Spaces:
Running
Running
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer | |
import torch | |
from gtts import gTTS | |
import gradio as gr | |
import tempfile | |
# Load model and tokenizer | |
model_name = "SweUmaVarsh/m2m100-en-sa-translation" | |
tokenizer = M2M100Tokenizer.from_pretrained(model_name) | |
model = M2M100ForConditionalGeneration.from_pretrained(model_name) | |
# Use GPU if available | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
def translate_and_speak(text): | |
input_text = "en " + text | |
encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device) | |
generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True) | |
output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) | |
for tag in ["__en__", "__sa__", "en", "sa"]: | |
output = output.replace(tag, "") | |
sanskrit_text = output.strip() | |
# Convert to speech | |
tts = gTTS(sanskrit_text, lang='hi') | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp: | |
tts.save(fp.name) | |
audio_path = fp.name | |
return sanskrit_text, audio_path | |
iface = gr.Interface( | |
fn=translate_and_speak, | |
inputs=gr.Textbox(label="Enter English Text"), | |
outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")], | |
title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)", | |
description="Enter a sentence in English to get its Sanskrit translation and audio output." | |
) | |
iface.launch() | |