from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer import torch from gtts import gTTS import gradio as gr import tempfile # Load model and tokenizer model_name = "SweUmaVarsh/m2m100-en-sa-translation" tokenizer = M2M100Tokenizer.from_pretrained(model_name) model = M2M100ForConditionalGeneration.from_pretrained(model_name) # Use GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) def translate_and_speak(text): input_text = "en " + text encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device) generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True) output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) for tag in ["__en__", "__sa__", "en", "sa"]: output = output.replace(tag, "") sanskrit_text = output.strip() # Convert to speech tts = gTTS(sanskrit_text, lang='hi') with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp: tts.save(fp.name) audio_path = fp.name return sanskrit_text, audio_path iface = gr.Interface( fn=translate_and_speak, inputs=gr.Textbox(label="Enter English Text"), outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")], title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)", description="Enter a sentence in English to get its Sanskrit translation and audio output." ) iface.launch()