Hoghoghi / app /main_simple.py
Really-amin's picture
Upload 143 files
c636ebf verified
raw
history blame
11.9 kB
#!/usr/bin/env python3
"""
Legal Dashboard FastAPI Main Application (Simplified)
====================================================
Simplified FastAPI application for testing API structure.
"""
import os
import logging
from pathlib import Path
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan manager"""
try:
logger.info("🚀 Starting Legal Dashboard (Simplified)...")
# Create required directories (Windows compatible)
uploads_dir = Path.cwd() / "uploads"
data_dir = Path.cwd() / "data"
os.makedirs(uploads_dir, exist_ok=True)
os.makedirs(data_dir, exist_ok=True)
logger.info("🎉 Services initialized successfully!")
yield # Application runs here
except Exception as e:
logger.error(f"❌ Initialization failed: {e}")
raise
finally:
logger.info("🔄 Shutting down Legal Dashboard...")
# Create FastAPI application
app = FastAPI(
title="Legal Dashboard API",
description="AI-powered Persian legal document processing system",
version="1.0.0",
docs_url="/api/docs",
redoc_url="/api/redoc",
lifespan=lifespan
)
# Add middlewares
app.add_middleware(GZipMiddleware, minimum_size=1000)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # Configure properly in production
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Serve static files (Frontend)
frontend_dir = Path(__file__).parent.parent / "frontend"
if frontend_dir.exists():
app.mount("/static", StaticFiles(directory=str(frontend_dir)), name="static")
logger.info(f"📁 Static files mounted from: {frontend_dir}")
else:
logger.warning("⚠️ Frontend directory not found")
# Root route - serve main dashboard
@app.get("/", response_class=HTMLResponse, include_in_schema=False)
async def read_root():
"""Serve main dashboard page"""
try:
html_file = frontend_dir / "index.html"
if html_file.exists():
return FileResponse(html_file, media_type="text/html")
else:
return HTMLResponse("""
<html>
<head><title>Legal Dashboard</title></head>
<body>
<h1>🏛️ Legal Dashboard API</h1>
<p>Backend is running! Frontend files not found.</p>
<p><a href="/api/docs">📖 API Documentation</a></p>
</body>
</html>
""")
except Exception as e:
logger.error(f"Error serving root: {e}")
raise HTTPException(status_code=500, detail="Error serving homepage")
# Health check endpoint
@app.get("/api/health")
async def health_check():
"""System health check"""
return {
"status": "healthy",
"services": {
"database": "healthy",
"ocr": "healthy",
"ai": "healthy"
},
"version": "1.0.0"
}
# Dashboard endpoints
@app.get("/api/dashboard/summary")
async def dashboard_summary():
"""Dashboard summary data"""
return {
"total_documents": 6,
"processed_documents": 4,
"error_documents": 1,
"average_quality": 8.1,
"recent_activity": [
{"date": "2024-12-01", "count": 2},
{"date": "2024-12-02", "count": 3},
{"date": "2024-12-03", "count": 1}
]
}
@app.get("/api/dashboard/charts-data")
async def charts_data():
"""Charts data for dashboard"""
return {
"category_distribution": {
"قراردادها": 1,
"دادخواست‌ها": 1,
"احکام قضایی": 1,
"آرای دیوان": 1,
"سایر": 2
},
"processing_trends": [
{"date": "2024-12-01", "processed": 2, "uploaded": 3},
{"date": "2024-12-02", "processed": 3, "uploaded": 4},
{"date": "2024-12-03", "processed": 1, "uploaded": 2}
]
}
@app.get("/api/dashboard/ai-suggestions")
async def ai_suggestions():
"""AI suggestions for dashboard"""
return {
"suggestions": [
{
"title": "بهبود کیفیت OCR",
"description": "پیشنهاد می‌شود از تصاویر با کیفیت بالاتر استفاده کنید",
"score": 0.85
},
{
"title": "دسته‌بندی خودکار",
"description": "سیستم می‌تواند اسناد را به صورت خودکار دسته‌بندی کند",
"score": 0.92
}
]
}
@app.post("/api/dashboard/ai-feedback")
async def ai_feedback():
"""AI feedback endpoint"""
return {"status": "success", "message": "Feedback received"}
@app.get("/api/dashboard/performance-metrics")
async def performance_metrics():
"""Performance metrics"""
return {
"ocr_accuracy": 0.92,
"processing_speed": 15.3,
"error_rate": 0.08
}
@app.get("/api/dashboard/trends")
async def dashboard_trends():
"""Dashboard trends"""
return {
"document_growth": 15.2,
"quality_improvement": 2.1,
"processing_efficiency": 8.3
}
# Documents endpoints
@app.get("/api/documents")
async def get_documents():
"""Get all documents"""
return {
"documents": [
{"id": 1, "title": "قرارداد اجاره",
"status": "processed", "quality": 8.5},
{"id": 2, "title": "دادخواست حقوقی",
"status": "processed", "quality": 7.8},
{"id": 3, "title": "حکم قضایی", "status": "error", "quality": 0.0}
]
}
@app.get("/api/documents/search/")
async def search_documents():
"""Search documents"""
return {"results": [], "total": 0}
@app.get("/api/documents/categories/")
async def get_categories():
"""Get document categories"""
return {
"categories": ["قراردادها", "دادخواست‌ها", "احکام قضایی", "آرای دیوان", "سایر"]
}
@app.get("/api/documents/sources/")
async def get_sources():
"""Get document sources"""
return {
"sources": ["آپلود دستی", "اسکن خودکار", "ایمیل", "وب‌سایت"]
}
# OCR endpoints
@app.post("/api/ocr/process")
async def process_ocr():
"""Process OCR"""
return {"status": "success", "text": "متن استخراج شده"}
@app.post("/api/ocr/process-and-save")
async def process_and_save_ocr():
"""Process OCR and save"""
return {"status": "success", "document_id": 1}
@app.post("/api/ocr/batch-process")
async def batch_process_ocr():
"""Batch process OCR"""
return {"status": "success", "processed": 5}
@app.get("/api/ocr/quality-metrics")
async def ocr_quality_metrics():
"""OCR quality metrics"""
return {
"average_accuracy": 0.92,
"confidence_threshold": 0.8,
"error_rate": 0.08
}
@app.get("/api/ocr/models")
async def ocr_models():
"""Available OCR models"""
return {
"models": ["persian_ocr_v1", "persian_ocr_v2", "multilingual_ocr"]
}
@app.get("/api/ocr/status")
async def ocr_status():
"""OCR service status"""
return {"status": "healthy", "active_models": 2}
# Analytics endpoints
@app.get("/api/analytics/overview")
async def analytics_overview():
"""Analytics overview"""
return {
"total_documents": 6,
"processing_rate": 85.7,
"average_quality": 8.1
}
@app.get("/api/analytics/trends")
async def analytics_trends():
"""Analytics trends"""
return {
"daily_processing": [2, 3, 1, 4, 2, 3, 1],
"quality_trend": [7.5, 8.1, 8.3, 8.0, 8.2, 8.1, 8.4]
}
@app.get("/api/analytics/similarity")
async def analytics_similarity():
"""Document similarity analysis"""
return {
"similarity_matrix": [],
"clusters": []
}
@app.get("/api/analytics/performance")
async def analytics_performance():
"""Performance analytics"""
return {
"processing_time": 15.3,
"accuracy_rate": 92.0,
"throughput": 4.2
}
@app.get("/api/analytics/entities")
async def analytics_entities():
"""Entity extraction analytics"""
return {
"entities_found": 45,
"entity_types": ["نام", "تاریخ", "مبلغ", "آدرس"]
}
@app.get("/api/analytics/quality-analysis")
async def analytics_quality():
"""Quality analysis"""
return {
"quality_distribution": {
"excellent": 2,
"good": 3,
"poor": 1
}
}
# Scraping endpoints
@app.post("/api/scraping/scrape")
async def start_scraping():
"""Start web scraping"""
return {"status": "started", "job_id": "scrape_001"}
@app.get("/api/scraping/status")
async def scraping_status():
"""Scraping status"""
return {"status": "idle", "last_run": "2024-12-01"}
@app.get("/api/scraping/items")
async def scraping_items():
"""Scraped items"""
return {
"items": [
{"url": "https://example.com/1", "title": "مطلب اول"},
{"url": "https://example.com/2", "title": "مطلب دوم"}
]
}
@app.get("/api/scraping/statistics")
async def scraping_statistics():
"""Scraping statistics"""
return {
"total_scraped": 150,
"success_rate": 95.2,
"average_speed": 2.3
}
@app.get("/api/scraping/rating/summary")
async def scraping_rating_summary():
"""Scraping rating summary"""
return {
"average_rating": 4.2,
"total_ratings": 25,
"rating_distribution": {"5": 10, "4": 8, "3": 4, "2": 2, "1": 1}
}
# Error handlers
@app.exception_handler(404)
async def not_found_handler(request, exc):
"""Custom 404 handler"""
return HTMLResponse("""
<html>
<head><title>404 - صفحه یافت نشد</title></head>
<body style="font-family: 'Tahoma', sans-serif; text-align: center; padding: 50px;">
<h1>🔍 صفحه یافت نشد</h1>
<p>صفحه مورد نظر شما وجود ندارد.</p>
<a href="/">🏠 بازگشت به صفحه اصلی</a>
</body>
</html>
""", status_code=404)
@app.exception_handler(500)
async def internal_error_handler(request, exc):
"""Custom 500 handler"""
logger.error(f"Internal server error: {exc}")
return HTMLResponse("""
<html>
<head><title>500 - خطای سرور</title></head>
<body style="font-family: 'Tahoma', sans-serif; text-align: center; padding: 50px;">
<h1>⚠️ خطای سرور</h1>
<p>متأسفانه خطایی در سرور رخ داده است.</p>
<a href="/">🏠 بازگشت به صفحه اصلی</a>
</body>
</html>
""", status_code=500)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)