Spaces:
Paused
Paused
File size: 25,238 Bytes
c636ebf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
#!/usr/bin/env python3
"""
Enhanced Analytics API for Legal Dashboard
=========================================
Advanced analytics endpoints providing:
- Real-time performance metrics
- Predictive analytics and forecasting
- Document clustering and similarity analysis
- Quality assessment and recommendations
- System health monitoring
"""
from fastapi import APIRouter, HTTPException, Query, Depends, BackgroundTasks
from typing import Dict, List, Optional, Any
from datetime import datetime, timedelta
import logging
from pydantic import BaseModel, Field
import json
import asyncio
from ..services.advanced_analytics_service import AdvancedAnalyticsService
from ..services.database_service import DatabaseManager
from ..services.cache_service import cache_service
logger = logging.getLogger(__name__)
router = APIRouter()
# Pydantic models for request/response
class RealTimeMetricsResponse(BaseModel):
"""Real-time metrics response model"""
total_documents: int
processed_today: int
avg_processing_time: float
success_rate: float
error_rate: float
cache_hit_rate: float
quality_score: float
system_health: float
timestamp: str
class TrendAnalysisRequest(BaseModel):
"""Trend analysis request model"""
metric: str = Field(
..., description="Metric to analyze (e.g., 'processing_time', 'quality_score')")
time_period: str = Field(
"7d", description="Time period for analysis (7d, 30d, 90d)")
category: Optional[str] = Field(None, description="Category filter")
confidence_threshold: float = Field(
0.8, description="Minimum confidence for trend analysis")
class TrendAnalysisResponse(BaseModel):
"""Trend analysis response model"""
period: str
metric: str
values: List[float]
timestamps: List[str]
trend_direction: str
change_percentage: float
confidence: float
trend_strength: str
recommendations: List[str]
class SimilarityRequest(BaseModel):
"""Document similarity request model"""
document_id: int = Field(..., description="Target document ID")
threshold: float = Field(0.7, description="Similarity threshold")
limit: int = Field(10, description="Maximum number of results")
include_metadata: bool = Field(
True, description="Include document metadata")
class SimilarityResponse(BaseModel):
"""Document similarity response model"""
target_document_id: int
similar_documents: List[Dict[str, Any]]
total_found: int
average_similarity: float
processing_time: float
class PredictiveInsightsResponse(BaseModel):
"""Predictive insights response model"""
patterns: Dict[str, Any]
predictions: Dict[str, Any]
confidence_intervals: Dict[str, List[float]]
recommendations: List[str]
next_24h_forecast: Dict[str, Any]
system_optimization_suggestions: List[str]
class ClusteringRequest(BaseModel):
"""Document clustering request model"""
n_clusters: int = Field(5, description="Number of clusters")
category: Optional[str] = Field(None, description="Category filter")
min_cluster_size: int = Field(
2, description="Minimum documents per cluster")
class ClusteringResponse(BaseModel):
"""Document clustering response model"""
clusters: Dict[str, List[Dict[str, Any]]]
centroids: List[List[float]]
silhouette_score: float
total_documents: int
cluster_quality_metrics: Dict[str, float]
class QualityReportResponse(BaseModel):
"""Quality report response model"""
overall_quality_score: float
quality_distribution: Dict[str, int]
common_issues: List[Dict[str, Any]]
recommendations: List[str]
quality_trends: Dict[str, Any]
improvement_opportunities: List[Dict[str, Any]]
next_actions: List[str]
class SystemHealthResponse(BaseModel):
"""System health response model"""
overall_health: float
component_health: Dict[str, float]
performance_metrics: Dict[str, float]
alerts: List[Dict[str, Any]]
recommendations: List[str]
last_updated: str
# Dependency injection
def get_analytics_service() -> AdvancedAnalyticsService:
return AdvancedAnalyticsService()
def get_db_manager() -> DatabaseManager:
return DatabaseManager()
@router.get("/real-time-metrics", response_model=RealTimeMetricsResponse)
async def get_real_time_metrics(
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service)
):
"""Get real-time system metrics"""
try:
metrics = await analytics_service.get_real_time_metrics()
return RealTimeMetricsResponse(
total_documents=metrics.total_documents,
processed_today=metrics.processed_today,
avg_processing_time=metrics.avg_processing_time,
success_rate=metrics.success_rate,
error_rate=metrics.error_rate,
cache_hit_rate=metrics.cache_hit_rate,
quality_score=metrics.quality_score,
system_health=metrics.system_health,
timestamp=datetime.now().isoformat()
)
except Exception as e:
logger.error(f"Error getting real-time metrics: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to get real-time metrics: {str(e)}")
@router.post("/trends", response_model=TrendAnalysisResponse)
async def analyze_trends(
request: TrendAnalysisRequest,
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service)
):
"""Analyze trends for specific metrics"""
try:
trend_data = await analytics_service.analyze_trends(
metric=request.metric,
time_period=request.time_period,
category=request.category
)
# Determine trend strength
if trend_data.confidence >= 0.9:
trend_strength = "strong"
elif trend_data.confidence >= 0.7:
trend_strength = "moderate"
else:
trend_strength = "weak"
# Generate recommendations based on trend
recommendations = _generate_trend_recommendations(trend_data)
return TrendAnalysisResponse(
period=trend_data.period,
metric=trend_data.metric,
values=trend_data.values,
timestamps=trend_data.timestamps,
trend_direction=trend_data.trend_direction,
change_percentage=trend_data.change_percentage,
confidence=trend_data.confidence,
trend_strength=trend_strength,
recommendations=recommendations
)
except Exception as e:
logger.error(f"Error analyzing trends: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to analyze trends: {str(e)}")
@router.post("/similarity", response_model=SimilarityResponse)
async def find_similar_documents(
request: SimilarityRequest,
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service),
db_manager: DatabaseManager = Depends(get_db_manager)
):
"""Find similar documents using advanced similarity analysis"""
try:
start_time = datetime.now()
similar_docs = await analytics_service.find_similar_documents(
document_id=request.document_id,
threshold=request.threshold,
limit=request.limit
)
processing_time = (datetime.now() - start_time).total_seconds()
# Prepare response data
similar_documents = []
total_similarity = 0
for doc in similar_docs:
doc_data = {
"document_id": doc.document_id,
"similarity_score": doc.similarity_score,
"common_entities": doc.common_entities,
"shared_topics": doc.shared_topics,
"relevance_score": doc.relevance_score
}
if request.include_metadata:
# Get document metadata
metadata = db_manager.get_document_by_id(doc.document_id)
if metadata:
doc_data["metadata"] = {
"title": metadata.get("title", ""),
"category": metadata.get("category", ""),
"created_at": metadata.get("created_at", ""),
"file_size": metadata.get("file_size", 0)
}
similar_documents.append(doc_data)
total_similarity += doc.similarity_score
average_similarity = total_similarity / \
len(similar_documents) if similar_documents else 0
return SimilarityResponse(
target_document_id=request.document_id,
similar_documents=similar_documents,
total_found=len(similar_documents),
average_similarity=average_similarity,
processing_time=processing_time
)
except Exception as e:
logger.error(f"Error finding similar documents: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to find similar documents: {str(e)}")
@router.get("/predictive-insights", response_model=PredictiveInsightsResponse)
async def get_predictive_insights(
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service)
):
"""Get predictive insights for document processing"""
try:
insights = await analytics_service.generate_predictive_insights()
# Generate next 24h forecast
next_24h_forecast = _generate_24h_forecast(
insights.get("predictions", {}))
# Generate system optimization suggestions
optimization_suggestions = _generate_optimization_suggestions(insights)
return PredictiveInsightsResponse(
patterns=insights.get("patterns", {}),
predictions=insights.get("predictions", {}),
confidence_intervals=insights.get("confidence_intervals", {}),
recommendations=insights.get("recommendations", []),
next_24h_forecast=next_24h_forecast,
system_optimization_suggestions=optimization_suggestions
)
except Exception as e:
logger.error(f"Error getting predictive insights: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to get predictive insights: {str(e)}")
@router.post("/clustering", response_model=ClusteringResponse)
async def cluster_documents(
request: ClusteringRequest,
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service)
):
"""Cluster documents using advanced clustering algorithms"""
try:
clustering_result = await analytics_service.cluster_documents(
n_clusters=request.n_clusters,
category=request.category
)
# Calculate cluster quality metrics
cluster_quality = _calculate_cluster_quality(
clustering_result.get("clusters", {}))
return ClusteringResponse(
clusters=clustering_result.get("clusters", {}),
centroids=clustering_result.get("centroids", []),
silhouette_score=clustering_result.get("silhouette_score", 0),
total_documents=clustering_result.get("total_documents", 0),
cluster_quality_metrics=cluster_quality
)
except Exception as e:
logger.error(f"Error clustering documents: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to cluster documents: {str(e)}")
@router.get("/quality-report", response_model=QualityReportResponse)
async def get_quality_report(
category: Optional[str] = Query(None, description="Category filter"),
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service)
):
"""Generate comprehensive quality analysis report"""
try:
quality_report = await analytics_service.generate_quality_report(category)
# Generate next actions based on quality issues
next_actions = _generate_quality_actions(quality_report)
return QualityReportResponse(
overall_quality_score=quality_report.get(
"overall_quality_score", 0),
quality_distribution=quality_report.get(
"quality_distribution", {}),
common_issues=quality_report.get("common_issues", []),
recommendations=quality_report.get("recommendations", []),
quality_trends=quality_report.get("quality_trends", {}),
improvement_opportunities=quality_report.get(
"improvement_opportunities", []),
next_actions=next_actions
)
except Exception as e:
logger.error(f"Error generating quality report: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to generate quality report: {str(e)}")
@router.get("/system-health", response_model=SystemHealthResponse)
async def get_system_health(
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service),
db_manager: DatabaseManager = Depends(get_db_manager)
):
"""Get comprehensive system health status"""
try:
# Get real-time metrics
metrics = await analytics_service.get_real_time_metrics()
# Calculate component health
component_health = _calculate_component_health(metrics, db_manager)
# Get performance metrics
performance_metrics = _get_performance_metrics(db_manager)
# Generate alerts
alerts = _generate_system_alerts(metrics, component_health)
# Generate recommendations
recommendations = _generate_system_recommendations(metrics, alerts)
return SystemHealthResponse(
overall_health=metrics.system_health,
component_health=component_health,
performance_metrics=performance_metrics,
alerts=alerts,
recommendations=recommendations,
last_updated=datetime.now().isoformat()
)
except Exception as e:
logger.error(f"Error getting system health: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to get system health: {str(e)}")
@router.get("/performance-dashboard")
async def get_performance_dashboard(
time_range: str = Query(
"24h", description="Time range for dashboard data"),
analytics_service: AdvancedAnalyticsService = Depends(
get_analytics_service)
):
"""Get comprehensive performance dashboard data"""
try:
# Get real-time metrics
metrics = await analytics_service.get_real_time_metrics()
# Get trend data for different metrics
processing_trend = await analytics_service.analyze_trends("processing_time", time_range)
quality_trend = await analytics_service.analyze_trends("quality_score", time_range)
volume_trend = await analytics_service.analyze_trends("document_volume", time_range)
# Get predictive insights
insights = await analytics_service.generate_predictive_insights()
return {
"status": "success",
"data": {
"real_time_metrics": {
"total_documents": metrics.total_documents,
"processed_today": metrics.processed_today,
"avg_processing_time": metrics.avg_processing_time,
"success_rate": metrics.success_rate,
"system_health": metrics.system_health
},
"trends": {
"processing_time": {
"direction": processing_trend.trend_direction,
"change_percentage": processing_trend.change_percentage,
"confidence": processing_trend.confidence
},
"quality_score": {
"direction": quality_trend.trend_direction,
"change_percentage": quality_trend.change_percentage,
"confidence": quality_trend.confidence
},
"document_volume": {
"direction": volume_trend.trend_direction,
"change_percentage": volume_trend.change_percentage,
"confidence": volume_trend.confidence
}
},
"predictions": insights.get("predictions", {}),
"recommendations": insights.get("recommendations", []),
"timestamp": datetime.now().isoformat()
}
}
except Exception as e:
logger.error(f"Error getting performance dashboard: {e}")
raise HTTPException(
status_code=500, detail=f"Failed to get performance dashboard: {str(e)}")
# Helper functions
def _generate_trend_recommendations(trend_data) -> List[str]:
"""Generate recommendations based on trend analysis"""
recommendations = []
if trend_data.trend_direction == "up":
if trend_data.metric == "processing_time":
recommendations.append(
"Processing times are increasing - consider optimizing the pipeline")
elif trend_data.metric == "quality_score":
recommendations.append(
"Quality scores are improving - maintain current processes")
elif trend_data.metric == "document_volume":
recommendations.append(
"Document volume is increasing - consider scaling infrastructure")
elif trend_data.trend_direction == "down":
if trend_data.metric == "quality_score":
recommendations.append(
"Quality scores are declining - investigate and implement quality improvements")
elif trend_data.metric == "success_rate":
recommendations.append(
"Success rate is declining - investigate error patterns")
if trend_data.confidence < 0.7:
recommendations.append(
"Low confidence in trend analysis - collect more data for reliable insights")
return recommendations
def _generate_24h_forecast(predictions: Dict[str, Any]) -> Dict[str, Any]:
"""Generate 24-hour forecast based on predictions"""
try:
forecast = {
"expected_documents": predictions.get("expected_volume", 0),
"peak_hours": predictions.get("peak_hours", []),
"avg_processing_time": predictions.get("processing_time_forecast", 0),
"quality_forecast": predictions.get("quality_forecast", 0),
"system_load": "medium" # Default, can be enhanced with actual load prediction
}
# Adjust forecast based on historical patterns
if forecast["expected_documents"] > 100:
forecast["system_load"] = "high"
elif forecast["expected_documents"] < 20:
forecast["system_load"] = "low"
return forecast
except Exception as e:
logger.error(f"Error generating 24h forecast: {e}")
return {}
def _generate_optimization_suggestions(insights: Dict[str, Any]) -> List[str]:
"""Generate system optimization suggestions"""
suggestions = []
predictions = insights.get("predictions", {})
if predictions.get("processing_time_forecast", 0) > 30:
suggestions.append(
"Optimize document processing pipeline for faster processing")
if predictions.get("quality_forecast", 0) < 0.7:
suggestions.append(
"Implement additional quality checks and validation")
if predictions.get("expected_volume", 0) > 1000:
suggestions.append(
"Consider scaling infrastructure to handle increased load")
patterns = insights.get("patterns", {})
if patterns.get("error_patterns"):
suggestions.append("Investigate and resolve common error patterns")
return suggestions
def _calculate_cluster_quality(clusters: Dict[str, List]) -> Dict[str, float]:
"""Calculate quality metrics for each cluster"""
quality_metrics = {}
for cluster_name, documents in clusters.items():
if documents:
# Calculate average similarity to centroid
similarities = [doc.get("similarity_to_centroid", 0)
for doc in documents]
avg_similarity = sum(similarities) / \
len(similarities) if similarities else 0
# Calculate cluster size score
size_score = min(1.0, len(documents) / 10) # Normalize to 0-1
# Overall cluster quality
quality_metrics[cluster_name] = (avg_similarity + size_score) / 2
return quality_metrics
def _generate_quality_actions(quality_report: Dict[str, Any]) -> List[str]:
"""Generate next actions based on quality report"""
actions = []
overall_score = quality_report.get("overall_quality_score", 0)
common_issues = quality_report.get("common_issues", [])
if overall_score < 0.8:
actions.append("Implement comprehensive quality improvement plan")
for issue in common_issues:
if issue.get("severity") == "high":
actions.append(
f"Address high-priority issue: {issue.get('type', 'Unknown')}")
opportunities = quality_report.get("improvement_opportunities", [])
if opportunities:
actions.append("Focus on highest-impact improvement opportunities")
return actions
def _calculate_component_health(metrics, db_manager) -> Dict[str, float]:
"""Calculate health scores for different system components"""
try:
components = {
"database": 100.0, # Default, can be enhanced with actual DB health checks
"ocr_pipeline": 100.0,
"ai_engine": 100.0,
"cache_system": 100.0,
"file_storage": 100.0
}
# Adjust based on metrics
if metrics.success_rate < 90:
components["ocr_pipeline"] = metrics.success_rate
components["ai_engine"] = metrics.success_rate
if metrics.cache_hit_rate < 80:
components["cache_system"] = metrics.cache_hit_rate
return components
except Exception as e:
logger.error(f"Error calculating component health: {e}")
return {}
def _get_performance_metrics(db_manager) -> Dict[str, float]:
"""Get detailed performance metrics"""
try:
return {
"avg_response_time": 0.5, # Placeholder, should be calculated from actual data
"throughput": 100, # documents per hour
"error_rate": 0.02, # 2%
"uptime": 99.9, # 99.9%
"memory_usage": 75.0, # 75%
"cpu_usage": 60.0 # 60%
}
except Exception as e:
logger.error(f"Error getting performance metrics: {e}")
return {}
def _generate_system_alerts(metrics, component_health) -> List[Dict[str, Any]]:
"""Generate system alerts based on metrics and component health"""
alerts = []
# Check success rate
if metrics.success_rate < 90:
alerts.append({
"type": "warning",
"component": "processing_pipeline",
"message": f"Success rate below threshold: {metrics.success_rate:.1f}%",
"severity": "medium"
})
# Check system health
if metrics.system_health < 80:
alerts.append({
"type": "error",
"component": "system",
"message": f"System health critical: {metrics.system_health:.1f}%",
"severity": "high"
})
# Check component health
for component, health in component_health.items():
if health < 80:
alerts.append({
"type": "warning",
"component": component,
"message": f"{component.replace('_', ' ').title()} health degraded: {health:.1f}%",
"severity": "medium"
})
return alerts
def _generate_system_recommendations(metrics, alerts) -> List[str]:
"""Generate system recommendations based on metrics and alerts"""
recommendations = []
if metrics.success_rate < 90:
recommendations.append("Investigate and resolve processing failures")
if metrics.avg_processing_time > 30:
recommendations.append("Optimize document processing pipeline")
if metrics.cache_hit_rate < 80:
recommendations.append("Optimize cache configuration and usage")
if alerts:
recommendations.append(
"Address system alerts to improve overall health")
return recommendations
|