File size: 18,786 Bytes
8b7b267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
#!/usr/bin/env python3
"""
Hugging Face Inference API Client
استفاده از API به جای بارگذاری مستقیم مدلها
"""
import aiohttp
import os
from typing import Dict, List, Optional, Any
import asyncio
import logging
from collections import Counter
logger = logging.getLogger(__name__)
class HFInferenceAPIClient:
"""
کلاینت برای Hugging Face Inference API
مزایا:
- نیازی به بارگذاری مدل در RAM نیست
- دسترسی به مدلهای بزرگتر
- پردازش سریعتر (GPU در سرورهای HF)
- 30,000 درخواست رایگان در ماه
"""
def __init__(self, api_token: Optional[str] = None):
self.api_token = api_token or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
self.base_url = "https://api-inference.huggingface.co/models"
self.session = None
# مدلهای تأیید شده که در HF API کار میکنند
self.verified_models = {
"crypto_sentiment": "kk08/CryptoBERT",
"social_sentiment": "ElKulako/cryptobert",
"financial_sentiment": "ProsusAI/finbert",
"twitter_sentiment": "cardiffnlp/twitter-roberta-base-sentiment-latest",
"fintwit_sentiment": "StephanAkkerman/FinTwitBERT-sentiment",
"crypto_gen": "OpenC/crypto-gpt-o3-mini",
"crypto_trader": "agarkovv/CryptoTrader-LM",
}
# Cache برای نتایج (برای کاهش تعداد درخواستها)
self._cache = {}
self._cache_ttl = 300 # 5 دقیقه
async def __aenter__(self):
self.session = aiohttp.ClientSession()
return self
async def __aexit__(self, exc_type, exc_val, exc_tb):
if self.session:
await self.session.close()
def _get_cache_key(self, text: str, model_key: str) -> str:
"""ایجاد کلید cache"""
return f"{model_key}:{text[:100]}"
def _check_cache(self, cache_key: str) -> Optional[Dict[str, Any]]:
"""بررسی cache"""
if cache_key in self._cache:
cached_result, timestamp = self._cache[cache_key]
if asyncio.get_event_loop().time() - timestamp < self._cache_ttl:
return cached_result
else:
del self._cache[cache_key]
return None
def _set_cache(self, cache_key: str, result: Dict[str, Any]):
"""ذخیره در cache"""
self._cache[cache_key] = (result, asyncio.get_event_loop().time())
async def analyze_sentiment(
self,
text: str,
model_key: str = "crypto_sentiment",
use_cache: bool = True
) -> Dict[str, Any]:
"""
تحلیل sentiment با استفاده از HF Inference API
Args:
text: متن برای تحلیل
model_key: کلید مدل (crypto_sentiment, social_sentiment, ...)
use_cache: استفاده از cache
Returns:
Dict شامل label, confidence, و اطلاعات دیگر
"""
# بررسی cache
if use_cache:
cache_key = self._get_cache_key(text, model_key)
cached = self._check_cache(cache_key)
if cached:
cached["from_cache"] = True
return cached
model_id = self.verified_models.get(model_key)
if not model_id:
return {
"status": "error",
"error": f"Unknown model key: {model_key}. Available: {list(self.verified_models.keys())}"
}
url = f"{self.base_url}/{model_id}"
headers = {}
if self.api_token:
headers["Authorization"] = f"Bearer {self.api_token}"
payload = {"inputs": text[:512]} # محدودیت طول متن
try:
if not self.session:
self.session = aiohttp.ClientSession()
async with self.session.post(
url,
json=payload,
headers=headers,
timeout=aiohttp.ClientTimeout(total=30)
) as response:
if response.status == 503:
# مدل در حال بارگذاری است
return {
"status": "loading",
"message": "Model is loading, please retry in 20 seconds",
"model": model_id
}
if response.status == 429:
# محدودیت rate limit
return {
"status": "rate_limited",
"error": "Rate limit exceeded. Please try again later.",
"model": model_id
}
if response.status == 401:
return {
"status": "error",
"error": "Authentication required. Please set HF_TOKEN environment variable.",
"model": model_id
}
if response.status == 200:
data = await response.json()
# استخراج نتیجه
if isinstance(data, list) and len(data) > 0:
if isinstance(data[0], list):
# برخی مدلها لیستی از لیستها برمیگردانند
result = data[0][0] if data[0] else {}
else:
result = data[0]
# استانداردسازی خروجی
label = result.get("label", "NEUTRAL").upper()
score = result.get("score", 0.5)
# تبدیل به فرمت استاندارد
mapped = self._map_label(label)
response_data = {
"status": "success",
"label": mapped,
"confidence": score,
"score": score,
"raw_label": label,
"model": model_id,
"model_key": model_key,
"engine": "hf_inference_api",
"available": True,
"from_cache": False
}
# ذخیره در cache
if use_cache:
cache_key = self._get_cache_key(text, model_key)
self._set_cache(cache_key, response_data)
return response_data
error_text = await response.text()
logger.warning(f"HF API error: HTTP {response.status}: {error_text[:200]}")
return {
"status": "error",
"error": f"HTTP {response.status}: {error_text[:200]}",
"model": model_id
}
except asyncio.TimeoutError:
logger.error(f"HF API timeout for model {model_id}")
return {
"status": "error",
"error": "Request timeout after 30 seconds",
"model": model_id
}
except Exception as e:
logger.error(f"HF API exception for model {model_id}: {e}")
return {
"status": "error",
"error": str(e)[:200],
"model": model_id
}
def _map_label(self, label: str) -> str:
"""تبدیل برچسبهای مختلف به فرمت استاندارد"""
label_upper = label.upper()
# Positive/Bullish mapping
if any(x in label_upper for x in ["POSITIVE", "BULLISH", "LABEL_2", "BUY"]):
return "bullish"
# Negative/Bearish mapping
elif any(x in label_upper for x in ["NEGATIVE", "BEARISH", "LABEL_0", "SELL"]):
return "bearish"
# Neutral/Hold mapping
else:
return "neutral"
async def ensemble_sentiment(
self,
text: str,
models: Optional[List[str]] = None,
min_models: int = 2
) -> Dict[str, Any]:
"""
استفاده از چندین مدل به صورت همزمان (ensemble)
Args:
text: متن برای تحلیل
models: لیست کلیدهای مدل (None = استفاده از مدلهای پیشفرض)
min_models: حداقل تعداد مدلهای موفق برای نتیجه معتبر
Returns:
Dict شامل نتیجه ensemble
"""
if models is None:
# مدلهای پیشفرض برای ensemble
models = ["crypto_sentiment", "social_sentiment", "financial_sentiment"]
# فراخوانی موازی مدلها
tasks = [self.analyze_sentiment(text, model) for model in models]
results = await asyncio.gather(*tasks, return_exceptions=True)
# جمعآوری نتایج موفق
successful_results = []
failed_models = []
loading_models = []
for i, result in enumerate(results):
if isinstance(result, Exception):
failed_models.append({
"model": models[i],
"error": str(result)[:100]
})
continue
if isinstance(result, dict):
if result.get("status") == "success":
successful_results.append(result)
elif result.get("status") == "loading":
loading_models.append(result.get("model"))
else:
failed_models.append({
"model": models[i],
"error": result.get("error", "Unknown error")[:100]
})
# اگر همه مدلها در حال بارگذاری هستند
if loading_models and not successful_results:
return {
"status": "loading",
"message": f"{len(loading_models)} model(s) are loading",
"loading_models": loading_models
}
# اگر تعداد مدلهای موفق کمتر از حداقل باشد
if len(successful_results) < min_models:
return {
"status": "insufficient_models",
"error": f"Only {len(successful_results)} models succeeded (min: {min_models})",
"successful": len(successful_results),
"failed": len(failed_models),
"failed_models": failed_models[:3], # نمایش 3 خطای اول
"fallback": True
}
# رایگیری بین نتایج
labels = [r["label"] for r in successful_results]
confidences = [r["confidence"] for r in successful_results]
# شمارش آرا
label_counts = Counter(labels)
final_label = label_counts.most_common(1)[0][0]
# محاسبه اعتماد وزنی
# مدلهایی که با اکثریت موافق هستند، وزن بیشتری دارند
weighted_confidence = sum(
r["confidence"] for r in successful_results
if r["label"] == final_label
) / len([r for r in successful_results if r["label"] == final_label])
# میانگین کل
avg_confidence = sum(confidences) / len(confidences)
# آمارههای تفصیلی
scores_breakdown = {
"bullish": 0.0,
"bearish": 0.0,
"neutral": 0.0
}
for result in successful_results:
label = result["label"]
confidence = result["confidence"]
scores_breakdown[label] += confidence
# نرمالسازی
total_score = sum(scores_breakdown.values())
if total_score > 0:
scores_breakdown = {
k: v / total_score
for k, v in scores_breakdown.items()
}
return {
"status": "success",
"label": final_label,
"confidence": weighted_confidence,
"avg_confidence": avg_confidence,
"score": weighted_confidence,
"scores": scores_breakdown,
"model_count": len(successful_results),
"votes": dict(label_counts),
"consensus": label_counts[final_label] / len(successful_results),
"models_used": [r["model"] for r in successful_results],
"engine": "hf_inference_api_ensemble",
"available": True,
"failed_count": len(failed_models),
"failed_models": failed_models[:3] if failed_models else []
}
async def analyze_with_fallback(
self,
text: str,
primary_model: str = "crypto_sentiment",
fallback_models: Optional[List[str]] = None
) -> Dict[str, Any]:
"""
تحلیل با fallback خودکار
اگر مدل اصلی موفق نشد، از مدلهای fallback استفاده میکند
"""
if fallback_models is None:
fallback_models = ["social_sentiment", "financial_sentiment", "twitter_sentiment"]
# تلاش با مدل اصلی
result = await self.analyze_sentiment(text, primary_model)
if result.get("status") == "success":
result["used_fallback"] = False
return result
# تلاش با مدلهای fallback
for fallback_model in fallback_models:
result = await self.analyze_sentiment(text, fallback_model)
if result.get("status") == "success":
result["used_fallback"] = True
result["fallback_model"] = fallback_model
result["primary_model_failed"] = primary_model
return result
# همه مدلها ناموفق بودند
return {
"status": "all_failed",
"error": "All models failed",
"primary_model": primary_model,
"fallback_models": fallback_models
}
def get_available_models(self) -> Dict[str, Any]:
"""
دریافت لیست مدلهای موجود
"""
return {
"total": len(self.verified_models),
"models": [
{
"key": key,
"model_id": model_id,
"provider": "HuggingFace",
"type": "sentiment" if "sentiment" in key else ("generation" if "gen" in key else "trading")
}
for key, model_id in self.verified_models.items()
]
}
def get_cache_stats(self) -> Dict[str, Any]:
"""
آمار cache
"""
return {
"cache_size": len(self._cache),
"cache_ttl": self._cache_ttl
}
# ===== توابع کمکی برای استفاده آسان =====
async def analyze_crypto_sentiment_via_api(
text: str,
use_ensemble: bool = True
) -> Dict[str, Any]:
"""
تحلیل sentiment کریپتو با استفاده از HF Inference API
Args:
text: متن برای تحلیل
use_ensemble: استفاده از ensemble (چند مدل)
Returns:
Dict شامل نتیجه تحلیل
"""
async with HFInferenceAPIClient() as client:
if use_ensemble:
return await client.ensemble_sentiment(text)
else:
return await client.analyze_sentiment(text, "crypto_sentiment")
async def quick_sentiment(text: str) -> str:
"""
تحلیل سریع sentiment - فقط برچسب را برمیگرداند
Args:
text: متن برای تحلیل
Returns:
str: "bullish", "bearish", یا "neutral"
"""
result = await analyze_crypto_sentiment_via_api(text, use_ensemble=False)
return result.get("label", "neutral")
# ===== مثال استفاده =====
if __name__ == "__main__":
async def test_client():
"""تست کلاینت"""
print("🧪 Testing HF Inference API Client...")
test_texts = [
"Bitcoin is showing strong bullish momentum!",
"Major exchange hacked, prices crashing",
"Market consolidating, waiting for direction"
]
async with HFInferenceAPIClient() as client:
# تست تک مدل
print("\n1️⃣ Single Model Test:")
for text in test_texts:
result = await client.analyze_sentiment(text, "crypto_sentiment")
print(f" Text: {text[:50]}...")
print(f" Result: {result.get('label')} ({result.get('confidence', 0):.2%})")
# تست ensemble
print("\n2️⃣ Ensemble Test:")
text = "Bitcoin breaking new all-time highs!"
result = await client.ensemble_sentiment(text)
print(f" Text: {text}")
print(f" Result: {result.get('label')} ({result.get('confidence', 0):.2%})")
print(f" Votes: {result.get('votes')}")
print(f" Models: {result.get('model_count')}")
# تست fallback
print("\n3️⃣ Fallback Test:")
result = await client.analyze_with_fallback(text)
print(f" Used fallback: {result.get('used_fallback', False)}")
print(f" Result: {result.get('label')} ({result.get('confidence', 0):.2%})")
# لیست مدلها
print("\n4️⃣ Available Models:")
models = client.get_available_models()
for model in models["models"][:5]:
print(f" - {model['key']}: {model['model_id']}")
print("\n✅ Testing complete!")
import asyncio
asyncio.run(test_client())
|