File size: 15,229 Bytes
6992ad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
#!/usr/bin/env python3
"""
HuggingFace Dataset Loader - Direct Loading
Loads cryptocurrency datasets directly from Hugging Face
"""
import logging
import os
from typing import Dict, Any, Optional, List
from datetime import datetime
import pandas as pd
from pathlib import Path
logger = logging.getLogger(__name__)
# Try to import datasets
try:
from datasets import load_dataset, Dataset, DatasetDict
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
logger.error("β Datasets library not available. Install with: pip install datasets")
class CryptoDatasetLoader:
"""
Direct Cryptocurrency Dataset Loader
Loads crypto datasets from Hugging Face without using pipelines
"""
def __init__(self, cache_dir: Optional[str] = None):
"""
Initialize Dataset Loader
Args:
cache_dir: Directory to cache datasets (default: ~/.cache/huggingface/datasets)
"""
if not DATASETS_AVAILABLE:
logger.warning("β οΈ Dataset Loader disabled: datasets library not available")
self.enabled = False
else:
self.enabled = True
self.cache_dir = cache_dir or os.path.expanduser("~/.cache/huggingface/datasets")
self.datasets = {}
logger.info(f"π Crypto Dataset Loader initialized")
logger.info(f" Cache directory: {self.cache_dir}")
# Dataset configurations
self.dataset_configs = {
"cryptocoin": {
"dataset_id": "linxy/CryptoCoin",
"description": "CryptoCoin dataset by Linxy",
"loaded": False
},
"bitcoin_btc_usdt": {
"dataset_id": "WinkingFace/CryptoLM-Bitcoin-BTC-USDT",
"description": "Bitcoin BTC-USDT market data",
"loaded": False
},
"ethereum_eth_usdt": {
"dataset_id": "WinkingFace/CryptoLM-Ethereum-ETH-USDT",
"description": "Ethereum ETH-USDT market data",
"loaded": False
},
"solana_sol_usdt": {
"dataset_id": "WinkingFace/CryptoLM-Solana-SOL-USDT",
"description": "Solana SOL-USDT market data",
"loaded": False
},
"ripple_xrp_usdt": {
"dataset_id": "WinkingFace/CryptoLM-Ripple-XRP-USDT",
"description": "Ripple XRP-USDT market data",
"loaded": False
}
}
async def load_dataset(
self,
dataset_key: str,
split: Optional[str] = None,
streaming: bool = False
) -> Dict[str, Any]:
"""
Load a specific dataset directly
Args:
dataset_key: Key of the dataset to load
split: Dataset split to load (train, test, validation, etc.)
streaming: Whether to stream the dataset
Returns:
Status dict with dataset info
"""
if dataset_key not in self.dataset_configs:
raise ValueError(f"Unknown dataset: {dataset_key}")
config = self.dataset_configs[dataset_key]
# Check if already loaded
if dataset_key in self.datasets:
logger.info(f"β
Dataset {dataset_key} already loaded")
config["loaded"] = True
return {
"success": True,
"dataset_key": dataset_key,
"dataset_id": config["dataset_id"],
"status": "already_loaded",
"num_rows": len(self.datasets[dataset_key]) if hasattr(self.datasets[dataset_key], "__len__") else "unknown"
}
try:
logger.info(f"π₯ Loading dataset: {config['dataset_id']}")
# Load dataset directly
dataset = load_dataset(
config["dataset_id"],
split=split,
cache_dir=self.cache_dir,
streaming=streaming
)
# Store dataset
self.datasets[dataset_key] = dataset
config["loaded"] = True
# Get dataset info
if isinstance(dataset, Dataset):
num_rows = len(dataset)
columns = dataset.column_names
elif isinstance(dataset, DatasetDict):
num_rows = {split: len(dataset[split]) for split in dataset.keys()}
columns = list(dataset[list(dataset.keys())[0]].column_names)
else:
num_rows = "unknown"
columns = []
logger.info(f"β
Dataset loaded successfully: {config['dataset_id']}")
return {
"success": True,
"dataset_key": dataset_key,
"dataset_id": config["dataset_id"],
"status": "loaded",
"num_rows": num_rows,
"columns": columns,
"streaming": streaming
}
except Exception as e:
logger.error(f"β Failed to load dataset {dataset_key}: {e}")
raise Exception(f"Failed to load dataset {dataset_key}: {str(e)}")
async def load_all_datasets(self, streaming: bool = False) -> Dict[str, Any]:
"""
Load all configured datasets
Args:
streaming: Whether to stream the datasets
Returns:
Status dict with all datasets
"""
results = []
success_count = 0
for dataset_key in self.dataset_configs.keys():
try:
result = await self.load_dataset(dataset_key, streaming=streaming)
results.append(result)
if result["success"]:
success_count += 1
except Exception as e:
logger.error(f"β Failed to load {dataset_key}: {e}")
results.append({
"success": False,
"dataset_key": dataset_key,
"error": str(e)
})
return {
"success": True,
"total_datasets": len(self.dataset_configs),
"loaded_datasets": success_count,
"failed_datasets": len(self.dataset_configs) - success_count,
"results": results,
"timestamp": datetime.utcnow().isoformat()
}
async def get_dataset_sample(
self,
dataset_key: str,
num_samples: int = 10,
split: Optional[str] = None
) -> Dict[str, Any]:
"""
Get sample rows from a dataset
Args:
dataset_key: Key of the dataset
num_samples: Number of samples to return
split: Dataset split to sample from
Returns:
Sample data
"""
# Ensure dataset is loaded
if dataset_key not in self.datasets:
await self.load_dataset(dataset_key, split=split)
try:
dataset = self.datasets[dataset_key]
# Handle different dataset types
if isinstance(dataset, DatasetDict):
# Get first split if not specified
split_to_use = split or list(dataset.keys())[0]
dataset = dataset[split_to_use]
# Get samples
samples = dataset.select(range(min(num_samples, len(dataset))))
# Convert to list of dicts
samples_list = [dict(sample) for sample in samples]
logger.info(f"β
Retrieved {len(samples_list)} samples from {dataset_key}")
return {
"success": True,
"dataset_key": dataset_key,
"dataset_id": self.dataset_configs[dataset_key]["dataset_id"],
"num_samples": len(samples_list),
"samples": samples_list,
"columns": list(samples_list[0].keys()) if samples_list else [],
"timestamp": datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"β Failed to get samples from {dataset_key}: {e}")
raise Exception(f"Failed to get samples: {str(e)}")
async def query_dataset(
self,
dataset_key: str,
filters: Optional[Dict[str, Any]] = None,
limit: int = 100
) -> Dict[str, Any]:
"""
Query dataset with filters
Args:
dataset_key: Key of the dataset
filters: Dictionary of column filters
limit: Maximum number of results
Returns:
Filtered data
"""
# Ensure dataset is loaded
if dataset_key not in self.datasets:
await self.load_dataset(dataset_key)
try:
dataset = self.datasets[dataset_key]
# Handle DatasetDict
if isinstance(dataset, DatasetDict):
dataset = dataset[list(dataset.keys())[0]]
# Apply filters if provided
if filters:
for column, value in filters.items():
dataset = dataset.filter(lambda x: x[column] == value)
# Limit results
result_dataset = dataset.select(range(min(limit, len(dataset))))
# Convert to list of dicts
results = [dict(row) for row in result_dataset]
logger.info(f"β
Query returned {len(results)} results from {dataset_key}")
return {
"success": True,
"dataset_key": dataset_key,
"filters_applied": filters or {},
"count": len(results),
"results": results,
"timestamp": datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"β Failed to query dataset {dataset_key}: {e}")
raise Exception(f"Failed to query dataset: {str(e)}")
async def get_dataset_stats(self, dataset_key: str) -> Dict[str, Any]:
"""
Get statistics about a dataset
Args:
dataset_key: Key of the dataset
Returns:
Dataset statistics
"""
# Ensure dataset is loaded
if dataset_key not in self.datasets:
await self.load_dataset(dataset_key)
try:
dataset = self.datasets[dataset_key]
# Handle DatasetDict
if isinstance(dataset, DatasetDict):
splits_info = {}
for split_name, split_dataset in dataset.items():
splits_info[split_name] = {
"num_rows": len(split_dataset),
"columns": split_dataset.column_names,
"features": str(split_dataset.features)
}
return {
"success": True,
"dataset_key": dataset_key,
"dataset_id": self.dataset_configs[dataset_key]["dataset_id"],
"type": "DatasetDict",
"splits": splits_info,
"timestamp": datetime.utcnow().isoformat()
}
else:
return {
"success": True,
"dataset_key": dataset_key,
"dataset_id": self.dataset_configs[dataset_key]["dataset_id"],
"type": "Dataset",
"num_rows": len(dataset),
"columns": dataset.column_names,
"features": str(dataset.features),
"timestamp": datetime.utcnow().isoformat()
}
except Exception as e:
logger.error(f"β Failed to get stats for {dataset_key}: {e}")
raise Exception(f"Failed to get dataset stats: {str(e)}")
def get_loaded_datasets(self) -> Dict[str, Any]:
"""
Get list of loaded datasets
Returns:
Dict with loaded datasets info
"""
datasets_info = []
for dataset_key, config in self.dataset_configs.items():
info = {
"dataset_key": dataset_key,
"dataset_id": config["dataset_id"],
"description": config["description"],
"loaded": dataset_key in self.datasets
}
# Add size info if loaded
if dataset_key in self.datasets:
dataset = self.datasets[dataset_key]
if isinstance(dataset, DatasetDict):
info["num_rows"] = {split: len(dataset[split]) for split in dataset.keys()}
elif hasattr(dataset, "__len__"):
info["num_rows"] = len(dataset)
else:
info["num_rows"] = "unknown"
datasets_info.append(info)
return {
"success": True,
"total_configured": len(self.dataset_configs),
"total_loaded": len(self.datasets),
"datasets": datasets_info,
"timestamp": datetime.utcnow().isoformat()
}
def unload_dataset(self, dataset_key: str) -> Dict[str, Any]:
"""
Unload a specific dataset from memory
Args:
dataset_key: Key of the dataset to unload
Returns:
Status dict
"""
if dataset_key not in self.datasets:
return {
"success": False,
"dataset_key": dataset_key,
"message": "Dataset not loaded"
}
try:
# Remove dataset
del self.datasets[dataset_key]
# Update config
self.dataset_configs[dataset_key]["loaded"] = False
logger.info(f"β
Dataset unloaded: {dataset_key}")
return {
"success": True,
"dataset_key": dataset_key,
"message": "Dataset unloaded successfully"
}
except Exception as e:
logger.error(f"β Failed to unload dataset {dataset_key}: {e}")
return {
"success": False,
"dataset_key": dataset_key,
"error": str(e)
}
# Global instance - only create if datasets is available
crypto_dataset_loader = None
if DATASETS_AVAILABLE:
try:
crypto_dataset_loader = CryptoDatasetLoader()
except Exception as e:
logger.warning(f"Failed to initialize CryptoDatasetLoader: {e}")
crypto_dataset_loader = None
else:
logger.warning("CryptoDatasetLoader not available - datasets library not installed")
# Export
__all__ = ["CryptoDatasetLoader", "crypto_dataset_loader"]
|