File size: 12,624 Bytes
386790e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
#!/usr/bin/env python3
"""
Backtesting Service
===================
سرویس بکتست برای ارزیابی استراتژیهای معاملاتی با دادههای تاریخی
"""
from typing import Optional, List, Dict, Any, Tuple
from datetime import datetime, timedelta
from sqlalchemy.orm import Session
from sqlalchemy import and_, desc
import uuid
import logging
import json
import math
from database.models import (
Base, BacktestJob, TrainingStatus, CachedOHLC
)
logger = logging.getLogger(__name__)
class BacktestingService:
"""سرویس اصلی بکتست"""
def __init__(self, db_session: Session):
"""
Initialize the backtesting service.
Args:
db_session: SQLAlchemy database session
"""
self.db = db_session
def start_backtest(
self,
strategy: str,
symbol: str,
start_date: datetime,
end_date: datetime,
initial_capital: float
) -> Dict[str, Any]:
"""
Start a backtest for a specific strategy.
Args:
strategy: Name of the strategy to backtest
symbol: Trading pair (e.g., "BTC/USDT")
start_date: Backtest start date
end_date: Backtest end date
initial_capital: Starting capital
Returns:
Dict containing backtest job details
"""
try:
# Generate job ID
job_id = f"BT-{uuid.uuid4().hex[:12].upper()}"
# Create backtest job
job = BacktestJob(
job_id=job_id,
strategy=strategy,
symbol=symbol.upper(),
start_date=start_date,
end_date=end_date,
initial_capital=initial_capital,
status=TrainingStatus.PENDING
)
self.db.add(job)
self.db.commit()
self.db.refresh(job)
# Run backtest in background (for now, run synchronously)
results = self._run_backtest(job)
# Update job with results
job.status = TrainingStatus.COMPLETED
job.total_return = results["total_return"]
job.sharpe_ratio = results["sharpe_ratio"]
job.max_drawdown = results["max_drawdown"]
job.win_rate = results["win_rate"]
job.total_trades = results["total_trades"]
job.results = json.dumps(results)
job.completed_at = datetime.utcnow()
self.db.commit()
self.db.refresh(job)
logger.info(f"Backtest {job_id} completed successfully")
return self._job_to_dict(job)
except Exception as e:
self.db.rollback()
logger.error(f"Error starting backtest: {e}", exc_info=True)
raise
def _run_backtest(self, job: BacktestJob) -> Dict[str, Any]:
"""
Execute the backtest logic.
Args:
job: Backtest job
Returns:
Dict containing backtest results
"""
try:
# Fetch historical data
historical_data = self._fetch_historical_data(
job.symbol,
job.start_date,
job.end_date
)
if not historical_data:
raise ValueError(f"No historical data found for {job.symbol}")
# Get strategy function
strategy_func = self._get_strategy_function(job.strategy)
# Initialize backtest state
capital = job.initial_capital
position = 0.0 # Position size
entry_price = 0.0
trades = []
equity_curve = [capital]
high_water_mark = capital
max_drawdown = 0.0
# Run strategy on historical data
for i, candle in enumerate(historical_data):
close_price = candle["close"]
signal = strategy_func(historical_data[:i+1], close_price)
# Execute trades based on signal
if signal == "BUY" and position == 0:
# Open long position
position = capital / close_price
entry_price = close_price
capital = 0
elif signal == "SELL" and position > 0:
# Close long position
capital = position * close_price
pnl = capital - (position * entry_price)
trades.append({
"entry_price": entry_price,
"exit_price": close_price,
"pnl": pnl,
"return_pct": (pnl / (position * entry_price)) * 100,
"timestamp": candle["timestamp"]
})
position = 0
entry_price = 0.0
# Calculate current equity
current_equity = capital + (position * close_price if position > 0 else 0)
equity_curve.append(current_equity)
# Update drawdown
if current_equity > high_water_mark:
high_water_mark = current_equity
drawdown = ((high_water_mark - current_equity) / high_water_mark) * 100
if drawdown > max_drawdown:
max_drawdown = drawdown
# Close final position if open
if position > 0:
final_price = historical_data[-1]["close"]
capital = position * final_price
pnl = capital - (position * entry_price)
trades.append({
"entry_price": entry_price,
"exit_price": final_price,
"pnl": pnl,
"return_pct": (pnl / (position * entry_price)) * 100,
"timestamp": historical_data[-1]["timestamp"]
})
# Calculate metrics
total_return = ((capital - job.initial_capital) / job.initial_capital) * 100
win_rate = self._calculate_win_rate(trades)
sharpe_ratio = self._calculate_sharpe_ratio(equity_curve)
return {
"total_return": total_return,
"sharpe_ratio": sharpe_ratio,
"max_drawdown": max_drawdown,
"win_rate": win_rate,
"total_trades": len(trades),
"trades": trades,
"equity_curve": equity_curve[-100:] # Last 100 points
}
except Exception as e:
logger.error(f"Error running backtest: {e}", exc_info=True)
raise
def _fetch_historical_data(
self,
symbol: str,
start_date: datetime,
end_date: datetime
) -> List[Dict[str, Any]]:
"""
Fetch historical OHLC data.
Args:
symbol: Trading pair
start_date: Start date
end_date: End date
Returns:
List of candle dictionaries
"""
try:
# Convert symbol to database format (BTC/USDT -> BTCUSDT)
db_symbol = symbol.replace("/", "").upper()
candles = self.db.query(CachedOHLC).filter(
and_(
CachedOHLC.symbol == db_symbol,
CachedOHLC.timestamp >= start_date,
CachedOHLC.timestamp <= end_date,
CachedOHLC.interval == "1h" # Use 1h candles
)
).order_by(CachedOHLC.timestamp.asc()).all()
return [
{
"timestamp": c.timestamp.isoformat() if c.timestamp else None,
"open": c.open,
"high": c.high,
"low": c.low,
"close": c.close,
"volume": c.volume
}
for c in candles
]
except Exception as e:
logger.error(f"Error fetching historical data: {e}", exc_info=True)
return []
def _get_strategy_function(self, strategy_name: str):
"""
Get strategy function by name.
Args:
strategy_name: Strategy name
Returns:
Strategy function
"""
strategies = {
"simple_moving_average": self._sma_strategy,
"rsi_strategy": self._rsi_strategy,
"macd_strategy": self._macd_strategy
}
return strategies.get(strategy_name, self._sma_strategy)
def _sma_strategy(self, data: List[Dict], current_price: float) -> str:
"""Simple Moving Average strategy."""
if len(data) < 50:
return "HOLD"
# Calculate SMAs
closes = [d["close"] for d in data[-50:]]
sma_short = sum(closes[-10:]) / 10
sma_long = sum(closes) / 50
if sma_short > sma_long:
return "BUY"
elif sma_short < sma_long:
return "SELL"
return "HOLD"
def _rsi_strategy(self, data: List[Dict], current_price: float) -> str:
"""RSI strategy."""
if len(data) < 14:
return "HOLD"
# Calculate RSI (simplified)
closes = [d["close"] for d in data[-14:]]
gains = [max(0, closes[i] - closes[i-1]) for i in range(1, len(closes))]
losses = [max(0, closes[i-1] - closes[i]) for i in range(1, len(closes))]
avg_gain = sum(gains) / len(gains) if gains else 0
avg_loss = sum(losses) / len(losses) if losses else 0
if avg_loss == 0:
rsi = 100
else:
rs = avg_gain / avg_loss
rsi = 100 - (100 / (1 + rs))
if rsi < 30:
return "BUY"
elif rsi > 70:
return "SELL"
return "HOLD"
def _macd_strategy(self, data: List[Dict], current_price: float) -> str:
"""MACD strategy."""
if len(data) < 26:
return "HOLD"
# Simplified MACD
closes = [d["close"] for d in data[-26:]]
ema_12 = sum(closes[-12:]) / 12
ema_26 = sum(closes) / 26
macd = ema_12 - ema_26
if macd > 0:
return "BUY"
elif macd < 0:
return "SELL"
return "HOLD"
def _calculate_win_rate(self, trades: List[Dict]) -> float:
"""Calculate win rate from trades."""
if not trades:
return 0.0
winning_trades = sum(1 for t in trades if t["pnl"] > 0)
return (winning_trades / len(trades)) * 100
def _calculate_sharpe_ratio(self, equity_curve: List[float]) -> float:
"""Calculate Sharpe ratio from equity curve."""
if len(equity_curve) < 2:
return 0.0
returns = []
for i in range(1, len(equity_curve)):
if equity_curve[i-1] > 0:
ret = (equity_curve[i] - equity_curve[i-1]) / equity_curve[i-1]
returns.append(ret)
if not returns:
return 0.0
mean_return = sum(returns) / len(returns)
variance = sum((r - mean_return) ** 2 for r in returns) / len(returns)
std_dev = math.sqrt(variance) if variance > 0 else 0.0001
# Annualized Sharpe (assuming daily returns)
sharpe = (mean_return / std_dev) * math.sqrt(365) if std_dev > 0 else 0.0
return sharpe
def _job_to_dict(self, job: BacktestJob) -> Dict[str, Any]:
"""Convert job model to dictionary."""
results = json.loads(job.results) if job.results else {}
return {
"job_id": job.job_id,
"strategy": job.strategy,
"symbol": job.symbol,
"start_date": job.start_date.isoformat() if job.start_date else None,
"end_date": job.end_date.isoformat() if job.end_date else None,
"initial_capital": job.initial_capital,
"status": job.status.value if job.status else None,
"total_return": job.total_return,
"sharpe_ratio": job.sharpe_ratio,
"max_drawdown": job.max_drawdown,
"win_rate": job.win_rate,
"total_trades": job.total_trades,
"results": results,
"created_at": job.created_at.isoformat() if job.created_at else None,
"completed_at": job.completed_at.isoformat() if job.completed_at else None
}
|