File size: 8,495 Bytes
386790e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
#!/usr/bin/env python3
"""
AI Models Monitor API
API برای نظارت و مدیریت مدلهای AI
"""
from fastapi import APIRouter, HTTPException, BackgroundTasks
from typing import Dict, List, Any, Optional
from pydantic import BaseModel
from datetime import datetime
from backend.services.ai_models_monitor import db, monitor, agent
router = APIRouter(prefix="/api/ai-models", tags=["AI Models Monitor"])
# ===== Pydantic Models =====
class ScanResponse(BaseModel):
total: int
available: int
loading: int
failed: int
auth_required: int
not_found: int = 0
models: List[Dict[str, Any]]
class ModelInfo(BaseModel):
model_id: str
model_key: Optional[str]
task: str
category: str
provider: str = "huggingface"
total_checks: Optional[int]
successful_checks: Optional[int]
success_rate: Optional[float]
avg_response_time_ms: Optional[float]
class AgentStatus(BaseModel):
running: bool
interval_minutes: int
last_scan: Optional[str]
# ===== Endpoints =====
@router.get("/scan", response_model=ScanResponse)
async def trigger_scan(background_tasks: BackgroundTasks):
"""
شروع اسکن فوری همه مدلها
این endpoint یک اسکن کامل از همه مدلها انجام میدهد و نتایج را در دیتابیس ذخیره میکند.
"""
try:
result = await monitor.scan_all_models()
return result
except Exception as e:
raise HTTPException(status_code=500, detail=f"Scan failed: {str(e)}")
@router.get("/models", response_model=List[ModelInfo])
async def get_all_models(status: Optional[str] = None):
"""
دریافت لیست همه مدلها
Args:
status: فیلتر بر اساس وضعیت (available, loading, failed, etc.)
"""
try:
if status:
models = monitor.get_models_by_status(status)
else:
models = db.get_all_models()
return models
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to get models: {str(e)}")
@router.get("/models/{model_id}/history")
async def get_model_history(model_id: str, limit: int = 100):
"""
دریافت تاریخچه یک مدل
Args:
model_id: شناسه مدل (مثلاً kk08/CryptoBERT)
limit: تعداد رکوردها (پیشفرض: 100)
"""
try:
history = db.get_model_history(model_id, limit)
return {
"model_id": model_id,
"total_records": len(history),
"history": history
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to get history: {str(e)}")
@router.get("/models/{model_id}/stats")
async def get_model_stats(model_id: str):
"""
دریافت آمار یک مدل خاص
"""
try:
models = db.get_all_models()
model = next((m for m in models if m['model_id'] == model_id), None)
if not model:
raise HTTPException(status_code=404, detail=f"Model not found: {model_id}")
history = db.get_model_history(model_id, limit=10)
return {
"model_info": model,
"recent_checks": history
}
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to get stats: {str(e)}")
@router.get("/stats/summary")
async def get_summary_stats():
"""
دریافت آمار خلاصه از همه مدلها
"""
try:
models = db.get_all_models()
total = len(models)
with_checks = sum(1 for m in models if m.get('total_checks', 0) > 0)
avg_success_rate = sum(m.get('success_rate', 0) for m in models if m.get('success_rate')) / with_checks if with_checks > 0 else 0
# دستهبندی بر اساس category
by_category = {}
for model in models:
cat = model.get('category', 'unknown')
if cat not in by_category:
by_category[cat] = {
'total': 0,
'avg_success_rate': 0,
'models': []
}
by_category[cat]['total'] += 1
by_category[cat]['models'].append(model['model_id'])
if model.get('success_rate'):
by_category[cat]['avg_success_rate'] += model['success_rate']
# محاسبه میانگین
for cat in by_category:
if by_category[cat]['total'] > 0:
by_category[cat]['avg_success_rate'] /= by_category[cat]['total']
return {
"total_models": total,
"models_with_checks": with_checks,
"overall_success_rate": avg_success_rate,
"by_category": by_category,
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to get summary: {str(e)}")
@router.get("/agent/status", response_model=AgentStatus)
async def get_agent_status():
"""
دریافت وضعیت Agent
"""
return {
"running": agent.running,
"interval_minutes": agent.interval / 60,
"last_scan": None # TODO: track last scan time
}
@router.post("/agent/start")
async def start_agent(background_tasks: BackgroundTasks):
"""
شروع Agent خودکار
Agent به صورت خودکار هر 5 دقیقه مدلها را بررسی میکند
"""
if agent.running:
return {
"status": "already_running",
"message": "Agent is already running",
"interval_minutes": agent.interval / 60
}
try:
background_tasks.add_task(agent.start)
return {
"status": "started",
"message": "Agent started successfully",
"interval_minutes": agent.interval / 60
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to start agent: {str(e)}")
@router.post("/agent/stop")
async def stop_agent():
"""
توقف Agent
"""
if not agent.running:
return {
"status": "not_running",
"message": "Agent is not running"
}
try:
await agent.stop()
return {
"status": "stopped",
"message": "Agent stopped successfully"
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to stop agent: {str(e)}")
@router.get("/dashboard")
async def get_dashboard_data():
"""
دریافت دادههای کامل برای داشبورد
"""
try:
models = db.get_all_models()
summary = await get_summary_stats()
# مدلهای برتر (بر اساس success rate)
top_models = sorted(
[m for m in models if m.get('success_rate', 0) > 0],
key=lambda x: x.get('success_rate', 0),
reverse=True
)[:10]
# مدلهای problem
failed_models = sorted(
[m for m in models if m.get('success_rate', 0) < 50],
key=lambda x: x.get('success_rate', 0)
)[:10]
return {
"summary": summary,
"top_models": top_models,
"failed_models": failed_models,
"agent_running": agent.running,
"total_models": len(models),
"timestamp": datetime.now().isoformat()
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to get dashboard data: {str(e)}")
@router.get("/models/available")
async def get_available_models():
"""
فقط مدلهایی که در حال حاضر کار میکنند
"""
try:
models = monitor.get_models_by_status('available')
return {
"total": len(models),
"models": models
}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Failed to get available models: {str(e)}")
@router.get("/health")
async def health_check():
"""
بررسی سلامت سیستم
"""
return {
"status": "healthy",
"database": "connected",
"agent_running": agent.running,
"timestamp": datetime.now().isoformat()
}
|