Spaces:
Running
Running
Add log
Browse files
app.py
CHANGED
|
@@ -86,6 +86,8 @@ def visualize(image_path, boxes, txts, scores,
|
|
| 86 |
|
| 87 |
def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
|
| 88 |
text_det=None, text_rec=None):
|
|
|
|
|
|
|
| 89 |
det_model_path = str(Path('models') / 'text_det' / text_det)
|
| 90 |
rec_model_path = str(Path('models') / 'text_rec' / text_rec)
|
| 91 |
if 'v2' in rec_model_path:
|
|
@@ -93,27 +95,35 @@ def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
|
|
| 93 |
else:
|
| 94 |
rec_image_shape = [3, 48, 320]
|
| 95 |
|
| 96 |
-
|
| 97 |
s = time.time()
|
| 98 |
rapid_ocr = RapidOCR(det_model_path=det_model_path,
|
| 99 |
rec_model_path=rec_model_path,
|
| 100 |
rec_img_shape=rec_image_shape)
|
| 101 |
-
print(det_model_path, rec_model_path, rec_image_shape)
|
| 102 |
elapse = time.time() - s
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
img = cv2.imread(img_path)
|
| 106 |
-
ocr_result,
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
if not ocr_result:
|
| 110 |
-
return img_path, '未识别到有效文本'
|
| 111 |
|
| 112 |
dt_boxes, rec_res, scores = list(zip(*ocr_result))
|
| 113 |
img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
|
| 114 |
output_text = [f'{one_rec} {float(score):.4f}'
|
| 115 |
for one_rec, score in zip(rec_res, scores)]
|
| 116 |
-
return img_save_path, output_text
|
| 117 |
|
| 118 |
|
| 119 |
examples = [['images/1.jpg'], ['images/ch_en_num.jpg']]
|
|
@@ -163,14 +173,15 @@ with gr.Blocks(title='RapidOCR') as demo:
|
|
| 163 |
with gr.Row():
|
| 164 |
input_img = gr.Image(type='filepath', label='Input')
|
| 165 |
out_img = gr.Image(type='filepath', label='Output')
|
|
|
|
| 166 |
out_txt = gr.outputs.Textbox(type='text', label='RecText')
|
| 167 |
button = gr.Button('Submit')
|
| 168 |
button.click(fn=inference,
|
| 169 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
| 170 |
text_det, text_rec],
|
| 171 |
-
outputs=[out_img, out_txt])
|
| 172 |
gr.Examples(examples=examples,
|
| 173 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
| 174 |
text_det, text_rec],
|
| 175 |
-
outputs=[out_img, out_txt], fn=inference)
|
| 176 |
demo.launch(debug=True, enable_queue=True)
|
|
|
|
| 86 |
|
| 87 |
def inference(img_path, box_thresh=0.5, unclip_ratio=1.6, text_score=0.5,
|
| 88 |
text_det=None, text_rec=None):
|
| 89 |
+
out_log_list = []
|
| 90 |
+
|
| 91 |
det_model_path = str(Path('models') / 'text_det' / text_det)
|
| 92 |
rec_model_path = str(Path('models') / 'text_rec' / text_rec)
|
| 93 |
if 'v2' in rec_model_path:
|
|
|
|
| 95 |
else:
|
| 96 |
rec_image_shape = [3, 48, 320]
|
| 97 |
|
| 98 |
+
out_log_list.append('Init Model')
|
| 99 |
s = time.time()
|
| 100 |
rapid_ocr = RapidOCR(det_model_path=det_model_path,
|
| 101 |
rec_model_path=rec_model_path,
|
| 102 |
rec_img_shape=rec_image_shape)
|
|
|
|
| 103 |
elapse = time.time() - s
|
| 104 |
+
|
| 105 |
+
out_log_list.append(f'Init Model cost: {elapse:.5f}')
|
| 106 |
+
out_log_list.extend([f'det_model:{det_model_path}',
|
| 107 |
+
f'rec_model: {rec_model_path}',
|
| 108 |
+
f'rec_image_shape: {rec_image_shape}'])
|
| 109 |
|
| 110 |
img = cv2.imread(img_path)
|
| 111 |
+
ocr_result, infer_elapse = rapid_ocr(img, box_thresh=box_thresh,
|
| 112 |
+
unclip_ratio=unclip_ratio,
|
| 113 |
+
text_score=text_score)
|
| 114 |
+
det_cost, cls_cost, rec_cost = infer_elapse
|
| 115 |
+
out_log_list.extend([f'det cost: {det_cost:.5f}',
|
| 116 |
+
f'cls cost: {cls_cost:.5f}',
|
| 117 |
+
f'rec cost: {rec_cost:.5f}'])
|
| 118 |
+
out_log = '\n'.join([str(v) for v in out_log_list])
|
| 119 |
if not ocr_result:
|
| 120 |
+
return img_path, '未识别到有效文本', out_log
|
| 121 |
|
| 122 |
dt_boxes, rec_res, scores = list(zip(*ocr_result))
|
| 123 |
img_save_path = visualize(img_path, dt_boxes, rec_res, scores)
|
| 124 |
output_text = [f'{one_rec} {float(score):.4f}'
|
| 125 |
for one_rec, score in zip(rec_res, scores)]
|
| 126 |
+
return img_save_path, output_text, out_log
|
| 127 |
|
| 128 |
|
| 129 |
examples = [['images/1.jpg'], ['images/ch_en_num.jpg']]
|
|
|
|
| 173 |
with gr.Row():
|
| 174 |
input_img = gr.Image(type='filepath', label='Input')
|
| 175 |
out_img = gr.Image(type='filepath', label='Output')
|
| 176 |
+
out_log = gr.outputs.Textbox(type='text', label='Run Log')
|
| 177 |
out_txt = gr.outputs.Textbox(type='text', label='RecText')
|
| 178 |
button = gr.Button('Submit')
|
| 179 |
button.click(fn=inference,
|
| 180 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
| 181 |
text_det, text_rec],
|
| 182 |
+
outputs=[out_img, out_txt, out_log])
|
| 183 |
gr.Examples(examples=examples,
|
| 184 |
inputs=[input_img, box_thresh, unclip_ratio, text_score,
|
| 185 |
text_det, text_rec],
|
| 186 |
+
outputs=[out_img, out_txt, out_log], fn=inference)
|
| 187 |
demo.launch(debug=True, enable_queue=True)
|