img.name
|
| 93 |
img = cv2.imread(img_path)
|
| 94 |
+
ocr_result, _ = rapid_ocr(img, box_thresh=box_thresh,
|
| 95 |
+
unclip_ratio=unclip_ratio,
|
| 96 |
+
text_score=text_score)
|
| 97 |
+
dt_boxes, rec_res, scores = list(zip(*ocr_result))
|
| 98 |
+
img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
|
| 99 |
+
output_text = [f'{one_rec} {float(score):.4f}'
|
| 100 |
+
for one_rec, score in zip(rec_res, scores)]
|
| 101 |
+
return img_save_path, output_text
|
| 102 |
|
| 103 |
|
| 104 |
+
title = 'RapidOCR Demo (捷智OCR)'
|
| 105 |
description = 'Gradio demo for RapidOCR. Github Repo: https://github.com/RapidAI/RapidOCR'
|
| 106 |
article = "<p style='text-align: center'> Completely open source, free and support offline deployment of multi-platform and multi-language OCR SDK <a href='https://github.com/RapidAI/RapidOCR'>Github Repo</a></p>"
|
| 107 |
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}"
|
| 108 |
+
|
| 109 |
+
rapid_ocr = RapidOCR()
|
| 110 |
+
|
| 111 |
gr.Interface(
|
| 112 |
inference,
|
| 113 |
inputs=[
|
config.yaml
DELETED
|
@@ -1,72 +0,0 @@
|
|
| 1 |
-
Global:
|
| 2 |
-
text_score: 0.5
|
| 3 |
-
use_angle_cls: true
|
| 4 |
-
print_verbose: true
|
| 5 |
-
min_height: 30
|
| 6 |
-
width_height_ratio: 8
|
| 7 |
-
|
| 8 |
-
Det:
|
| 9 |
-
module_name: ch_ppocr_v3_det
|
| 10 |
-
class_name: TextDetector
|
| 11 |
-
model_path: resources/models/ch_PP-OCRv3_det_infer.onnx
|
| 12 |
-
|
| 13 |
-
use_cuda: false
|
| 14 |
-
# Details of the params: https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html
|
| 15 |
-
CUDAExecutionProvider:
|
| 16 |
-
device_id: 0
|
| 17 |
-
arena_extend_strategy: kNextPowerOfTwo
|
| 18 |
-
cudnn_conv_algo_search: EXHAUSTIVE
|
| 19 |
-
do_copy_in_default_stream: true
|
| 20 |
-
|
| 21 |
-
pre_process:
|
| 22 |
-
DetResizeForTest:
|
| 23 |
-
limit_side_len: 736
|
| 24 |
-
limit_type: min
|
| 25 |
-
NormalizeImage:
|
| 26 |
-
std: [0.229, 0.224, 0.225]
|
| 27 |
-
mean: [0.485, 0.456, 0.406]
|
| 28 |
-
scale: 1./255.
|
| 29 |
-
order: hwc
|
| 30 |
-
ToCHWImage:
|
| 31 |
-
KeepKeys:
|
| 32 |
-
keep_keys: ['image', 'shape']
|
| 33 |
-
|
| 34 |
-
post_process:
|
| 35 |
-
thresh: 0.3
|
| 36 |
-
box_thresh: 0.5
|
| 37 |
-
max_candidates: 1000
|
| 38 |
-
unclip_ratio: 1.6
|
| 39 |
-
use_dilation: true
|
| 40 |
-
score_mode: fast
|
| 41 |
-
|
| 42 |
-
Cls:
|
| 43 |
-
module_name: ch_ppocr_v2_cls
|
| 44 |
-
class_name: TextClassifier
|
| 45 |
-
model_path: resources/models/ch_ppocr_mobile_v2.0_cls_infer.onnx
|
| 46 |
-
|
| 47 |
-
use_cuda: false
|
| 48 |
-
CUDAExecutionProvider:
|
| 49 |
-
device_id: 0
|
| 50 |
-
arena_extend_strategy: kNextPowerOfTwo
|
| 51 |
-
cudnn_conv_algo_search: EXHAUSTIVE
|
| 52 |
-
do_copy_in_default_stream: true
|
| 53 |
-
|
| 54 |
-
cls_image_shape: [3, 48, 192]
|
| 55 |
-
cls_batch_num: 6
|
| 56 |
-
cls_thresh: 0.9
|
| 57 |
-
label_list: ['0', '180']
|
| 58 |
-
|
| 59 |
-
Rec:
|
| 60 |
-
module_name: ch_ppocr_v3_rec
|
| 61 |
-
class_name: TextRecognizer
|
| 62 |
-
model_path: resources/models/ch_PP-OCRv3_rec_infer.onnx
|
| 63 |
-
|
| 64 |
-
use_cuda: false
|
| 65 |
-
CUDAExecutionProvider:
|
| 66 |
-
device_id: 0
|
| 67 |
-
arena_extend_strategy: kNextPowerOfTwo
|
| 68 |
-
cudnn_conv_algo_search: EXHAUSTIVE
|
| 69 |
-
do_copy_in_default_stream: true
|
| 70 |
-
|
| 71 |
-
rec_img_shape: [3, 48, 320]
|
| 72 |
-
rec_batch_num: 6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/__init__.py
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
# -*- encoding: utf-8 -*-
|
| 2 |
-
# @Author: SWHL
|
| 3 |
-
# @Contact: [email protected]
|
| 4 |
-
from .rapid_ocr_api import TextSystem
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v2_cls/__init__.py
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
# -*- encoding: utf-8 -*-
|
| 2 |
-
# @Author: SWHL
|
| 3 |
-
# @Contact: [email protected]
|
| 4 |
-
from .text_cls import TextClassifier
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v2_cls/config.yaml
DELETED
|
@@ -1,14 +0,0 @@
|
|
| 1 |
-
model_path: resources/models/ch_ppocr_mobile_v2.0_cls_infer.onnx
|
| 2 |
-
|
| 3 |
-
use_cuda: false
|
| 4 |
-
# Details of the params: https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html
|
| 5 |
-
CUDAExecutionProvider:
|
| 6 |
-
device_id: 0
|
| 7 |
-
arena_extend_strategy: kNextPowerOfTwo
|
| 8 |
-
cudnn_conv_algo_search: EXHAUSTIVE
|
| 9 |
-
do_copy_in_default_stream: true
|
| 10 |
-
|
| 11 |
-
cls_image_shape: [3, 48, 192]
|
| 12 |
-
cls_batch_num: 6
|
| 13 |
-
cls_thresh: 0.9
|
| 14 |
-
label_list: ['0', '180']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v2_cls/text_cls.py
DELETED
|
@@ -1,117 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
import argparse
|
| 15 |
-
import copy
|
| 16 |
-
import math
|
| 17 |
-
import time
|
| 18 |
-
from typing import List
|
| 19 |
-
|
| 20 |
-
import cv2
|
| 21 |
-
import numpy as np
|
| 22 |
-
|
| 23 |
-
try:
|
| 24 |
-
from .utils import ClsPostProcess, read_yaml, OrtInferSession
|
| 25 |
-
except:
|
| 26 |
-
from utils import ClsPostProcess, read_yaml, OrtInferSession
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class TextClassifier(object):
|
| 30 |
-
def __init__(self, config):
|
| 31 |
-
self.cls_image_shape = config['cls_image_shape']
|
| 32 |
-
self.cls_batch_num = config['cls_batch_num']
|
| 33 |
-
self.cls_thresh = config['cls_thresh']
|
| 34 |
-
self.postprocess_op = ClsPostProcess(config['label_list'])
|
| 35 |
-
|
| 36 |
-
session_instance = OrtInferSession(config)
|
| 37 |
-
self.session = session_instance.session
|
| 38 |
-
self.input_name = session_instance.get_input_name()
|
| 39 |
-
|
| 40 |
-
def __call__(self, img_list: List[np.ndarray]):
|
| 41 |
-
if isinstance(img_list, np.ndarray):
|
| 42 |
-
img_list = [img_list]
|
| 43 |
-
|
| 44 |
-
img_list = copy.deepcopy(img_list)
|
| 45 |
-
|
| 46 |
-
# Calculate the aspect ratio of all text bars
|
| 47 |
-
width_list = [img.shape[1] / float(img.shape[0]) for img in img_list]
|
| 48 |
-
|
| 49 |
-
# Sorting can speed up the cls process
|
| 50 |
-
indices = np.argsort(np.array(width_list))
|
| 51 |
-
|
| 52 |
-
img_num = len(img_list)
|
| 53 |
-
cls_res = [['', 0.0]] * img_num
|
| 54 |
-
batch_num = self.cls_batch_num
|
| 55 |
-
elapse = 0
|
| 56 |
-
for beg_img_no in range(0, img_num, batch_num):
|
| 57 |
-
end_img_no = min(img_num, beg_img_no + batch_num)
|
| 58 |
-
|
| 59 |
-
norm_img_batch = []
|
| 60 |
-
for ino in range(beg_img_no, end_img_no):
|
| 61 |
-
norm_img = self.resize_norm_img(img_list[indices[ino]])
|
| 62 |
-
norm_img = norm_img[np.newaxis, :]
|
| 63 |
-
norm_img_batch.append(norm_img)
|
| 64 |
-
norm_img_batch = np.concatenate(norm_img_batch).astype(np.float32)
|
| 65 |
-
|
| 66 |
-
starttime = time.time()
|
| 67 |
-
onnx_inputs = {self.input_name: norm_img_batch}
|
| 68 |
-
prob_out = self.session.run(None, onnx_inputs)[0]
|
| 69 |
-
cls_result = self.postprocess_op(prob_out)
|
| 70 |
-
elapse += time.time() - starttime
|
| 71 |
-
|
| 72 |
-
for rno in range(len(cls_result)):
|
| 73 |
-
label, score = cls_result[rno]
|
| 74 |
-
cls_res[indices[beg_img_no + rno]] = [label, score]
|
| 75 |
-
if '180' in label and score > self.cls_thresh:
|
| 76 |
-
img_list[indices[beg_img_no + rno]] = cv2.rotate(
|
| 77 |
-
img_list[indices[beg_img_no + rno]], 1)
|
| 78 |
-
return img_list, cls_res, elapse
|
| 79 |
-
|
| 80 |
-
def resize_norm_img(self, img):
|
| 81 |
-
img_c, img_h, img_w = self.cls_image_shape
|
| 82 |
-
h, w = img.shape[:2]
|
| 83 |
-
ratio = w / float(h)
|
| 84 |
-
if math.ceil(img_h * ratio) > img_w:
|
| 85 |
-
resized_w = img_w
|
| 86 |
-
else:
|
| 87 |
-
resized_w = int(math.ceil(img_h * ratio))
|
| 88 |
-
|
| 89 |
-
resized_image = cv2.resize(img, (resized_w, img_h))
|
| 90 |
-
resized_image = resized_image.astype('float32')
|
| 91 |
-
if img_c == 1:
|
| 92 |
-
resized_image = resized_image / 255
|
| 93 |
-
resized_image = resized_image[np.newaxis, :]
|
| 94 |
-
else:
|
| 95 |
-
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
| 96 |
-
|
| 97 |
-
resized_image -= 0.5
|
| 98 |
-
resized_image /= 0.5
|
| 99 |
-
padding_im = np.zeros((img_c, img_h, img_w), dtype=np.float32)
|
| 100 |
-
padding_im[:, :, :resized_w] = resized_image
|
| 101 |
-
return padding_im
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
if __name__ == "__main__":
|
| 105 |
-
parser = argparse.ArgumentParser()
|
| 106 |
-
parser.add_argument('--image_path', type=str, help='image_dir|image_path')
|
| 107 |
-
parser.add_argument('--config_path', type=str, default='config.yaml')
|
| 108 |
-
args = parser.parse_args()
|
| 109 |
-
|
| 110 |
-
config = read_yaml(args.config_path)
|
| 111 |
-
|
| 112 |
-
text_classifier = TextClassifier(config)
|
| 113 |
-
|
| 114 |
-
img = cv2.imread(args.image_path)
|
| 115 |
-
img_list, cls_res, predict_time = text_classifier(img)
|
| 116 |
-
for ino in range(len(img_list)):
|
| 117 |
-
print(f"cls result:{cls_res[ino]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v2_cls/utils.py
DELETED
|
@@ -1,80 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
import warnings
|
| 15 |
-
|
| 16 |
-
import yaml
|
| 17 |
-
from onnxruntime import (get_available_providers, get_device,
|
| 18 |
-
SessionOptions, InferenceSession,
|
| 19 |
-
GraphOptimizationLevel)
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class OrtInferSession(object):
|
| 23 |
-
def __init__(self, config):
|
| 24 |
-
sess_opt = SessionOptions()
|
| 25 |
-
sess_opt.log_severity_level = 4
|
| 26 |
-
sess_opt.enable_cpu_mem_arena = False
|
| 27 |
-
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 28 |
-
|
| 29 |
-
cuda_ep = 'CUDAExecutionProvider'
|
| 30 |
-
cpu_ep = 'CPUExecutionProvider'
|
| 31 |
-
cpu_provider_options = {
|
| 32 |
-
"arena_extend_strategy": "kSameAsRequested",
|
| 33 |
-
}
|
| 34 |
-
|
| 35 |
-
EP_list = []
|
| 36 |
-
if config['use_cuda'] and get_device() == 'GPU' \
|
| 37 |
-
and cuda_ep in get_available_providers():
|
| 38 |
-
EP_list = [(cuda_ep, config[cuda_ep])]
|
| 39 |
-
EP_list.append((cpu_ep, cpu_provider_options))
|
| 40 |
-
|
| 41 |
-
self.session = InferenceSession(config['model_path'],
|
| 42 |
-
sess_options=sess_opt,
|
| 43 |
-
providers=EP_list)
|
| 44 |
-
|
| 45 |
-
if config['use_cuda'] and cuda_ep not in self.session.get_providers():
|
| 46 |
-
warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n'
|
| 47 |
-
'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, '
|
| 48 |
-
'you can check their relations from the offical web site: '
|
| 49 |
-
'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html',
|
| 50 |
-
RuntimeWarning)
|
| 51 |
-
|
| 52 |
-
def get_input_name(self, input_idx=0):
|
| 53 |
-
return self.session.get_inputs()[input_idx].name
|
| 54 |
-
|
| 55 |
-
def get_output_name(self, output_idx=0):
|
| 56 |
-
return self.session.get_outputs()[output_idx].name
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def read_yaml(yaml_path):
|
| 60 |
-
with open(yaml_path, 'rb') as f:
|
| 61 |
-
data = yaml.load(f, Loader=yaml.Loader)
|
| 62 |
-
return data
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
class ClsPostProcess(object):
|
| 66 |
-
""" Convert between text-label and text-index """
|
| 67 |
-
|
| 68 |
-
def __init__(self, label_list):
|
| 69 |
-
super(ClsPostProcess, self).__init__()
|
| 70 |
-
self.label_list = label_list
|
| 71 |
-
|
| 72 |
-
def __call__(self, preds, label=None):
|
| 73 |
-
pred_idxs = preds.argmax(axis=1)
|
| 74 |
-
decode_out = [(self.label_list[idx], preds[i, idx])
|
| 75 |
-
for i, idx in enumerate(pred_idxs)]
|
| 76 |
-
if label is None:
|
| 77 |
-
return decode_out
|
| 78 |
-
|
| 79 |
-
label = [(self.label_list[idx], 1.0) for idx in label]
|
| 80 |
-
return decode_out, label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_det/__init__.py
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
# -*- encoding: utf-8 -*-
|
| 2 |
-
# @Author: SWHL
|
| 3 |
-
# @Contact: [email protected]
|
| 4 |
-
from .text_detect import TextDetector
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_det/config.yaml
DELETED
|
@@ -1,29 +0,0 @@
|
|
| 1 |
-
model_path: resources/models/ch_PP-OCRv3_det_infer.onnx
|
| 2 |
-
|
| 3 |
-
use_cuda: false
|
| 4 |
-
CUDAExecutionProvider:
|
| 5 |
-
device_id: 0
|
| 6 |
-
arena_extend_strategy: kNextPowerOfTwo
|
| 7 |
-
cudnn_conv_algo_search: EXHAUSTIVE
|
| 8 |
-
do_copy_in_default_stream: true
|
| 9 |
-
|
| 10 |
-
pre_process:
|
| 11 |
-
DetResizeForTest:
|
| 12 |
-
limit_side_len: 736
|
| 13 |
-
limit_type: min
|
| 14 |
-
NormalizeImage:
|
| 15 |
-
std: [0.229, 0.224, 0.225]
|
| 16 |
-
mean: [0.485, 0.456, 0.406]
|
| 17 |
-
scale: 1./255.
|
| 18 |
-
order: hwc
|
| 19 |
-
ToCHWImage:
|
| 20 |
-
KeepKeys:
|
| 21 |
-
keep_keys: ['image', 'shape']
|
| 22 |
-
|
| 23 |
-
post_process:
|
| 24 |
-
thresh: 0.3
|
| 25 |
-
box_thresh: 0.5
|
| 26 |
-
max_candidates: 1000
|
| 27 |
-
unclip_ratio: 1.6
|
| 28 |
-
use_dilation: true
|
| 29 |
-
score_mode: "fast"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_det/text_detect.py
DELETED
|
@@ -1,127 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
# -*- encoding: utf-8 -*-
|
| 15 |
-
# @Author: SWHL
|
| 16 |
-
# @Contact: [email protected]
|
| 17 |
-
import argparse
|
| 18 |
-
import time
|
| 19 |
-
|
| 20 |
-
import cv2
|
| 21 |
-
import numpy as np
|
| 22 |
-
|
| 23 |
-
try:
|
| 24 |
-
from .utils import (DBPostProcess, create_operators,
|
| 25 |
-
transform, read_yaml, OrtInferSession)
|
| 26 |
-
except:
|
| 27 |
-
from utils import (DBPostProcess, create_operators,
|
| 28 |
-
transform, read_yaml, OrtInferSession)
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class TextDetector(object):
|
| 32 |
-
def __init__(self, config):
|
| 33 |
-
self.preprocess_op = create_operators(config['pre_process'])
|
| 34 |
-
self.postprocess_op = DBPostProcess(**config['post_process'])
|
| 35 |
-
|
| 36 |
-
session_instance = OrtInferSession(config)
|
| 37 |
-
self.session = session_instance.session
|
| 38 |
-
self.input_name = session_instance.get_input_name()
|
| 39 |
-
|
| 40 |
-
def __call__(self, img):
|
| 41 |
-
if img is None:
|
| 42 |
-
raise ValueError('img is None')
|
| 43 |
-
|
| 44 |
-
ori_im_shape = img.shape[:2]
|
| 45 |
-
|
| 46 |
-
data = {'image': img}
|
| 47 |
-
data = transform(data, self.preprocess_op)
|
| 48 |
-
img, shape_list = data
|
| 49 |
-
if img is None:
|
| 50 |
-
return None, 0
|
| 51 |
-
|
| 52 |
-
img = np.expand_dims(img, axis=0).astype(np.float32)
|
| 53 |
-
shape_list = np.expand_dims(shape_list, axis=0)
|
| 54 |
-
|
| 55 |
-
starttime = time.time()
|
| 56 |
-
preds = self.session.run(None, {self.input_name: img})
|
| 57 |
-
|
| 58 |
-
post_result = self.postprocess_op(preds[0], shape_list)
|
| 59 |
-
|
| 60 |
-
dt_boxes = post_result[0]['points']
|
| 61 |
-
dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im_shape)
|
| 62 |
-
elapse = time.time() - starttime
|
| 63 |
-
return dt_boxes, elapse
|
| 64 |
-
|
| 65 |
-
def order_points_clockwise(self, pts):
|
| 66 |
-
"""
|
| 67 |
-
reference from:
|
| 68 |
-
https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
|
| 69 |
-
sort the points based on their x-coordinates
|
| 70 |
-
"""
|
| 71 |
-
xSorted = pts[np.argsort(pts[:, 0]), :]
|
| 72 |
-
|
| 73 |
-
# grab the left-most and right-most points from the sorted
|
| 74 |
-
# x-roodinate points
|
| 75 |
-
leftMost = xSorted[:2, :]
|
| 76 |
-
rightMost = xSorted[2:, :]
|
| 77 |
-
|
| 78 |
-
# now, sort the left-most coordinates according to their
|
| 79 |
-
# y-coordinates so we can grab the top-left and bottom-left
|
| 80 |
-
# points, respectively
|
| 81 |
-
leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
|
| 82 |
-
(tl, bl) = leftMost
|
| 83 |
-
|
| 84 |
-
rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
|
| 85 |
-
(tr, br) = rightMost
|
| 86 |
-
|
| 87 |
-
rect = np.array([tl, tr, br, bl], dtype="float32")
|
| 88 |
-
return rect
|
| 89 |
-
|
| 90 |
-
def clip_det_res(self, points, img_height, img_width):
|
| 91 |
-
for pno in range(points.shape[0]):
|
| 92 |
-
points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
|
| 93 |
-
points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
|
| 94 |
-
return points
|
| 95 |
-
|
| 96 |
-
def filter_tag_det_res(self, dt_boxes, image_shape):
|
| 97 |
-
img_height, img_width = image_shape[:2]
|
| 98 |
-
dt_boxes_new = []
|
| 99 |
-
for box in dt_boxes:
|
| 100 |
-
box = self.order_points_clockwise(box)
|
| 101 |
-
box = self.clip_det_res(box, img_height, img_width)
|
| 102 |
-
rect_width = int(np.linalg.norm(box[0] - box[1]))
|
| 103 |
-
rect_height = int(np.linalg.norm(box[0] - box[3]))
|
| 104 |
-
if rect_width <= 3 or rect_height <= 3:
|
| 105 |
-
continue
|
| 106 |
-
dt_boxes_new.append(box)
|
| 107 |
-
dt_boxes = np.array(dt_boxes_new)
|
| 108 |
-
return dt_boxes
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
if __name__ == "__main__":
|
| 112 |
-
parser = argparse.ArgumentParser()
|
| 113 |
-
parser.add_argument('--config_path', type=str, default='config.yaml')
|
| 114 |
-
parser.add_argument('--image_path', type=str, default=None)
|
| 115 |
-
args = parser.parse_args()
|
| 116 |
-
|
| 117 |
-
config = read_yaml(args.config_path)
|
| 118 |
-
|
| 119 |
-
text_detector = TextDetector(config)
|
| 120 |
-
|
| 121 |
-
img = cv2.imread(args.image_path)
|
| 122 |
-
dt_boxes, elapse = text_detector(img)
|
| 123 |
-
|
| 124 |
-
from utils import draw_text_det_res
|
| 125 |
-
src_im = draw_text_det_res(dt_boxes, args.image_path)
|
| 126 |
-
cv2.imwrite('det_results.jpg', src_im)
|
| 127 |
-
print('The det_results.jpg has been saved in the current directory.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_det/utils.py
DELETED
|
@@ -1,452 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""
|
| 16 |
-
# -*- encoding: utf-8 -*-
|
| 17 |
-
# @Author: SWHL
|
| 18 |
-
# @Contact: [email protected]
|
| 19 |
-
import sys
|
| 20 |
-
import warnings
|
| 21 |
-
|
| 22 |
-
import cv2
|
| 23 |
-
import numpy as np
|
| 24 |
-
import pyclipper
|
| 25 |
-
import six
|
| 26 |
-
import yaml
|
| 27 |
-
from shapely.geometry import Polygon
|
| 28 |
-
from onnxruntime import (get_available_providers, get_device,
|
| 29 |
-
SessionOptions, InferenceSession,
|
| 30 |
-
GraphOptimizationLevel)
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
class OrtInferSession(object):
|
| 34 |
-
def __init__(self, config):
|
| 35 |
-
sess_opt = SessionOptions()
|
| 36 |
-
sess_opt.log_severity_level = 4
|
| 37 |
-
sess_opt.enable_cpu_mem_arena = False
|
| 38 |
-
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 39 |
-
|
| 40 |
-
cuda_ep = 'CUDAExecutionProvider'
|
| 41 |
-
cpu_ep = 'CPUExecutionProvider'
|
| 42 |
-
cpu_provider_options = {
|
| 43 |
-
"arena_extend_strategy": "kSameAsRequested",
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
EP_list = []
|
| 47 |
-
if config['use_cuda'] and get_device() == 'GPU' \
|
| 48 |
-
and cuda_ep in get_available_providers():
|
| 49 |
-
EP_list = [(cuda_ep, config[cuda_ep])]
|
| 50 |
-
EP_list.append((cpu_ep, cpu_provider_options))
|
| 51 |
-
|
| 52 |
-
self.session = InferenceSession(config['model_path'],
|
| 53 |
-
sess_options=sess_opt,
|
| 54 |
-
providers=EP_list)
|
| 55 |
-
|
| 56 |
-
if config['use_cuda'] and cuda_ep not in self.session.get_providers():
|
| 57 |
-
warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n'
|
| 58 |
-
'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, '
|
| 59 |
-
'you can check their relations from the offical web site: '
|
| 60 |
-
'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html',
|
| 61 |
-
RuntimeWarning)
|
| 62 |
-
|
| 63 |
-
def get_input_name(self, input_idx=0):
|
| 64 |
-
return self.session.get_inputs()[input_idx].name
|
| 65 |
-
|
| 66 |
-
def get_output_name(self, output_idx=0):
|
| 67 |
-
return self.session.get_outputs()[output_idx].name
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def read_yaml(yaml_path):
|
| 71 |
-
with open(yaml_path, 'rb') as f:
|
| 72 |
-
data = yaml.load(f, Loader=yaml.Loader)
|
| 73 |
-
return data
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
class DecodeImage(object):
|
| 77 |
-
""" decode image """
|
| 78 |
-
|
| 79 |
-
def __init__(self, img_mode='RGB', channel_first=False):
|
| 80 |
-
self.img_mode = img_mode
|
| 81 |
-
self.channel_first = channel_first
|
| 82 |
-
|
| 83 |
-
def __call__(self, data):
|
| 84 |
-
img = data['image']
|
| 85 |
-
if six.PY2:
|
| 86 |
-
assert type(img) is str and len(img) > 0, "invalid input 'img' in DecodeImage"
|
| 87 |
-
else:
|
| 88 |
-
assert type(img) is bytes and len(img) > 0, "invalid input 'img' in DecodeImage"
|
| 89 |
-
|
| 90 |
-
img = np.frombuffer(img, dtype='uint8')
|
| 91 |
-
img = cv2.imdecode(img, 1)
|
| 92 |
-
if img is None:
|
| 93 |
-
return None
|
| 94 |
-
|
| 95 |
-
if self.img_mode == 'GRAY':
|
| 96 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 97 |
-
elif self.img_mode == 'RGB':
|
| 98 |
-
assert img.shape[2] == 3, f'invalid shape of image[{img.shape}]'
|
| 99 |
-
img = img[:, :, ::-1]
|
| 100 |
-
|
| 101 |
-
if self.channel_first:
|
| 102 |
-
img = img.transpose((2, 0, 1))
|
| 103 |
-
data['image'] = img
|
| 104 |
-
return data
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
class NormalizeImage(object):
|
| 108 |
-
""" normalize image such as substract mean, divide std"""
|
| 109 |
-
|
| 110 |
-
def __init__(self, scale=None, mean=None, std=None, order='chw'):
|
| 111 |
-
if isinstance(scale, str):
|
| 112 |
-
scale = eval(scale)
|
| 113 |
-
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
| 114 |
-
mean = mean if mean is not None else [0.485, 0.456, 0.406]
|
| 115 |
-
std = std if std is not None else [0.229, 0.224, 0.225]
|
| 116 |
-
|
| 117 |
-
shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
|
| 118 |
-
self.mean = np.array(mean).reshape(shape).astype('float32')
|
| 119 |
-
self.std = np.array(std).reshape(shape).astype('float32')
|
| 120 |
-
|
| 121 |
-
def __call__(self, data):
|
| 122 |
-
img = np.array(data['image']).astype(np.float32)
|
| 123 |
-
data['image'] = (img * self.scale - self.mean) / self.std
|
| 124 |
-
return data
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
class ToCHWImage(object):
|
| 128 |
-
""" convert hwc image to chw image"""
|
| 129 |
-
def __init__(self):
|
| 130 |
-
pass
|
| 131 |
-
|
| 132 |
-
def __call__(self, data):
|
| 133 |
-
img = data['image']
|
| 134 |
-
from PIL import Image
|
| 135 |
-
if isinstance(img, Image.Image):
|
| 136 |
-
img = np.array(img)
|
| 137 |
-
data['image'] = img.transpose((2, 0, 1))
|
| 138 |
-
return data
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
class KeepKeys(object):
|
| 142 |
-
def __init__(self, keep_keys):
|
| 143 |
-
self.keep_keys = keep_keys
|
| 144 |
-
|
| 145 |
-
def __call__(self, data):
|
| 146 |
-
data_list = []
|
| 147 |
-
for key in self.keep_keys:
|
| 148 |
-
data_list.append(data[key])
|
| 149 |
-
return data_list
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
class DetResizeForTest(object):
|
| 153 |
-
def __init__(self, **kwargs):
|
| 154 |
-
super(DetResizeForTest, self).__init__()
|
| 155 |
-
self.resize_type = 0
|
| 156 |
-
if 'image_shape' in kwargs:
|
| 157 |
-
self.image_shape = kwargs['image_shape']
|
| 158 |
-
self.resize_type = 1
|
| 159 |
-
elif 'limit_side_len' in kwargs:
|
| 160 |
-
self.limit_side_len = kwargs.get('limit_side_len', 736)
|
| 161 |
-
self.limit_type = kwargs.get('limit_type', 'min')
|
| 162 |
-
|
| 163 |
-
if 'resize_long' in kwargs:
|
| 164 |
-
self.resize_type = 2
|
| 165 |
-
self.resize_long = kwargs.get('resize_long', 960)
|
| 166 |
-
else:
|
| 167 |
-
self.limit_side_len = kwargs.get('limit_side_len', 736)
|
| 168 |
-
self.limit_type = kwargs.get('limit_type', 'min')
|
| 169 |
-
|
| 170 |
-
def __call__(self, data):
|
| 171 |
-
img = data['image']
|
| 172 |
-
src_h, src_w = img.shape[:2]
|
| 173 |
-
|
| 174 |
-
if self.resize_type == 0:
|
| 175 |
-
# img, shape = self.resize_image_type0(img)
|
| 176 |
-
img, [ratio_h, ratio_w] = self.resize_image_type0(img)
|
| 177 |
-
elif self.resize_type == 2:
|
| 178 |
-
img, [ratio_h, ratio_w] = self.resize_image_type2(img)
|
| 179 |
-
else:
|
| 180 |
-
# img, shape = self.resize_image_type1(img)
|
| 181 |
-
img, [ratio_h, ratio_w] = self.resize_image_type1(img)
|
| 182 |
-
data['image'] = img
|
| 183 |
-
data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
|
| 184 |
-
return data
|
| 185 |
-
|
| 186 |
-
def resize_image_type1(self, img):
|
| 187 |
-
resize_h, resize_w = self.image_shape
|
| 188 |
-
ori_h, ori_w = img.shape[:2] # (h, w, c)
|
| 189 |
-
ratio_h = float(resize_h) / ori_h
|
| 190 |
-
ratio_w = float(resize_w) / ori_w
|
| 191 |
-
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
| 192 |
-
# return img, np.array([ori_h, ori_w])
|
| 193 |
-
return img, [ratio_h, ratio_w]
|
| 194 |
-
|
| 195 |
-
def resize_image_type0(self, img):
|
| 196 |
-
"""
|
| 197 |
-
resize image to a size multiple of 32 which is required by the network
|
| 198 |
-
args:
|
| 199 |
-
img(array): array with shape [h, w, c]
|
| 200 |
-
return(tuple):
|
| 201 |
-
img, (ratio_h, ratio_w)
|
| 202 |
-
"""
|
| 203 |
-
limit_side_len = self.limit_side_len
|
| 204 |
-
h, w = img.shape[:2]
|
| 205 |
-
|
| 206 |
-
# limit the max side
|
| 207 |
-
if self.limit_type == 'max':
|
| 208 |
-
if max(h, w) > limit_side_len:
|
| 209 |
-
if h > w:
|
| 210 |
-
ratio = float(limit_side_len) / h
|
| 211 |
-
else:
|
| 212 |
-
ratio = float(limit_side_len) / w
|
| 213 |
-
else:
|
| 214 |
-
ratio = 1.
|
| 215 |
-
else:
|
| 216 |
-
if min(h, w) < limit_side_len:
|
| 217 |
-
if h < w:
|
| 218 |
-
ratio = float(limit_side_len) / h
|
| 219 |
-
else:
|
| 220 |
-
ratio = float(limit_side_len) / w
|
| 221 |
-
else:
|
| 222 |
-
ratio = 1.
|
| 223 |
-
resize_h = int(h * ratio)
|
| 224 |
-
resize_w = int(w * ratio)
|
| 225 |
-
|
| 226 |
-
resize_h = int(round(resize_h / 32) * 32)
|
| 227 |
-
resize_w = int(round(resize_w / 32) * 32)
|
| 228 |
-
|
| 229 |
-
try:
|
| 230 |
-
if int(resize_w) <= 0 or int(resize_h) <= 0:
|
| 231 |
-
return None, (None, None)
|
| 232 |
-
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
| 233 |
-
except:
|
| 234 |
-
print(img.shape, resize_w, resize_h)
|
| 235 |
-
sys.exit(0)
|
| 236 |
-
ratio_h = resize_h / float(h)
|
| 237 |
-
ratio_w = resize_w / float(w)
|
| 238 |
-
return img, [ratio_h, ratio_w]
|
| 239 |
-
|
| 240 |
-
def resize_image_type2(self, img):
|
| 241 |
-
h, w = img.shape[:2]
|
| 242 |
-
|
| 243 |
-
resize_w = w
|
| 244 |
-
resize_h = h
|
| 245 |
-
|
| 246 |
-
# Fix the longer side
|
| 247 |
-
if resize_h > resize_w:
|
| 248 |
-
ratio = float(self.resize_long) / resize_h
|
| 249 |
-
else:
|
| 250 |
-
ratio = float(self.resize_long) / resize_w
|
| 251 |
-
|
| 252 |
-
resize_h = int(resize_h * ratio)
|
| 253 |
-
resize_w = int(resize_w * ratio)
|
| 254 |
-
|
| 255 |
-
max_stride = 128
|
| 256 |
-
resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
|
| 257 |
-
resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
|
| 258 |
-
img = cv2.resize(img, (int(resize_w), int(resize_h)))
|
| 259 |
-
ratio_h = resize_h / float(h)
|
| 260 |
-
ratio_w = resize_w / float(w)
|
| 261 |
-
|
| 262 |
-
return img, [ratio_h, ratio_w]
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
def transform(data, ops=None):
|
| 266 |
-
""" transform """
|
| 267 |
-
if ops is None:
|
| 268 |
-
ops = []
|
| 269 |
-
|
| 270 |
-
for op in ops:
|
| 271 |
-
data = op(data)
|
| 272 |
-
if data is None:
|
| 273 |
-
return None
|
| 274 |
-
return data
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
def create_operators(op_param_dict):
|
| 278 |
-
"""
|
| 279 |
-
create operators based on the config
|
| 280 |
-
"""
|
| 281 |
-
ops = []
|
| 282 |
-
for op_name, param in op_param_dict.items():
|
| 283 |
-
if param is None:
|
| 284 |
-
param = {}
|
| 285 |
-
op = eval(op_name)(**param)
|
| 286 |
-
ops.append(op)
|
| 287 |
-
return ops
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
def draw_text_det_res(dt_boxes, img_path):
|
| 291 |
-
src_im = cv2.imread(img_path)
|
| 292 |
-
for box in dt_boxes:
|
| 293 |
-
box = np.array(box).astype(np.int32).reshape(-1, 2)
|
| 294 |
-
cv2.polylines(src_im, [box], True,
|
| 295 |
-
color=(255, 255, 0), thickness=2)
|
| 296 |
-
return src_im
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
class DBPostProcess(object):
|
| 300 |
-
"""The post process for Differentiable Binarization (DB)."""
|
| 301 |
-
|
| 302 |
-
def __init__(self,
|
| 303 |
-
thresh=0.3,
|
| 304 |
-
box_thresh=0.7,
|
| 305 |
-
max_candidates=1000,
|
| 306 |
-
unclip_ratio=2.0,
|
| 307 |
-
score_mode="fast",
|
| 308 |
-
use_dilation=False):
|
| 309 |
-
self.thresh = thresh
|
| 310 |
-
self.box_thresh = box_thresh
|
| 311 |
-
self.max_candidates = max_candidates
|
| 312 |
-
self.unclip_ratio = unclip_ratio
|
| 313 |
-
self.min_size = 3
|
| 314 |
-
self.score_mode = score_mode
|
| 315 |
-
|
| 316 |
-
if use_dilation:
|
| 317 |
-
self.dilation_kernel = np.array([[1, 1], [1, 1]])
|
| 318 |
-
else:
|
| 319 |
-
self.dilation_kernel = None
|
| 320 |
-
|
| 321 |
-
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
|
| 322 |
-
'''
|
| 323 |
-
_bitmap: single map with shape (1, H, W),
|
| 324 |
-
whose values are binarized as {0, 1}
|
| 325 |
-
'''
|
| 326 |
-
|
| 327 |
-
bitmap = _bitmap
|
| 328 |
-
height, width = bitmap.shape
|
| 329 |
-
|
| 330 |
-
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
|
| 331 |
-
cv2.CHAIN_APPROX_SIMPLE)
|
| 332 |
-
if len(outs) == 3:
|
| 333 |
-
img, contours, _ = outs[0], outs[1], outs[2]
|
| 334 |
-
elif len(outs) == 2:
|
| 335 |
-
contours, _ = outs[0], outs[1]
|
| 336 |
-
|
| 337 |
-
num_contours = min(len(contours), self.max_candidates)
|
| 338 |
-
|
| 339 |
-
boxes = []
|
| 340 |
-
scores = []
|
| 341 |
-
for index in range(num_contours):
|
| 342 |
-
contour = contours[index]
|
| 343 |
-
points, sside = self.get_mini_boxes(contour)
|
| 344 |
-
if sside < self.min_size:
|
| 345 |
-
continue
|
| 346 |
-
points = np.array(points)
|
| 347 |
-
if self.score_mode == "fast":
|
| 348 |
-
score = self.box_score_fast(pred, points.reshape(-1, 2))
|
| 349 |
-
else:
|
| 350 |
-
score = self.box_score_slow(pred, contour)
|
| 351 |
-
if self.box_thresh > score:
|
| 352 |
-
continue
|
| 353 |
-
|
| 354 |
-
box = self.unclip(points).reshape(-1, 1, 2)
|
| 355 |
-
box, sside = self.get_mini_boxes(box)
|
| 356 |
-
if sside < self.min_size + 2:
|
| 357 |
-
continue
|
| 358 |
-
box = np.array(box)
|
| 359 |
-
|
| 360 |
-
box[:, 0] = np.clip(
|
| 361 |
-
np.round(box[:, 0] / width * dest_width), 0, dest_width)
|
| 362 |
-
box[:, 1] = np.clip(
|
| 363 |
-
np.round(box[:, 1] / height * dest_height), 0, dest_height)
|
| 364 |
-
boxes.append(box.astype(np.int16))
|
| 365 |
-
scores.append(score)
|
| 366 |
-
return np.array(boxes, dtype=np.int16), scores
|
| 367 |
-
|
| 368 |
-
def unclip(self, box):
|
| 369 |
-
unclip_ratio = self.unclip_ratio
|
| 370 |
-
poly = Polygon(box)
|
| 371 |
-
distance = poly.area * unclip_ratio / poly.length
|
| 372 |
-
offset = pyclipper.PyclipperOffset()
|
| 373 |
-
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
|
| 374 |
-
expanded = np.array(offset.Execute(distance))
|
| 375 |
-
return expanded
|
| 376 |
-
|
| 377 |
-
def get_mini_boxes(self, contour):
|
| 378 |
-
bounding_box = cv2.minAreaRect(contour)
|
| 379 |
-
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
|
| 380 |
-
|
| 381 |
-
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
|
| 382 |
-
if points[1][1] > points[0][1]:
|
| 383 |
-
index_1 = 0
|
| 384 |
-
index_4 = 1
|
| 385 |
-
else:
|
| 386 |
-
index_1 = 1
|
| 387 |
-
index_4 = 0
|
| 388 |
-
if points[3][1] > points[2][1]:
|
| 389 |
-
index_2 = 2
|
| 390 |
-
index_3 = 3
|
| 391 |
-
else:
|
| 392 |
-
index_2 = 3
|
| 393 |
-
index_3 = 2
|
| 394 |
-
|
| 395 |
-
box = [
|
| 396 |
-
points[index_1], points[index_2], points[index_3], points[index_4]
|
| 397 |
-
]
|
| 398 |
-
return box, min(bounding_box[1])
|
| 399 |
-
|
| 400 |
-
def box_score_fast(self, bitmap, _box):
|
| 401 |
-
h, w = bitmap.shape[:2]
|
| 402 |
-
box = _box.copy()
|
| 403 |
-
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int32), 0, w - 1)
|
| 404 |
-
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int32), 0, w - 1)
|
| 405 |
-
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int32), 0, h - 1)
|
| 406 |
-
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int32), 0, h - 1)
|
| 407 |
-
|
| 408 |
-
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
| 409 |
-
box[:, 0] = box[:, 0] - xmin
|
| 410 |
-
box[:, 1] = box[:, 1] - ymin
|
| 411 |
-
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
|
| 412 |
-
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
| 413 |
-
|
| 414 |
-
def box_score_slow(self, bitmap, contour):
|
| 415 |
-
'''
|
| 416 |
-
box_score_slow: use polyon mean score as the mean score
|
| 417 |
-
'''
|
| 418 |
-
h, w = bitmap.shape[:2]
|
| 419 |
-
contour = contour.copy()
|
| 420 |
-
contour = np.reshape(contour, (-1, 2))
|
| 421 |
-
|
| 422 |
-
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
|
| 423 |
-
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
|
| 424 |
-
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
|
| 425 |
-
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
|
| 426 |
-
|
| 427 |
-
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
|
| 428 |
-
|
| 429 |
-
contour[:, 0] = contour[:, 0] - xmin
|
| 430 |
-
contour[:, 1] = contour[:, 1] - ymin
|
| 431 |
-
|
| 432 |
-
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
|
| 433 |
-
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
|
| 434 |
-
|
| 435 |
-
def __call__(self, pred, shape_list):
|
| 436 |
-
pred = pred[:, 0, :, :]
|
| 437 |
-
segmentation = pred > self.thresh
|
| 438 |
-
|
| 439 |
-
boxes_batch = []
|
| 440 |
-
for batch_index in range(pred.shape[0]):
|
| 441 |
-
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
|
| 442 |
-
if self.dilation_kernel is not None:
|
| 443 |
-
mask = cv2.dilate(
|
| 444 |
-
np.array(segmentation[batch_index]).astype(np.uint8),
|
| 445 |
-
self.dilation_kernel)
|
| 446 |
-
else:
|
| 447 |
-
mask = segmentation[batch_index]
|
| 448 |
-
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
|
| 449 |
-
src_w, src_h)
|
| 450 |
-
|
| 451 |
-
boxes_batch.append({'points': boxes})
|
| 452 |
-
return boxes_batch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_rec/__init__.py
DELETED
|
@@ -1,4 +0,0 @@
|
|
| 1 |
-
# -*- encoding: utf-8 -*-
|
| 2 |
-
# @Author: SWHL
|
| 3 |
-
# @Contact: [email protected]
|
| 4 |
-
from .text_recognize import TextRecognizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_rec/config.yaml
DELETED
|
@@ -1,12 +0,0 @@
|
|
| 1 |
-
model_path: resources/models/ch_PP-OCRv3_rec_infer.onnx
|
| 2 |
-
|
| 3 |
-
use_cuda: false
|
| 4 |
-
# Details of the params: https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html
|
| 5 |
-
CUDAExecutionProvider:
|
| 6 |
-
device_id: 0
|
| 7 |
-
arena_extend_strategy: kNextPowerOfTwo
|
| 8 |
-
cudnn_conv_algo_search: EXHAUSTIVE
|
| 9 |
-
do_copy_in_default_stream: true
|
| 10 |
-
|
| 11 |
-
rec_img_shape: [3, 48, 320]
|
| 12 |
-
rec_batch_num: 6
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_rec/text_recognize.py
DELETED
|
@@ -1,120 +0,0 @@
|
|
| 1 |
-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
import argparse
|
| 15 |
-
import math
|
| 16 |
-
import time
|
| 17 |
-
from typing import List
|
| 18 |
-
|
| 19 |
-
import cv2
|
| 20 |
-
import numpy as np
|
| 21 |
-
|
| 22 |
-
try:
|
| 23 |
-
from .utils import CTCLabelDecode, read_yaml, OrtInferSession
|
| 24 |
-
except:
|
| 25 |
-
from utils import CTCLabelDecode, read_yaml, OrtInferSession
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class TextRecognizer(object):
|
| 29 |
-
def __init__(self, config):
|
| 30 |
-
session_instance = OrtInferSession(config)
|
| 31 |
-
self.session = session_instance.session
|
| 32 |
-
self.input_name = session_instance.get_input_name()
|
| 33 |
-
meta_dict = session_instance.get_metadata()
|
| 34 |
-
|
| 35 |
-
if 'character' in meta_dict.keys():
|
| 36 |
-
self.character_dict_path = meta_dict['character'].splitlines()
|
| 37 |
-
else:
|
| 38 |
-
self.character_dict_path = config.get('keys_path', None)
|
| 39 |
-
self.postprocess_op = CTCLabelDecode(self.character_dict_path)
|
| 40 |
-
|
| 41 |
-
self.rec_batch_num = config['rec_batch_num']
|
| 42 |
-
self.rec_image_shape = config['rec_img_shape']
|
| 43 |
-
|
| 44 |
-
def __call__(self, img_list: List[np.ndarray]):
|
| 45 |
-
if isinstance(img_list, np.ndarray):
|
| 46 |
-
img_list = [img_list]
|
| 47 |
-
|
| 48 |
-
# Calculate the aspect ratio of all text bars
|
| 49 |
-
width_list = [img.shape[1] / float(img.shape[0]) for img in img_list]
|
| 50 |
-
|
| 51 |
-
# Sorting can speed up the recognition process
|
| 52 |
-
indices = np.argsort(np.array(width_list))
|
| 53 |
-
|
| 54 |
-
img_num = len(img_list)
|
| 55 |
-
rec_res = [['', 0.0]] * img_num
|
| 56 |
-
|
| 57 |
-
batch_num = self.rec_batch_num
|
| 58 |
-
elapse = 0
|
| 59 |
-
for beg_img_no in range(0, img_num, batch_num):
|
| 60 |
-
end_img_no = min(img_num, beg_img_no + batch_num)
|
| 61 |
-
max_wh_ratio = 0
|
| 62 |
-
for ino in range(beg_img_no, end_img_no):
|
| 63 |
-
h, w = img_list[indices[ino]].shape[0:2]
|
| 64 |
-
wh_ratio = w * 1.0 / h
|
| 65 |
-
max_wh_ratio = max(max_wh_ratio, wh_ratio)
|
| 66 |
-
|
| 67 |
-
norm_img_batch = []
|
| 68 |
-
for ino in range(beg_img_no, end_img_no):
|
| 69 |
-
norm_img = self.resize_norm_img(img_list[indices[ino]],
|
| 70 |
-
max_wh_ratio)
|
| 71 |
-
norm_img_batch.append(norm_img[np.newaxis, :])
|
| 72 |
-
norm_img_batch = np.concatenate(norm_img_batch).astype(np.float32)
|
| 73 |
-
|
| 74 |
-
starttime = time.time()
|
| 75 |
-
onnx_inputs = {self.input_name: norm_img_batch}
|
| 76 |
-
preds = self.session.run(None, onnx_inputs)[0]
|
| 77 |
-
rec_result = self.postprocess_op(preds)
|
| 78 |
-
|
| 79 |
-
for rno in range(len(rec_result)):
|
| 80 |
-
rec_res[indices[beg_img_no + rno]] = rec_result[rno]
|
| 81 |
-
elapse += time.time() - starttime
|
| 82 |
-
return rec_res, elapse
|
| 83 |
-
|
| 84 |
-
def resize_norm_img(self, img, max_wh_ratio):
|
| 85 |
-
img_channel, img_height, img_width = self.rec_image_shape
|
| 86 |
-
assert img_channel == img.shape[2]
|
| 87 |
-
|
| 88 |
-
img_width = int(img_height * max_wh_ratio)
|
| 89 |
-
|
| 90 |
-
h, w = img.shape[:2]
|
| 91 |
-
ratio = w / float(h)
|
| 92 |
-
if math.ceil(img_height * ratio) > img_width:
|
| 93 |
-
resized_w = img_width
|
| 94 |
-
else:
|
| 95 |
-
resized_w = int(math.ceil(img_height * ratio))
|
| 96 |
-
|
| 97 |
-
resized_image = cv2.resize(img, (resized_w, img_height))
|
| 98 |
-
resized_image = resized_image.astype('float32')
|
| 99 |
-
resized_image = resized_image.transpose((2, 0, 1)) / 255
|
| 100 |
-
resized_image -= 0.5
|
| 101 |
-
resized_image /= 0.5
|
| 102 |
-
|
| 103 |
-
padding_im = np.zeros((img_channel, img_height, img_width),
|
| 104 |
-
dtype=np.float32)
|
| 105 |
-
padding_im[:, :, 0:resized_w] = resized_image
|
| 106 |
-
return padding_im
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
if __name__ == "__main__":
|
| 110 |
-
parser = argparse.ArgumentParser()
|
| 111 |
-
parser.add_argument('--image_path', type=str, help='image_dir|image_path')
|
| 112 |
-
parser.add_argument('--config_path', type=str, default='config.yaml')
|
| 113 |
-
args = parser.parse_args()
|
| 114 |
-
|
| 115 |
-
config = read_yaml(args.config_path)
|
| 116 |
-
text_recognizer = TextRecognizer(config)
|
| 117 |
-
|
| 118 |
-
img = cv2.imread(args.image_path)
|
| 119 |
-
rec_res, predict_time = text_recognizer(img)
|
| 120 |
-
print(f'rec result: {rec_res}\t cost: {predict_time}s')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/ch_ppocr_v3_rec/utils.py
DELETED
|
@@ -1,128 +0,0 @@
|
|
| 1 |
-
# -*- encoding: utf-8 -*-
|
| 2 |
-
# @Author: SWHL
|
| 3 |
-
# @Contact: [email protected]
|
| 4 |
-
import warnings
|
| 5 |
-
|
| 6 |
-
import numpy as np
|
| 7 |
-
import yaml
|
| 8 |
-
from onnxruntime import (get_available_providers, get_device,
|
| 9 |
-
SessionOptions, InferenceSession,
|
| 10 |
-
GraphOptimizationLevel)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
class OrtInferSession(object):
|
| 14 |
-
def __init__(self, config):
|
| 15 |
-
sess_opt = SessionOptions()
|
| 16 |
-
sess_opt.log_severity_level = 4
|
| 17 |
-
sess_opt.enable_cpu_mem_arena = False
|
| 18 |
-
sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 19 |
-
|
| 20 |
-
cuda_ep = 'CUDAExecutionProvider'
|
| 21 |
-
cpu_ep = 'CPUExecutionProvider'
|
| 22 |
-
cpu_provider_options = {
|
| 23 |
-
"arena_extend_strategy": "kSameAsRequested",
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
EP_list = []
|
| 27 |
-
if config['use_cuda'] and get_device() == 'GPU' \
|
| 28 |
-
and cuda_ep in get_available_providers():
|
| 29 |
-
EP_list = [(cuda_ep, config[cuda_ep])]
|
| 30 |
-
EP_list.append((cpu_ep, cpu_provider_options))
|
| 31 |
-
|
| 32 |
-
self.session = InferenceSession(config['model_path'],
|
| 33 |
-
sess_options=sess_opt,
|
| 34 |
-
providers=EP_list)
|
| 35 |
-
|
| 36 |
-
if config['use_cuda'] and cuda_ep not in self.session.get_providers():
|
| 37 |
-
warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n'
|
| 38 |
-
'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, '
|
| 39 |
-
'you can check their relations from the offical web site: '
|
| 40 |
-
'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html',
|
| 41 |
-
RuntimeWarning)
|
| 42 |
-
|
| 43 |
-
def get_input_name(self, input_idx=0):
|
| 44 |
-
return self.session.get_inputs()[input_idx].name
|
| 45 |
-
|
| 46 |
-
def get_output_name(self, output_idx=0):
|
| 47 |
-
return self.session.get_outputs()[output_idx].name
|
| 48 |
-
|
| 49 |
-
def get_metadata(self):
|
| 50 |
-
meta_dict = self.session.get_modelmeta().custom_metadata_map
|
| 51 |
-
return meta_dict
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
def read_yaml(yaml_path):
|
| 55 |
-
with open(yaml_path, 'rb') as f:
|
| 56 |
-
data = yaml.load(f, Loader=yaml.Loader)
|
| 57 |
-
return data
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
class CTCLabelDecode(object):
|
| 61 |
-
""" Convert between text-label and text-index """
|
| 62 |
-
|
| 63 |
-
def __init__(self, character_dict_path):
|
| 64 |
-
super(CTCLabelDecode, self).__init__()
|
| 65 |
-
|
| 66 |
-
self.character_str = []
|
| 67 |
-
assert character_dict_path is not None, "character_dict_path should not be None"
|
| 68 |
-
|
| 69 |
-
if isinstance(character_dict_path, str):
|
| 70 |
-
with open(character_dict_path, "rb") as fin:
|
| 71 |
-
lines = fin.readlines()
|
| 72 |
-
for line in lines:
|
| 73 |
-
line = line.decode('utf-8').strip("\n").strip("\r\n")
|
| 74 |
-
self.character_str.append(line)
|
| 75 |
-
else:
|
| 76 |
-
self.character_str = character_dict_path
|
| 77 |
-
self.character_str.append(' ')
|
| 78 |
-
|
| 79 |
-
dict_character = self.add_special_char(self.character_str)
|
| 80 |
-
self.character = dict_character
|
| 81 |
-
|
| 82 |
-
self.dict = {}
|
| 83 |
-
for i, char in enumerate(dict_character):
|
| 84 |
-
self.dict[char] = i
|
| 85 |
-
|
| 86 |
-
def __call__(self, preds, label=None):
|
| 87 |
-
preds_idx = preds.argmax(axis=2)
|
| 88 |
-
preds_prob = preds.max(axis=2)
|
| 89 |
-
text = self.decode(preds_idx, preds_prob,
|
| 90 |
-
is_remove_duplicate=True)
|
| 91 |
-
if label is None:
|
| 92 |
-
return text
|
| 93 |
-
label = self.decode(label)
|
| 94 |
-
return text, label
|
| 95 |
-
|
| 96 |
-
def add_special_char(self, dict_character):
|
| 97 |
-
dict_character = ['blank'] + dict_character
|
| 98 |
-
return dict_character
|
| 99 |
-
|
| 100 |
-
def get_ignored_tokens(self):
|
| 101 |
-
return [0] # for ctc blank
|
| 102 |
-
|
| 103 |
-
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
|
| 104 |
-
""" convert text-index into text-label. """
|
| 105 |
-
|
| 106 |
-
result_list = []
|
| 107 |
-
ignored_tokens = self.get_ignored_tokens()
|
| 108 |
-
batch_size = len(text_index)
|
| 109 |
-
for batch_idx in range(batch_size):
|
| 110 |
-
char_list = []
|
| 111 |
-
conf_list = []
|
| 112 |
-
for idx in range(len(text_index[batch_idx])):
|
| 113 |
-
if text_index[batch_idx][idx] in ignored_tokens:
|
| 114 |
-
continue
|
| 115 |
-
if is_remove_duplicate:
|
| 116 |
-
# only for predict
|
| 117 |
-
if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
|
| 118 |
-
batch_idx][idx]:
|
| 119 |
-
continue
|
| 120 |
-
char_list.append(self.character[int(text_index[batch_idx][
|
| 121 |
-
idx])])
|
| 122 |
-
if text_prob is not None:
|
| 123 |
-
conf_list.append(text_prob[batch_idx][idx])
|
| 124 |
-
else:
|
| 125 |
-
conf_list.append(1)
|
| 126 |
-
text = ''.join(char_list)
|
| 127 |
-
result_list.append((text, np.mean(conf_list + [1e-50] )))
|
| 128 |
-
return result_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
rapidocr_onnxruntime/rapid_ocr_api.py
DELETED
|
@@ -1,176 +0,0 @@
|
|
| 1 |
-
# -*- encoding: utf-8 -*-
|
| 2 |
-
# @Author: SWHL
|
| 3 |
-
# @Contact: [email protected]
|
| 4 |
-
import copy
|
| 5 |
-
import importlib
|
| 6 |
-
import sys
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
|
| 9 |
-
import cv2
|
| 10 |
-
import numpy as np
|
| 11 |
-
import yaml
|
| 12 |
-
|
| 13 |
-
root_dir = Path(__file__).resolve().parent
|
| 14 |
-
sys.path.append(str(root_dir))
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
class TextSystem(object):
|
| 18 |
-
def __init__(self, config_path):
|
| 19 |
-
super(TextSystem).__init__()
|
| 20 |
-
if not Path(config_path).exists():
|
| 21 |
-
raise FileExistsError(f'{config_path} does not exist!')
|
| 22 |
-
|
| 23 |
-
config = self.read_yaml(config_path)
|
| 24 |
-
|
| 25 |
-
global_config = config['Global']
|
| 26 |
-
self.print_verbose = global_config['print_verbose']
|
| 27 |
-
self.text_score = global_config['text_score']
|
| 28 |
-
self.min_height = global_config['min_height']
|
| 29 |
-
self.width_height_ratio = global_config['width_height_ratio']
|
| 30 |
-
|
| 31 |
-
TextDetector = self.init_module(config['Det']['module_name'],
|
| 32 |
-
config['Det']['class_name'])
|
| 33 |
-
self.text_detector = TextDetector(config['Det'])
|
| 34 |
-
|
| 35 |
-
TextRecognizer = self.init_module(config['Rec']['module_name'],
|
| 36 |
-
config['Rec']['class_name'])
|
| 37 |
-
self.text_recognizer = TextRecognizer(config['Rec'])
|
| 38 |
-
|
| 39 |
-
self.use_angle_cls = config['Global']['use_angle_cls']
|
| 40 |
-
if self.use_angle_cls:
|
| 41 |
-
TextClassifier = self.init_module(config['Cls']['module_name'],
|
| 42 |
-
config['Cls']['class_name'])
|
| 43 |
-
self.text_cls = TextClassifier(config['Cls'])
|
| 44 |
-
|
| 45 |
-
def __call__(self, img: np.ndarray, **kwargs):
|
| 46 |
-
# 这里更改几个超参数的值
|
| 47 |
-
if kwargs:
|
| 48 |
-
# 获得超参数
|
| 49 |
-
box_thresh = kwargs.get('box_thresh', 0.5)
|
| 50 |
-
unclip_ratio = kwargs.get('unclip_ratio', 1.6)
|
| 51 |
-
text_score = kwargs.get('text_score', 0.5)
|
| 52 |
-
|
| 53 |
-
# 更新超参数
|
| 54 |
-
self.text_detector.postprocess_op.box_thresh = box_thresh
|
| 55 |
-
self.text_detector.postprocess_op.unclip_ratio = unclip_ratio
|
| 56 |
-
self.text_score = text_score
|
| 57 |
-
|
| 58 |
-
h, w = img.shape[:2]
|
| 59 |
-
if self.width_height_ratio == -1:
|
| 60 |
-
use_limit_ratio = False
|
| 61 |
-
else:
|
| 62 |
-
use_limit_ratio = w / h > self.width_height_ratio
|
| 63 |
-
|
| 64 |
-
if h <= self.min_height or use_limit_ratio:
|
| 65 |
-
dt_boxes, img_crop_list = self.get_boxes_img_without_det(img, h, w)
|
| 66 |
-
else:
|
| 67 |
-
dt_boxes, elapse = self.text_detector(img)
|
| 68 |
-
if dt_boxes is None or len(dt_boxes) < 1:
|
| 69 |
-
return None, None
|
| 70 |
-
if self.print_verbose:
|
| 71 |
-
print(f'dt_boxes num: {len(dt_boxes)}, elapse: {elapse}')
|
| 72 |
-
|
| 73 |
-
dt_boxes = self.sorted_boxes(dt_boxes)
|
| 74 |
-
img_crop_list = self.get_crop_img_list(img, dt_boxes)
|
| 75 |
-
|
| 76 |
-
if self.use_angle_cls:
|
| 77 |
-
img_crop_list, _, elapse = self.text_cls(img_crop_list)
|
| 78 |
-
if self.print_verbose:
|
| 79 |
-
print(f'cls num: {len(img_crop_list)}, elapse: {elapse}')
|
| 80 |
-
|
| 81 |
-
rec_res, elapse = self.text_recognizer(img_crop_list)
|
| 82 |
-
if self.print_verbose:
|
| 83 |
-
print(f'rec_res num: {len(rec_res)}, elapse: {elapse}')
|
| 84 |
-
|
| 85 |
-
filter_boxes, filter_rec_res = self.filter_boxes_rec_by_score(dt_boxes,
|
| 86 |
-
rec_res)
|
| 87 |
-
return filter_boxes, filter_rec_res
|
| 88 |
-
|
| 89 |
-
@staticmethod
|
| 90 |
-
def read_yaml(yaml_path):
|
| 91 |
-
with open(yaml_path, 'rb') as f:
|
| 92 |
-
data = yaml.load(f, Loader=yaml.Loader)
|
| 93 |
-
return data
|
| 94 |
-
|
| 95 |
-
@staticmethod
|
| 96 |
-
def init_module(module_name, class_name):
|
| 97 |
-
module_part = importlib.import_module(module_name)
|
| 98 |
-
return getattr(module_part, class_name)
|
| 99 |
-
|
| 100 |
-
def get_boxes_img_without_det(self, img, h, w):
|
| 101 |
-
x0, y0, x1, y1 = 0, 0, w, h
|
| 102 |
-
dt_boxes = np.array([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
|
| 103 |
-
dt_boxes = dt_boxes[np.newaxis, ...]
|
| 104 |
-
img_crop_list = [img]
|
| 105 |
-
return dt_boxes, img_crop_list
|
| 106 |
-
|
| 107 |
-
def get_crop_img_list(self, img, dt_boxes):
|
| 108 |
-
def get_rotate_crop_image(img, points):
|
| 109 |
-
img_crop_width = int(
|
| 110 |
-
max(
|
| 111 |
-
np.linalg.norm(points[0] - points[1]),
|
| 112 |
-
np.linalg.norm(points[2] - points[3])))
|
| 113 |
-
img_crop_height = int(
|
| 114 |
-
max(
|
| 115 |
-
np.linalg.norm(points[0] - points[3]),
|
| 116 |
-
np.linalg.norm(points[1] - points[2])))
|
| 117 |
-
pts_std = np.float32([[0, 0], [img_crop_width, 0],
|
| 118 |
-
[img_crop_width, img_crop_height],
|
| 119 |
-
[0, img_crop_height]])
|
| 120 |
-
M = cv2.getPerspectiveTransform(points, pts_std)
|
| 121 |
-
dst_img = cv2.warpPerspective(
|
| 122 |
-
img,
|
| 123 |
-
M, (img_crop_width, img_crop_height),
|
| 124 |
-
borderMode=cv2.BORDER_REPLICATE,
|
| 125 |
-
flags=cv2.INTER_CUBIC)
|
| 126 |
-
dst_img_height, dst_img_width = dst_img.shape[0:2]
|
| 127 |
-
if dst_img_height * 1.0 / dst_img_width >= 1.5:
|
| 128 |
-
dst_img = np.rot90(dst_img)
|
| 129 |
-
return dst_img
|
| 130 |
-
|
| 131 |
-
img_crop_list = []
|
| 132 |
-
for box in dt_boxes:
|
| 133 |
-
tmp_box = copy.deepcopy(box)
|
| 134 |
-
img_crop = get_rotate_crop_image(img, tmp_box)
|
| 135 |
-
img_crop_list.append(img_crop)
|
| 136 |
-
return img_crop_list
|
| 137 |
-
|
| 138 |
-
@staticmethod
|
| 139 |
-
def sorted_boxes(dt_boxes):
|
| 140 |
-
"""
|
| 141 |
-
Sort text boxes in order from top to bottom, left to right
|
| 142 |
-
args:
|
| 143 |
-
dt_boxes(array):detected text boxes with shape [4, 2]
|
| 144 |
-
return:
|
| 145 |
-
sorted boxes(array) with shape [4, 2]
|
| 146 |
-
"""
|
| 147 |
-
num_boxes = dt_boxes.shape[0]
|
| 148 |
-
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
|
| 149 |
-
_boxes = list(sorted_boxes)
|
| 150 |
-
|
| 151 |
-
for i in range(num_boxes - 1):
|
| 152 |
-
if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
|
| 153 |
-
(_boxes[i + 1][0][0] < _boxes[i][0][0]):
|
| 154 |
-
tmp = _boxes[i]
|
| 155 |
-
_boxes[i] = _boxes[i + 1]
|
| 156 |
-
_boxes[i + 1] = tmp
|
| 157 |
-
return _boxes
|
| 158 |
-
|
| 159 |
-
def filter_boxes_rec_by_score(self, dt_boxes, rec_res):
|
| 160 |
-
filter_boxes, filter_rec_res = [], []
|
| 161 |
-
for box, rec_reuslt in zip(dt_boxes, rec_res):
|
| 162 |
-
text, score = rec_reuslt
|
| 163 |
-
if score >= self.text_score:
|
| 164 |
-
filter_boxes.append(box)
|
| 165 |
-
filter_rec_res.append(rec_reuslt)
|
| 166 |
-
return filter_boxes, filter_rec_res
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
if __name__ == '__main__':
|
| 170 |
-
text_sys = TextSystem('config.yaml')
|
| 171 |
-
|
| 172 |
-
import cv2
|
| 173 |
-
img = cv2.imread('resources/test_images/det_images/ch_en_num.jpg')
|
| 174 |
-
|
| 175 |
-
result = text_sys(img)
|
| 176 |
-
print(result)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,10 +1,3 @@
|
|
| 1 |
Gradio
|
| 2 |
-
pyclipper>=1.2.0
|
| 3 |
-
Shapely>=1.7.1
|
| 4 |
-
opencv_python>=4.5.1.48
|
| 5 |
-
six>=1.15.0
|
| 6 |
-
numpy>=1.19.5
|
| 7 |
Pillow
|
| 8 |
-
|
| 9 |
-
pytest
|
| 10 |
-
onnxruntime
|
|
|
|
| 1 |
Gradio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
Pillow
|
| 3 |
+
rapidocr_onnxruntime
|
|
|
|
|
|
resources/fonts/.gitkeep
DELETED
|
File without changes
|
resources/models/.gitkeep
DELETED
|
File without changes
|
resources/models/ch_PP-OCRv3_det_infer.onnx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:3439588c030faea393a54515f51e983d8e155b19a2e8aba7891934c1cf0de526
|
| 3 |
-
size 2432880
|
|
|
|
|
|
|
|
|
|
|
|
resources/models/ch_PP-OCRv3_rec_infer.onnx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:897a3ededb38fee0dae2c1ccee38241f37df202c9509e3abca02e9217c5ee615
|
| 3 |
-
size 10690752
|
|
|
|
|
|
|
|
|
|
|
|
resources/models/ch_ppocr_mobile_v2.0_cls_infer.onnx
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e47acedf663230f8863ff1ab0e64dd2d82b838fceb5957146dab185a89d6215c
|
| 3 |
-
size 585532
|
|
|
|
|
|
|
|
|
|
|
|