Really-amin's picture
Upload 553 files
386790e verified
#!/usr/bin/env python3
"""
Hugging Face Dataset Loader Service
دسترسی به Dataset‌های رایگان HuggingFace
"""
import pandas as pd
from typing import Dict, List, Optional, Any, Union
import logging
import asyncio
from datetime import datetime, timedelta
logger = logging.getLogger(__name__)
# بررسی وجود کتابخانه datasets
try:
from datasets import load_dataset
DATASETS_AVAILABLE = True
except ImportError:
DATASETS_AVAILABLE = False
logger.warning("datasets library not available. Install with: pip install datasets")
class HFDatasetService:
"""
سرویس برای بارگذاری و استفاده از Dataset‌های رایگان HF
مزایا:
- دسترسی رایگان به 100,000+ dataset
- داده تاریخی کریپتو
- داده اخبار و sentiment
- بدون نیاز به API key (برای dataset‌های public)
"""
# Dataset‌های معتبر کریپتو که تأیید شده‌اند
CRYPTO_DATASETS = {
"linxy/CryptoCoin": {
"description": "182 فایل CSV با OHLCV برای 26 کریپتو",
"symbols": ["BTC", "ETH", "BNB", "SOL", "ADA", "XRP", "DOT", "DOGE",
"AVAX", "MATIC", "LINK", "UNI", "ATOM", "LTC", "XMR"],
"timeframes": ["1m", "5m", "15m", "30m", "1h", "4h", "1d"],
"columns": ["timestamp", "open", "high", "low", "close", "volume"],
"date_range": "2017-present"
},
"WinkingFace/CryptoLM-Bitcoin-BTC-USDT": {
"description": "داده تاریخی Bitcoin با indicators",
"symbols": ["BTC"],
"timeframes": ["1h"],
"columns": ["timestamp", "open", "high", "low", "close", "volume", "rsi", "macd"],
"date_range": "2019-2023"
},
"sebdg/crypto_data": {
"description": "OHLCV + indicators برای 10 کریپتو",
"symbols": ["BTC", "ETH", "BNB", "ADA", "DOT", "LINK", "UNI", "AVAX", "MATIC", "SOL"],
"indicators": ["RSI", "MACD", "Bollinger Bands", "EMA", "SMA"],
"timeframes": ["1h", "4h", "1d"],
"date_range": "2020-present"
}
}
NEWS_DATASETS = {
"Kwaai/crypto-news": {
"description": "اخبار کریپتو با sentiment labels",
"size": "10,000+ news articles",
"languages": ["en"],
"date_range": "2020-2023"
},
"jacopoteneggi/crypto-news": {
"description": "اخبار روزانه کریپتو",
"size": "50,000+ articles",
"sources": ["CoinDesk", "CoinTelegraph", "Bitcoin Magazine"],
"date_range": "2018-2023"
}
}
def __init__(self):
self.cache = {}
self.cache_ttl = 3600 # 1 ساعت
def is_available(self) -> bool:
"""بررسی در دسترس بودن کتابخانه datasets"""
return DATASETS_AVAILABLE
async def load_crypto_ohlcv(
self,
symbol: str = "BTC",
timeframe: str = "1h",
limit: int = 1000,
dataset_name: str = "linxy/CryptoCoin"
) -> pd.DataFrame:
"""
بارگذاری OHLCV از Dataset
Args:
symbol: نماد کریپتو (BTC, ETH, ...)
timeframe: بازه زمانی (1m, 5m, 1h, 1d, ...)
limit: تعداد رکورد
dataset_name: نام dataset
Returns:
DataFrame شامل OHLCV
"""
if not DATASETS_AVAILABLE:
logger.error("datasets library not available")
return pd.DataFrame()
try:
# کلید cache
cache_key = f"{dataset_name}:{symbol}:{timeframe}:{limit}"
# بررسی cache
if cache_key in self.cache:
cached_data, cached_time = self.cache[cache_key]
if (datetime.now() - cached_time).total_seconds() < self.cache_ttl:
logger.info(f"Returning cached data for {cache_key}")
return cached_data
logger.info(f"Loading dataset {dataset_name} for {symbol}...")
# بارگذاری Dataset
# استفاده از streaming برای صرفه‌جویی در RAM
dataset = load_dataset(
dataset_name,
split="train",
streaming=True
)
# تبدیل به DataFrame (محدود به limit رکورد)
records = []
count = 0
for record in dataset:
# فیلتر بر اساس symbol (اگر فیلد symbol موجود باشد)
if "symbol" in record:
if record["symbol"].upper() != symbol.upper():
continue
records.append(record)
count += 1
if count >= limit:
break
df = pd.DataFrame(records)
# استانداردسازی ستون‌ها
if not df.empty:
# تبدیل timestamp اگر رشته است
if "timestamp" in df.columns:
if df["timestamp"].dtype == "object":
df["timestamp"] = pd.to_datetime(df["timestamp"])
# مرتب‌سازی بر اساس timestamp
if "timestamp" in df.columns:
df = df.sort_values("timestamp", ascending=False)
# ذخیره در cache
self.cache[cache_key] = (df, datetime.now())
logger.info(f"Loaded {len(df)} records for {symbol}")
return df
except Exception as e:
logger.error(f"Error loading dataset: {e}")
return pd.DataFrame()
async def load_crypto_news(
self,
limit: int = 100,
dataset_name: str = "Kwaai/crypto-news"
) -> List[Dict[str, Any]]:
"""
بارگذاری اخبار کریپتو از Dataset
Args:
limit: تعداد خبر
dataset_name: نام dataset
Returns:
لیست اخبار
"""
if not DATASETS_AVAILABLE:
logger.error("datasets library not available")
return []
try:
logger.info(f"Loading news from {dataset_name}...")
# بارگذاری Dataset
dataset = load_dataset(
dataset_name,
split="train",
streaming=True
)
# استخراج اخبار
news_items = []
count = 0
for record in dataset:
news_item = {
"title": record.get("title", ""),
"content": record.get("text", record.get("content", "")),
"url": record.get("url", ""),
"source": record.get("source", "HuggingFace Dataset"),
"published_at": record.get("date", record.get("published_at", "")),
"sentiment": record.get("sentiment", "neutral")
}
news_items.append(news_item)
count += 1
if count >= limit:
break
logger.info(f"Loaded {len(news_items)} news articles")
return news_items
except Exception as e:
logger.error(f"Error loading news: {e}")
return []
async def get_historical_prices(
self,
symbol: str,
days: int = 30,
timeframe: str = "1h"
) -> Dict[str, Any]:
"""
دریافت قیمت‌های تاریخی
Args:
symbol: نماد کریپتو
days: تعداد روز گذشته
timeframe: بازه زمانی
Returns:
Dict شامل داده قیمت و آمار
"""
# محاسبه تعداد رکورد مورد نیاز
records_per_day = {
"1m": 1440,
"5m": 288,
"15m": 96,
"30m": 48,
"1h": 24,
"4h": 6,
"1d": 1
}
limit = records_per_day.get(timeframe, 24) * days
# بارگذاری داده
df = await self.load_crypto_ohlcv(symbol, timeframe, limit)
if df.empty:
return {
"status": "error",
"error": "No data available",
"symbol": symbol
}
# محاسبه آمار
latest_close = float(df.iloc[0]["close"]) if "close" in df.columns else 0
earliest_close = float(df.iloc[-1]["close"]) if "close" in df.columns else 0
price_change = latest_close - earliest_close
price_change_pct = (price_change / earliest_close * 100) if earliest_close > 0 else 0
high_price = float(df["high"].max()) if "high" in df.columns else 0
low_price = float(df["low"].min()) if "low" in df.columns else 0
avg_volume = float(df["volume"].mean()) if "volume" in df.columns else 0
return {
"status": "success",
"symbol": symbol,
"timeframe": timeframe,
"days": days,
"records": len(df),
"latest_price": latest_close,
"price_change": price_change,
"price_change_pct": price_change_pct,
"high": high_price,
"low": low_price,
"avg_volume": avg_volume,
"data": df.to_dict(orient="records")[:100], # محدود به 100 رکورد اول
"source": "HuggingFace Dataset",
"is_free": True
}
def get_available_datasets(self) -> Dict[str, Any]:
"""
لیست Dataset‌های موجود
"""
return {
"crypto_data": {
"total": len(self.CRYPTO_DATASETS),
"datasets": self.CRYPTO_DATASETS
},
"news_data": {
"total": len(self.NEWS_DATASETS),
"datasets": self.NEWS_DATASETS
},
"library_available": DATASETS_AVAILABLE,
"installation": "pip install datasets" if not DATASETS_AVAILABLE else "✅ Installed"
}
def get_supported_symbols(self) -> List[str]:
"""
لیست نمادهای پشتیبانی شده
"""
symbols = set()
for dataset_info in self.CRYPTO_DATASETS.values():
symbols.update(dataset_info.get("symbols", []))
return sorted(list(symbols))
def get_supported_timeframes(self) -> List[str]:
"""
لیست بازه‌های زمانی پشتیبانی شده
"""
timeframes = set()
for dataset_info in self.CRYPTO_DATASETS.values():
timeframes.update(dataset_info.get("timeframes", []))
return sorted(list(timeframes))
# ===== توابع کمکی =====
async def quick_price_data(
symbol: str = "BTC",
days: int = 7
) -> Dict[str, Any]:
"""
دریافت سریع داده قیمت
Args:
symbol: نماد کریپتو
days: تعداد روز
Returns:
Dict شامل داده و آمار
"""
service = HFDatasetService()
return await service.get_historical_prices(symbol, days)
async def quick_crypto_news(limit: int = 10) -> List[Dict[str, Any]]:
"""
دریافت سریع اخبار کریپتو
Args:
limit: تعداد خبر
Returns:
لیست اخبار
"""
service = HFDatasetService()
return await service.load_crypto_news(limit)
# ===== مثال استفاده =====
if __name__ == "__main__":
async def test_service():
"""تست سرویس"""
print("🧪 Testing HF Dataset Service...")
service = HFDatasetService()
# بررسی در دسترس بودن
print(f"\n1️⃣ Library available: {service.is_available()}")
if not service.is_available():
print(" ⚠️ Install with: pip install datasets")
return
# لیست dataset‌ها
print("\n2️⃣ Available Datasets:")
datasets = service.get_available_datasets()
print(f" Crypto datasets: {datasets['crypto_data']['total']}")
print(f" News datasets: {datasets['news_data']['total']}")
# نمادهای پشتیبانی شده
print("\n3️⃣ Supported Symbols:")
symbols = service.get_supported_symbols()
print(f" {', '.join(symbols[:10])}...")
# تست بارگذاری قیمت
print("\n4️⃣ Loading BTC price data...")
try:
result = await service.get_historical_prices("BTC", days=7, timeframe="1h")
if result["status"] == "success":
print(f" ✅ Loaded {result['records']} records")
print(f" Latest price: ${result['latest_price']:,.2f}")
print(f" Change: {result['price_change_pct']:+.2f}%")
print(f" High: ${result['high']:,.2f}")
print(f" Low: ${result['low']:,.2f}")
else:
print(f" ❌ Error: {result.get('error')}")
except Exception as e:
print(f" ❌ Exception: {e}")
# تست بارگذاری اخبار
print("\n5️⃣ Loading crypto news...")
try:
news = await service.load_crypto_news(limit=5)
print(f" ✅ Loaded {len(news)} news articles")
for i, article in enumerate(news[:3], 1):
print(f" {i}. {article['title'][:60]}...")
except Exception as e:
print(f" ❌ Exception: {e}")
print("\n✅ Testing complete!")
import asyncio
asyncio.run(test_service())