File size: 25,238 Bytes
c636ebf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
#!/usr/bin/env python3
"""

Enhanced Analytics API for Legal Dashboard

=========================================



Advanced analytics endpoints providing:

- Real-time performance metrics

- Predictive analytics and forecasting

- Document clustering and similarity analysis

- Quality assessment and recommendations

- System health monitoring

"""

from fastapi import APIRouter, HTTPException, Query, Depends, BackgroundTasks
from typing import Dict, List, Optional, Any
from datetime import datetime, timedelta
import logging
from pydantic import BaseModel, Field
import json
import asyncio

from ..services.advanced_analytics_service import AdvancedAnalyticsService
from ..services.database_service import DatabaseManager
from ..services.cache_service import cache_service

logger = logging.getLogger(__name__)

router = APIRouter()

# Pydantic models for request/response


class RealTimeMetricsResponse(BaseModel):
    """Real-time metrics response model"""
    total_documents: int
    processed_today: int
    avg_processing_time: float
    success_rate: float
    error_rate: float
    cache_hit_rate: float
    quality_score: float
    system_health: float
    timestamp: str


class TrendAnalysisRequest(BaseModel):
    """Trend analysis request model"""
    metric: str = Field(
        ..., description="Metric to analyze (e.g., 'processing_time', 'quality_score')")
    time_period: str = Field(
        "7d", description="Time period for analysis (7d, 30d, 90d)")
    category: Optional[str] = Field(None, description="Category filter")
    confidence_threshold: float = Field(
        0.8, description="Minimum confidence for trend analysis")


class TrendAnalysisResponse(BaseModel):
    """Trend analysis response model"""
    period: str
    metric: str
    values: List[float]
    timestamps: List[str]
    trend_direction: str
    change_percentage: float
    confidence: float
    trend_strength: str
    recommendations: List[str]


class SimilarityRequest(BaseModel):
    """Document similarity request model"""
    document_id: int = Field(..., description="Target document ID")
    threshold: float = Field(0.7, description="Similarity threshold")
    limit: int = Field(10, description="Maximum number of results")
    include_metadata: bool = Field(
        True, description="Include document metadata")


class SimilarityResponse(BaseModel):
    """Document similarity response model"""
    target_document_id: int
    similar_documents: List[Dict[str, Any]]
    total_found: int
    average_similarity: float
    processing_time: float


class PredictiveInsightsResponse(BaseModel):
    """Predictive insights response model"""
    patterns: Dict[str, Any]
    predictions: Dict[str, Any]
    confidence_intervals: Dict[str, List[float]]
    recommendations: List[str]
    next_24h_forecast: Dict[str, Any]
    system_optimization_suggestions: List[str]


class ClusteringRequest(BaseModel):
    """Document clustering request model"""
    n_clusters: int = Field(5, description="Number of clusters")
    category: Optional[str] = Field(None, description="Category filter")
    min_cluster_size: int = Field(
        2, description="Minimum documents per cluster")


class ClusteringResponse(BaseModel):
    """Document clustering response model"""
    clusters: Dict[str, List[Dict[str, Any]]]
    centroids: List[List[float]]
    silhouette_score: float
    total_documents: int
    cluster_quality_metrics: Dict[str, float]


class QualityReportResponse(BaseModel):
    """Quality report response model"""
    overall_quality_score: float
    quality_distribution: Dict[str, int]
    common_issues: List[Dict[str, Any]]
    recommendations: List[str]
    quality_trends: Dict[str, Any]
    improvement_opportunities: List[Dict[str, Any]]
    next_actions: List[str]


class SystemHealthResponse(BaseModel):
    """System health response model"""
    overall_health: float
    component_health: Dict[str, float]
    performance_metrics: Dict[str, float]
    alerts: List[Dict[str, Any]]
    recommendations: List[str]
    last_updated: str


# Dependency injection


def get_analytics_service() -> AdvancedAnalyticsService:
    return AdvancedAnalyticsService()


def get_db_manager() -> DatabaseManager:
    return DatabaseManager()


@router.get("/real-time-metrics", response_model=RealTimeMetricsResponse)
async def get_real_time_metrics(

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service)

):
    """Get real-time system metrics"""
    try:
        metrics = await analytics_service.get_real_time_metrics()

        return RealTimeMetricsResponse(
            total_documents=metrics.total_documents,
            processed_today=metrics.processed_today,
            avg_processing_time=metrics.avg_processing_time,
            success_rate=metrics.success_rate,
            error_rate=metrics.error_rate,
            cache_hit_rate=metrics.cache_hit_rate,
            quality_score=metrics.quality_score,
            system_health=metrics.system_health,
            timestamp=datetime.now().isoformat()
        )

    except Exception as e:
        logger.error(f"Error getting real-time metrics: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to get real-time metrics: {str(e)}")


@router.post("/trends", response_model=TrendAnalysisResponse)
async def analyze_trends(

    request: TrendAnalysisRequest,

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service)

):
    """Analyze trends for specific metrics"""
    try:
        trend_data = await analytics_service.analyze_trends(
            metric=request.metric,
            time_period=request.time_period,
            category=request.category
        )

        # Determine trend strength
        if trend_data.confidence >= 0.9:
            trend_strength = "strong"
        elif trend_data.confidence >= 0.7:
            trend_strength = "moderate"
        else:
            trend_strength = "weak"

        # Generate recommendations based on trend
        recommendations = _generate_trend_recommendations(trend_data)

        return TrendAnalysisResponse(
            period=trend_data.period,
            metric=trend_data.metric,
            values=trend_data.values,
            timestamps=trend_data.timestamps,
            trend_direction=trend_data.trend_direction,
            change_percentage=trend_data.change_percentage,
            confidence=trend_data.confidence,
            trend_strength=trend_strength,
            recommendations=recommendations
        )

    except Exception as e:
        logger.error(f"Error analyzing trends: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to analyze trends: {str(e)}")


@router.post("/similarity", response_model=SimilarityResponse)
async def find_similar_documents(

    request: SimilarityRequest,

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service),

    db_manager: DatabaseManager = Depends(get_db_manager)

):
    """Find similar documents using advanced similarity analysis"""
    try:
        start_time = datetime.now()

        similar_docs = await analytics_service.find_similar_documents(
            document_id=request.document_id,
            threshold=request.threshold,
            limit=request.limit
        )

        processing_time = (datetime.now() - start_time).total_seconds()

        # Prepare response data
        similar_documents = []
        total_similarity = 0

        for doc in similar_docs:
            doc_data = {
                "document_id": doc.document_id,
                "similarity_score": doc.similarity_score,
                "common_entities": doc.common_entities,
                "shared_topics": doc.shared_topics,
                "relevance_score": doc.relevance_score
            }

            if request.include_metadata:
                # Get document metadata
                metadata = db_manager.get_document_by_id(doc.document_id)
                if metadata:
                    doc_data["metadata"] = {
                        "title": metadata.get("title", ""),
                        "category": metadata.get("category", ""),
                        "created_at": metadata.get("created_at", ""),
                        "file_size": metadata.get("file_size", 0)
                    }

            similar_documents.append(doc_data)
            total_similarity += doc.similarity_score

        average_similarity = total_similarity / \
            len(similar_documents) if similar_documents else 0

        return SimilarityResponse(
            target_document_id=request.document_id,
            similar_documents=similar_documents,
            total_found=len(similar_documents),
            average_similarity=average_similarity,
            processing_time=processing_time
        )

    except Exception as e:
        logger.error(f"Error finding similar documents: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to find similar documents: {str(e)}")


@router.get("/predictive-insights", response_model=PredictiveInsightsResponse)
async def get_predictive_insights(

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service)

):
    """Get predictive insights for document processing"""
    try:
        insights = await analytics_service.generate_predictive_insights()

        # Generate next 24h forecast
        next_24h_forecast = _generate_24h_forecast(
            insights.get("predictions", {}))

        # Generate system optimization suggestions
        optimization_suggestions = _generate_optimization_suggestions(insights)

        return PredictiveInsightsResponse(
            patterns=insights.get("patterns", {}),
            predictions=insights.get("predictions", {}),
            confidence_intervals=insights.get("confidence_intervals", {}),
            recommendations=insights.get("recommendations", []),
            next_24h_forecast=next_24h_forecast,
            system_optimization_suggestions=optimization_suggestions
        )

    except Exception as e:
        logger.error(f"Error getting predictive insights: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to get predictive insights: {str(e)}")


@router.post("/clustering", response_model=ClusteringResponse)
async def cluster_documents(

    request: ClusteringRequest,

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service)

):
    """Cluster documents using advanced clustering algorithms"""
    try:
        clustering_result = await analytics_service.cluster_documents(
            n_clusters=request.n_clusters,
            category=request.category
        )

        # Calculate cluster quality metrics
        cluster_quality = _calculate_cluster_quality(
            clustering_result.get("clusters", {}))

        return ClusteringResponse(
            clusters=clustering_result.get("clusters", {}),
            centroids=clustering_result.get("centroids", []),
            silhouette_score=clustering_result.get("silhouette_score", 0),
            total_documents=clustering_result.get("total_documents", 0),
            cluster_quality_metrics=cluster_quality
        )

    except Exception as e:
        logger.error(f"Error clustering documents: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to cluster documents: {str(e)}")


@router.get("/quality-report", response_model=QualityReportResponse)
async def get_quality_report(

    category: Optional[str] = Query(None, description="Category filter"),

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service)

):
    """Generate comprehensive quality analysis report"""
    try:
        quality_report = await analytics_service.generate_quality_report(category)

        # Generate next actions based on quality issues
        next_actions = _generate_quality_actions(quality_report)

        return QualityReportResponse(
            overall_quality_score=quality_report.get(
                "overall_quality_score", 0),
            quality_distribution=quality_report.get(
                "quality_distribution", {}),
            common_issues=quality_report.get("common_issues", []),
            recommendations=quality_report.get("recommendations", []),
            quality_trends=quality_report.get("quality_trends", {}),
            improvement_opportunities=quality_report.get(
                "improvement_opportunities", []),
            next_actions=next_actions
        )

    except Exception as e:
        logger.error(f"Error generating quality report: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to generate quality report: {str(e)}")


@router.get("/system-health", response_model=SystemHealthResponse)
async def get_system_health(

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service),

    db_manager: DatabaseManager = Depends(get_db_manager)

):
    """Get comprehensive system health status"""
    try:
        # Get real-time metrics
        metrics = await analytics_service.get_real_time_metrics()

        # Calculate component health
        component_health = _calculate_component_health(metrics, db_manager)

        # Get performance metrics
        performance_metrics = _get_performance_metrics(db_manager)

        # Generate alerts
        alerts = _generate_system_alerts(metrics, component_health)

        # Generate recommendations
        recommendations = _generate_system_recommendations(metrics, alerts)

        return SystemHealthResponse(
            overall_health=metrics.system_health,
            component_health=component_health,
            performance_metrics=performance_metrics,
            alerts=alerts,
            recommendations=recommendations,
            last_updated=datetime.now().isoformat()
        )

    except Exception as e:
        logger.error(f"Error getting system health: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to get system health: {str(e)}")


@router.get("/performance-dashboard")
async def get_performance_dashboard(

    time_range: str = Query(

        "24h", description="Time range for dashboard data"),

    analytics_service: AdvancedAnalyticsService = Depends(

        get_analytics_service)

):
    """Get comprehensive performance dashboard data"""
    try:
        # Get real-time metrics
        metrics = await analytics_service.get_real_time_metrics()

        # Get trend data for different metrics
        processing_trend = await analytics_service.analyze_trends("processing_time", time_range)
        quality_trend = await analytics_service.analyze_trends("quality_score", time_range)
        volume_trend = await analytics_service.analyze_trends("document_volume", time_range)

        # Get predictive insights
        insights = await analytics_service.generate_predictive_insights()

        return {
            "status": "success",
            "data": {
                "real_time_metrics": {
                    "total_documents": metrics.total_documents,
                    "processed_today": metrics.processed_today,
                    "avg_processing_time": metrics.avg_processing_time,
                    "success_rate": metrics.success_rate,
                    "system_health": metrics.system_health
                },
                "trends": {
                    "processing_time": {
                        "direction": processing_trend.trend_direction,
                        "change_percentage": processing_trend.change_percentage,
                        "confidence": processing_trend.confidence
                    },
                    "quality_score": {
                        "direction": quality_trend.trend_direction,
                        "change_percentage": quality_trend.change_percentage,
                        "confidence": quality_trend.confidence
                    },
                    "document_volume": {
                        "direction": volume_trend.trend_direction,
                        "change_percentage": volume_trend.change_percentage,
                        "confidence": volume_trend.confidence
                    }
                },
                "predictions": insights.get("predictions", {}),
                "recommendations": insights.get("recommendations", []),
                "timestamp": datetime.now().isoformat()
            }
        }

    except Exception as e:
        logger.error(f"Error getting performance dashboard: {e}")
        raise HTTPException(
            status_code=500, detail=f"Failed to get performance dashboard: {str(e)}")


# Helper functions


def _generate_trend_recommendations(trend_data) -> List[str]:
    """Generate recommendations based on trend analysis"""
    recommendations = []

    if trend_data.trend_direction == "up":
        if trend_data.metric == "processing_time":
            recommendations.append(
                "Processing times are increasing - consider optimizing the pipeline")
        elif trend_data.metric == "quality_score":
            recommendations.append(
                "Quality scores are improving - maintain current processes")
        elif trend_data.metric == "document_volume":
            recommendations.append(
                "Document volume is increasing - consider scaling infrastructure")
    elif trend_data.trend_direction == "down":
        if trend_data.metric == "quality_score":
            recommendations.append(
                "Quality scores are declining - investigate and implement quality improvements")
        elif trend_data.metric == "success_rate":
            recommendations.append(
                "Success rate is declining - investigate error patterns")

    if trend_data.confidence < 0.7:
        recommendations.append(
            "Low confidence in trend analysis - collect more data for reliable insights")

    return recommendations


def _generate_24h_forecast(predictions: Dict[str, Any]) -> Dict[str, Any]:
    """Generate 24-hour forecast based on predictions"""
    try:
        forecast = {
            "expected_documents": predictions.get("expected_volume", 0),
            "peak_hours": predictions.get("peak_hours", []),
            "avg_processing_time": predictions.get("processing_time_forecast", 0),
            "quality_forecast": predictions.get("quality_forecast", 0),
            "system_load": "medium"  # Default, can be enhanced with actual load prediction
        }

        # Adjust forecast based on historical patterns
        if forecast["expected_documents"] > 100:
            forecast["system_load"] = "high"
        elif forecast["expected_documents"] < 20:
            forecast["system_load"] = "low"

        return forecast

    except Exception as e:
        logger.error(f"Error generating 24h forecast: {e}")
        return {}


def _generate_optimization_suggestions(insights: Dict[str, Any]) -> List[str]:
    """Generate system optimization suggestions"""
    suggestions = []

    predictions = insights.get("predictions", {})

    if predictions.get("processing_time_forecast", 0) > 30:
        suggestions.append(
            "Optimize document processing pipeline for faster processing")

    if predictions.get("quality_forecast", 0) < 0.7:
        suggestions.append(
            "Implement additional quality checks and validation")

    if predictions.get("expected_volume", 0) > 1000:
        suggestions.append(
            "Consider scaling infrastructure to handle increased load")

    patterns = insights.get("patterns", {})
    if patterns.get("error_patterns"):
        suggestions.append("Investigate and resolve common error patterns")

    return suggestions


def _calculate_cluster_quality(clusters: Dict[str, List]) -> Dict[str, float]:
    """Calculate quality metrics for each cluster"""
    quality_metrics = {}

    for cluster_name, documents in clusters.items():
        if documents:
            # Calculate average similarity to centroid
            similarities = [doc.get("similarity_to_centroid", 0)
                            for doc in documents]
            avg_similarity = sum(similarities) / \
                len(similarities) if similarities else 0

            # Calculate cluster size score
            size_score = min(1.0, len(documents) / 10)  # Normalize to 0-1

            # Overall cluster quality
            quality_metrics[cluster_name] = (avg_similarity + size_score) / 2

    return quality_metrics


def _generate_quality_actions(quality_report: Dict[str, Any]) -> List[str]:
    """Generate next actions based on quality report"""
    actions = []

    overall_score = quality_report.get("overall_quality_score", 0)
    common_issues = quality_report.get("common_issues", [])

    if overall_score < 0.8:
        actions.append("Implement comprehensive quality improvement plan")

    for issue in common_issues:
        if issue.get("severity") == "high":
            actions.append(
                f"Address high-priority issue: {issue.get('type', 'Unknown')}")

    opportunities = quality_report.get("improvement_opportunities", [])
    if opportunities:
        actions.append("Focus on highest-impact improvement opportunities")

    return actions


def _calculate_component_health(metrics, db_manager) -> Dict[str, float]:
    """Calculate health scores for different system components"""
    try:
        components = {
            "database": 100.0,  # Default, can be enhanced with actual DB health checks
            "ocr_pipeline": 100.0,
            "ai_engine": 100.0,
            "cache_system": 100.0,
            "file_storage": 100.0
        }

        # Adjust based on metrics
        if metrics.success_rate < 90:
            components["ocr_pipeline"] = metrics.success_rate
            components["ai_engine"] = metrics.success_rate

        if metrics.cache_hit_rate < 80:
            components["cache_system"] = metrics.cache_hit_rate

        return components

    except Exception as e:
        logger.error(f"Error calculating component health: {e}")
        return {}


def _get_performance_metrics(db_manager) -> Dict[str, float]:
    """Get detailed performance metrics"""
    try:
        return {
            "avg_response_time": 0.5,  # Placeholder, should be calculated from actual data
            "throughput": 100,  # documents per hour
            "error_rate": 0.02,  # 2%
            "uptime": 99.9,  # 99.9%
            "memory_usage": 75.0,  # 75%
            "cpu_usage": 60.0  # 60%
        }

    except Exception as e:
        logger.error(f"Error getting performance metrics: {e}")
        return {}


def _generate_system_alerts(metrics, component_health) -> List[Dict[str, Any]]:
    """Generate system alerts based on metrics and component health"""
    alerts = []

    # Check success rate
    if metrics.success_rate < 90:
        alerts.append({
            "type": "warning",
            "component": "processing_pipeline",
            "message": f"Success rate below threshold: {metrics.success_rate:.1f}%",
            "severity": "medium"
        })

    # Check system health
    if metrics.system_health < 80:
        alerts.append({
            "type": "error",
            "component": "system",
            "message": f"System health critical: {metrics.system_health:.1f}%",
            "severity": "high"
        })

    # Check component health
    for component, health in component_health.items():
        if health < 80:
            alerts.append({
                "type": "warning",
                "component": component,
                "message": f"{component.replace('_', ' ').title()} health degraded: {health:.1f}%",
                "severity": "medium"
            })

    return alerts


def _generate_system_recommendations(metrics, alerts) -> List[str]:
    """Generate system recommendations based on metrics and alerts"""
    recommendations = []

    if metrics.success_rate < 90:
        recommendations.append("Investigate and resolve processing failures")

    if metrics.avg_processing_time > 30:
        recommendations.append("Optimize document processing pipeline")

    if metrics.cache_hit_rate < 80:
        recommendations.append("Optimize cache configuration and usage")

    if alerts:
        recommendations.append(
            "Address system alerts to improve overall health")

    return recommendations