File size: 8,945 Bytes
922c3ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# Legal Dashboard OCR - Deployment Instructions

## πŸš€ Quick Start

### 1. Local Development Setup

```bash

# Clone or navigate to the project

cd legal_dashboard_ocr



# Install dependencies

pip install -r requirements.txt



# Set environment variables

export HF_TOKEN="your_huggingface_token"



# Run the application

uvicorn app.main:app --host 0.0.0.0 --port 8000 --reload

```

### 2. Access the Application

- **Web Dashboard**: http://localhost:8000
- **API Documentation**: http://localhost:8000/docs
- **Health Check**: http://localhost:8000/health

## πŸ“¦ Project Structure

```

legal_dashboard_ocr/

β”œβ”€β”€ README.md                    # Main documentation

β”œβ”€β”€ requirements.txt             # Python dependencies

β”œβ”€β”€ test_structure.py           # Structure verification

β”œβ”€β”€ DEPLOYMENT_INSTRUCTIONS.md  # This file

β”œβ”€β”€ app/                        # Backend application

β”‚   β”œβ”€β”€ __init__.py

β”‚   β”œβ”€β”€ main.py                 # FastAPI entry point

β”‚   β”œβ”€β”€ api/                    # API routes

β”‚   β”‚   β”œβ”€β”€ __init__.py

β”‚   β”‚   β”œβ”€β”€ documents.py        # Document CRUD

β”‚   β”‚   β”œβ”€β”€ ocr.py             # OCR processing

β”‚   β”‚   └── dashboard.py       # Dashboard analytics

β”‚   β”œβ”€β”€ services/               # Business logic

β”‚   β”‚   β”œβ”€β”€ __init__.py

β”‚   β”‚   β”œβ”€β”€ ocr_service.py     # OCR pipeline

β”‚   β”‚   β”œβ”€β”€ database_service.py # Database operations

β”‚   β”‚   └── ai_service.py      # AI scoring

β”‚   └── models/                 # Data models

β”‚       β”œβ”€β”€ __init__.py

β”‚       └── document_models.py  # Pydantic schemas

β”œβ”€β”€ frontend/                   # Web interface

β”‚   β”œβ”€β”€ improved_legal_dashboard.html

β”‚   └── test_integration.html

β”œβ”€β”€ tests/                      # Test suite

β”‚   β”œβ”€β”€ test_api_endpoints.py

β”‚   └── test_ocr_pipeline.py

β”œβ”€β”€ data/                       # Sample documents

β”‚   └── sample_persian.pdf

└── huggingface_space/          # HF Space deployment

    β”œβ”€β”€ app.py                  # Gradio interface

    β”œβ”€β”€ Spacefile               # Deployment config

    └── README.md               # Space documentation

```

## πŸ”§ Configuration

### Environment Variables

Create a `.env` file in the project root:

```env

# Hugging Face Token (required for OCR models)

HF_TOKEN=your_huggingface_token_here



# Database configuration (optional)

DATABASE_URL=sqlite:///legal_documents.db



# Server configuration (optional)

HOST=0.0.0.0

PORT=8000

DEBUG=true

```

### Hugging Face Token

1. Go to https://huggingface.co/settings/tokens
2. Create a new token with read permissions
3. Add it to your environment variables

## πŸ§ͺ Testing

### Run Structure Test
```bash

python test_structure.py

```

### Run API Tests
```bash

# Install test dependencies

pip install pytest pytest-asyncio



# Run tests

python -m pytest tests/

```

### Manual Testing
```bash

# Test OCR endpoint

curl -X POST "http://localhost:8000/api/ocr/process" \

  -H "Content-Type: multipart/form-data" \

  -F "file=@data/sample_persian.pdf"



# Test dashboard

curl "http://localhost:8000/api/dashboard/summary"

```

## πŸš€ Deployment Options

### 1. Hugging Face Spaces

#### Automatic Deployment
1. Create a new Space on Hugging Face
2. Upload all files from `huggingface_space/` directory
3. Set the `HF_TOKEN` environment variable in Space settings
4. The Space will automatically build and deploy

#### Manual Deployment
```bash

# Navigate to HF Space directory

cd huggingface_space



# Install dependencies

pip install -r ../requirements.txt



# Run the Gradio app

python app.py

```

### 2. Docker Deployment

#### Create Dockerfile
```dockerfile

FROM python:3.10-slim



WORKDIR /app



# Install system dependencies

RUN apt-get update && apt-get install -y \

    build-essential \

    && rm -rf /var/lib/apt/lists/*



# Copy requirements and install Python dependencies

COPY requirements.txt .

RUN pip install --no-cache-dir -r requirements.txt



# Copy application code

COPY . .



# Expose port

EXPOSE 8000



# Run the application

CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "8000"]

```

#### Build and Run
```bash

# Build Docker image

docker build -t legal-dashboard-ocr .



# Run container

docker run -p 8000:8000 \

  -e HF_TOKEN=your_token \

  legal-dashboard-ocr

```

### 3. Production Deployment

#### Using Gunicorn
```bash

# Install gunicorn

pip install gunicorn



# Run with multiple workers

gunicorn app.main:app \

  --workers 4 \

  --worker-class uvicorn.workers.UvicornWorker \

  --bind 0.0.0.0:8000

```

#### Using Nginx (Reverse Proxy)
```nginx

server {

    listen 80;

    server_name your-domain.com;



    location / {

        proxy_pass http://127.0.0.1:8000;

        proxy_set_header Host $host;

        proxy_set_header X-Real-IP $remote_addr;

        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

        proxy_set_header X-Forwarded-Proto $scheme;

    }

}

```

## πŸ” Troubleshooting

### Common Issues

#### 1. Import Errors
```bash

# Ensure you're in the correct directory

cd legal_dashboard_ocr



# Install dependencies

pip install -r requirements.txt



# Check Python path

python -c "import sys; print(sys.path)"

```

#### 2. OCR Model Loading Issues
```bash

# Check HF token

echo $HF_TOKEN



# Test model download

python -c "from transformers import pipeline; p = pipeline('image-to-text', 'microsoft/trocr-base-stage1')"

```

#### 3. Database Issues
```bash

# Check database file

ls -la legal_documents.db



# Reset database (if needed)

rm legal_documents.db

```

#### 4. Port Already in Use
```bash

# Find process using port 8000

lsof -i :8000



# Kill process

kill -9 <PID>



# Or use different port

uvicorn app.main:app --port 8001

```

### Performance Optimization

#### 1. Model Caching
```python

# In app/services/ocr_service.py

# Models are automatically cached by Hugging Face

# Cache location: ~/.cache/huggingface/

```

#### 2. Database Optimization
```sql

-- Add indexes for better performance

CREATE INDEX idx_documents_category ON documents(category);

CREATE INDEX idx_documents_status ON documents(status);

CREATE INDEX idx_documents_created_at ON documents(created_at);

```

#### 3. Memory Management
```python

# In app/main.py

# Configure memory limits

import gc

gc.collect()  # Force garbage collection

```

## πŸ“Š Monitoring

### Health Check
```bash

curl http://localhost:8000/health

```

### API Documentation
- Swagger UI: http://localhost:8000/docs
- ReDoc: http://localhost:8000/redoc

### Logs
```bash

# View application logs

tail -f logs/app.log



# View error logs

grep ERROR logs/app.log

```

## πŸ”’ Security

### Production Checklist
- [ ] Set `DEBUG=false` in production
- [ ] Use HTTPS in production
- [ ] Implement rate limiting
- [ ] Add authentication/authorization
- [ ] Secure file upload validation
- [ ] Regular security updates

### Environment Security
```bash

# Secure environment variables

export HF_TOKEN="your_secure_token"

export DATABASE_URL="your_secure_db_url"



# Use .env file (don't commit to git)

echo "HF_TOKEN=your_token" > .env

echo ".env" >> .gitignore

```

## πŸ“ˆ Scaling

### Horizontal Scaling
```bash

# Run multiple instances

uvicorn app.main:app --host 0.0.0.0 --port 8000 &

uvicorn app.main:app --host 0.0.0.0 --port 8001 &

uvicorn app.main:app --host 0.0.0.0 --port 8002 &

```

### Load Balancing
```nginx

upstream legal_dashboard {

    server 127.0.0.1:8000;

    server 127.0.0.1:8001;

    server 127.0.0.1:8002;

}



server {

    listen 80;

    location / {

        proxy_pass http://legal_dashboard;

    }

}

```

## πŸ†˜ Support

### Getting Help
1. Check the logs for error messages
2. Verify environment variables are set
3. Test with the sample PDF in `data/`
4. Check the API documentation at `/docs`

### Common Commands
```bash

# Start development server

uvicorn app.main:app --reload



# Run tests

python -m pytest tests/



# Check structure

python test_structure.py



# View API docs

open http://localhost:8000/docs

```

## 🎯 Next Steps

1. **Deploy to Hugging Face Spaces** for easy sharing
2. **Add authentication** for production use
3. **Implement user management** for multi-user support
4. **Add more OCR models** for different document types
5. **Create mobile app** for document scanning
6. **Add batch processing** for multiple documents
7. **Implement advanced analytics** and reporting

---

**Note**: This project is designed for Persian legal documents. Ensure your documents are clear and well-scanned for best OCR results.