Spaces:
Paused
Paused
Upload 2 files
Browse files- app/enhanced_legal_scraper.py +366 -0
- app/legal_scraper_interface.py +1190 -0
app/enhanced_legal_scraper.py
ADDED
|
@@ -0,0 +1,366 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
# اضافه کردن مسیر فعلی به sys.path
|
| 7 |
+
sys.path.insert(0, str(Path(__file__).parent))
|
| 8 |
+
|
| 9 |
+
# ایمپورت رابط اسکراپر
|
| 10 |
+
from enhanced_legal_scraper import EnhancedLegalScraper, LegalDocument
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import sqlite3
|
| 13 |
+
import json
|
| 14 |
+
from datetime import datetime
|
| 15 |
+
from typing import List, Dict, Tuple
|
| 16 |
+
import plotly.express as px
|
| 17 |
+
|
| 18 |
+
class LegalScraperInterface:
|
| 19 |
+
"""Gradio interface for enhanced legal scraper"""
|
| 20 |
+
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.scraper = EnhancedLegalScraper(delay=1.5)
|
| 23 |
+
self.is_scraping = False
|
| 24 |
+
|
| 25 |
+
def scrape_websites(self, urls_text: str, max_docs: int) -> Tuple[str, str, str]:
|
| 26 |
+
"""Scrape websites from provided URLs"""
|
| 27 |
+
if self.is_scraping:
|
| 28 |
+
return "❌ اسکراپینگ در حال انجام است", "", ""
|
| 29 |
+
|
| 30 |
+
urls = [url.strip() for url in urls_text.split('\n') if url.strip()]
|
| 31 |
+
if not urls:
|
| 32 |
+
return "❌ لطفاً URL وارد کنید", "", ""
|
| 33 |
+
|
| 34 |
+
try:
|
| 35 |
+
self.is_scraping = True
|
| 36 |
+
documents = self.scraper.scrape_real_sources(urls, max_docs)
|
| 37 |
+
|
| 38 |
+
status = f"✅ اسکراپینگ کامل شد - {len(documents)} سند جمعآوری شد"
|
| 39 |
+
|
| 40 |
+
summary_lines = [
|
| 41 |
+
f"📊 **خلاصه نتایج:**",
|
| 42 |
+
f"- تعداد کل اسناد: {len(documents)}",
|
| 43 |
+
f"- منابع پردازش شده: {len(urls)}",
|
| 44 |
+
f"- زمان اسکراپینگ: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
|
| 45 |
+
"",
|
| 46 |
+
"📋 **جزئیات:**"
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
for i, doc in enumerate(documents[:5]):
|
| 50 |
+
summary_lines.append(f"{i+1}. {doc.title[:50]}...")
|
| 51 |
+
|
| 52 |
+
summary = "\n".join(summary_lines)
|
| 53 |
+
|
| 54 |
+
preview_lines = []
|
| 55 |
+
for doc in documents[:3]:
|
| 56 |
+
preview_lines.extend([
|
| 57 |
+
f"**{doc.title}**",
|
| 58 |
+
f"نوع: {doc.document_type}",
|
| 59 |
+
f"منبع: {doc.source_url}",
|
| 60 |
+
f"امتیاز اهمیت: {doc.importance_score:.2f}",
|
| 61 |
+
f"خلاصه: {doc.summary[:100]}..." if doc.summary else "بدون خلاصه",
|
| 62 |
+
"---"
|
| 63 |
+
])
|
| 64 |
+
|
| 65 |
+
preview = "\n".join(preview_lines) if preview_lines else "هیچ سندی یافت نشد"
|
| 66 |
+
|
| 67 |
+
return status, summary, preview
|
| 68 |
+
|
| 69 |
+
except Exception as e:
|
| 70 |
+
error_msg = f"❌ خطا در اسکراپینگ: {str(e)}"
|
| 71 |
+
return error_msg, "", ""
|
| 72 |
+
|
| 73 |
+
finally:
|
| 74 |
+
self.is_scraping = False
|
| 75 |
+
|
| 76 |
+
def get_database_stats(self) -> Tuple[str, str]:
|
| 77 |
+
"""Get database statistics and visualizations"""
|
| 78 |
+
try:
|
| 79 |
+
stats = self.scraper.get_enhanced_statistics()
|
| 80 |
+
|
| 81 |
+
stats_lines = [
|
| 82 |
+
"📊 **آمار پایگاه داده:**",
|
| 83 |
+
f"- کل اسناد: {stats.get('total_documents', 0)}",
|
| 84 |
+
"",
|
| 85 |
+
"📈 **بر اساس نوع:**"
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
for doc_type, count in stats.get('by_type', {}).items():
|
| 89 |
+
type_name = {
|
| 90 |
+
'law': 'قوانین',
|
| 91 |
+
'news': 'اخبار',
|
| 92 |
+
'ruling': 'آرا',
|
| 93 |
+
'regulation': 'آییننامه',
|
| 94 |
+
'general': 'عمومی'
|
| 95 |
+
}.get(doc_type, doc_type)
|
| 96 |
+
stats_lines.append(f"- {type_name}: {count}")
|
| 97 |
+
|
| 98 |
+
stats_text = "\n".join(stats_lines)
|
| 99 |
+
|
| 100 |
+
viz_html = self._create_stats_visualization(stats)
|
| 101 |
+
|
| 102 |
+
return stats_text, viz_html
|
| 103 |
+
|
| 104 |
+
except Exception as e:
|
| 105 |
+
error_msg = f"خطا در دریافت آمار: {str(e)}"
|
| 106 |
+
return error_msg, ""
|
| 107 |
+
|
| 108 |
+
def _create_stats_visualization(self, stats: Dict) -> str:
|
| 109 |
+
"""Create visualization for statistics"""
|
| 110 |
+
try:
|
| 111 |
+
by_type = stats.get('by_type', {})
|
| 112 |
+
if by_type and stats.get('total_documents', 0) > 0:
|
| 113 |
+
type_names = {
|
| 114 |
+
'law': 'قوانین',
|
| 115 |
+
'news': 'اخبار',
|
| 116 |
+
'ruling': 'آرا',
|
| 117 |
+
'regulation': 'آییننامه',
|
| 118 |
+
'general': 'عمومی'
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
labels = [type_names.get(k, k) for k in by_type.keys()]
|
| 122 |
+
values = list(by_type.values())
|
| 123 |
+
|
| 124 |
+
fig = px.pie(
|
| 125 |
+
values=values,
|
| 126 |
+
names=labels,
|
| 127 |
+
title="توزیع اسناد بر اساس نوع"
|
| 128 |
+
)
|
| 129 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
| 130 |
+
|
| 131 |
+
return fig.to_html()
|
| 132 |
+
else:
|
| 133 |
+
return "<p>دادهای برای نمایش یافت نشد</p>"
|
| 134 |
+
|
| 135 |
+
except Exception as e:
|
| 136 |
+
return f"<p>خطا در ایجاد نمودار: {str(e)}</p>"
|
| 137 |
+
|
| 138 |
+
def search_documents(self, query: str, search_type: str) -> str:
|
| 139 |
+
"""Search in collected documents"""
|
| 140 |
+
if not query.strip():
|
| 141 |
+
return "لطفاً کلیدواژهای برای جستجو وارد کنید"
|
| 142 |
+
|
| 143 |
+
try:
|
| 144 |
+
if search_type == "هوشمند":
|
| 145 |
+
results = self.scraper.search_with_similarity(query, limit=10)
|
| 146 |
+
else:
|
| 147 |
+
results = self.scraper._text_search(query, limit=10)
|
| 148 |
+
|
| 149 |
+
if not results:
|
| 150 |
+
return f"هیچ سندی با کلیدواژه '{query}' یافت نشد"
|
| 151 |
+
|
| 152 |
+
result_lines = [f"🔍 **نتایج جستجو برای '{query}':** ({len(results)} مورد یافت شد)\n"]
|
| 153 |
+
|
| 154 |
+
for i, result in enumerate(results):
|
| 155 |
+
result_lines.extend([
|
| 156 |
+
f"**{i+1}. {result['title']}**",
|
| 157 |
+
f" نوع: {result['document_type']}",
|
| 158 |
+
f" منبع: {result['source_url']}",
|
| 159 |
+
f" امتیاز شباهت: {result.get('similarity_score', 0):.3f}" if 'similarity_score' in result else "",
|
| 160 |
+
f" تاریخ: {result['date_published'] or 'نامشخص'}",
|
| 161 |
+
f" خلاصه: {result['summary'][:100]}..." if result.get('summary') else "",
|
| 162 |
+
"---"
|
| 163 |
+
])
|
| 164 |
+
|
| 165 |
+
return "\n".join(result_lines)
|
| 166 |
+
|
| 167 |
+
except Exception as e:
|
| 168 |
+
error_msg = f"خطا در جستجو: {str(e)}"
|
| 169 |
+
return error_msg
|
| 170 |
+
|
| 171 |
+
def create_scraper_interface():
|
| 172 |
+
"""Create Gradio interface for legal scraper"""
|
| 173 |
+
|
| 174 |
+
scraper_interface = LegalScraperInterface()
|
| 175 |
+
|
| 176 |
+
css = """
|
| 177 |
+
.gradio-container {
|
| 178 |
+
max-width: 1200px !important;
|
| 179 |
+
margin: auto;
|
| 180 |
+
font-family: 'Tahoma', sans-serif;
|
| 181 |
+
}
|
| 182 |
+
.header {
|
| 183 |
+
background: linear-gradient(135deg, #2c3e50, #3498db);
|
| 184 |
+
color: white;
|
| 185 |
+
padding: 20px;
|
| 186 |
+
border-radius: 10px;
|
| 187 |
+
text-align: center;
|
| 188 |
+
margin-bottom: 20px;
|
| 189 |
+
}
|
| 190 |
+
"""
|
| 191 |
+
|
| 192 |
+
with gr.Blocks(css=css, title="اسکراپر پیشرفته اسناد حقوقی", theme=gr.themes.Soft()) as interface:
|
| 193 |
+
|
| 194 |
+
gr.HTML("""
|
| 195 |
+
<div class="header">
|
| 196 |
+
<h1>🤖 اسکراپر پیشرفته اسناد حقوقی</h1>
|
| 197 |
+
<p>سیستم هوشمند جمعآوری و تحلیل اسناد حقوقی با قابلیتهای NLP</p>
|
| 198 |
+
</div>
|
| 199 |
+
""")
|
| 200 |
+
|
| 201 |
+
with gr.Tab("🕷️ اسکراپینگ"):
|
| 202 |
+
gr.Markdown("## جمعآوری اسناد از منابع حقوقی")
|
| 203 |
+
|
| 204 |
+
with gr.Row():
|
| 205 |
+
with gr.Column(scale=2):
|
| 206 |
+
urls_input = gr.Textbox(
|
| 207 |
+
label="📝 URL های منابع حقوقی",
|
| 208 |
+
placeholder="هر URL را در یک خط وارد کنید:\nhttps://rc.majlis.ir\nhttps://dolat.ir",
|
| 209 |
+
lines=5,
|
| 210 |
+
value="\n".join([
|
| 211 |
+
"https://rc.majlis.ir",
|
| 212 |
+
"https://dolat.ir",
|
| 213 |
+
"https://iribnews.ir"
|
| 214 |
+
])
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
max_docs = gr.Slider(
|
| 218 |
+
label="حداکثر اسناد",
|
| 219 |
+
minimum=5,
|
| 220 |
+
maximum=50,
|
| 221 |
+
value=15,
|
| 222 |
+
step=5
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
scrape_btn = gr.Button("🚀 شروع اسکراپینگ", variant="primary")
|
| 226 |
+
|
| 227 |
+
with gr.Column(scale=1):
|
| 228 |
+
status_output = gr.Textbox(
|
| 229 |
+
label="⚡ وضعیت",
|
| 230 |
+
interactive=False,
|
| 231 |
+
lines=2
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
with gr.Row():
|
| 235 |
+
summary_output = gr.Textbox(
|
| 236 |
+
label="📊 خلاصه نتایج",
|
| 237 |
+
interactive=False,
|
| 238 |
+
lines=6
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
preview_output = gr.Textbox(
|
| 242 |
+
label="👁️ پیشنمایش اسناد",
|
| 243 |
+
interactive=False,
|
| 244 |
+
lines=6,
|
| 245 |
+
show_copy_button=True
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
scrape_btn.click(
|
| 249 |
+
fn=scraper_interface.scrape_websites,
|
| 250 |
+
inputs=[urls_input, max_docs],
|
| 251 |
+
outputs=[status_output, summary_output, preview_output]
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
with gr.Tab("🔍 جستجوی هوشمند"):
|
| 255 |
+
gr.Markdown("## جستجوی پیشرفته در اسناد")
|
| 256 |
+
|
| 257 |
+
with gr.Row():
|
| 258 |
+
search_input = gr.Textbox(
|
| 259 |
+
label="🔍 کلیدواژه جستجو",
|
| 260 |
+
placeholder="موضوع یا کلیدواژه مورد نظر را وارد کنید..."
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
search_type = gr.Dropdown(
|
| 264 |
+
label="نوع جستجو",
|
| 265 |
+
choices=["هوشمند", "متنی"],
|
| 266 |
+
value="هوشمند"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
search_btn = gr.Button("🔍 جستجو", variant="primary")
|
| 270 |
+
|
| 271 |
+
search_results = gr.Textbox(
|
| 272 |
+
label="📋 نتایج جستجو",
|
| 273 |
+
interactive=False,
|
| 274 |
+
lines=15,
|
| 275 |
+
show_copy_button=True
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
search_btn.click(
|
| 279 |
+
fn=scraper_interface.search_documents,
|
| 280 |
+
inputs=[search_input, search_type],
|
| 281 |
+
outputs=[search_results]
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
with gr.Tab("📊 آمار و تحلیل"):
|
| 285 |
+
gr.Markdown("## آمار پیشرفته پایگاه داده")
|
| 286 |
+
|
| 287 |
+
stats_btn = gr.Button("📊 بروزرسانی آمار", variant="secondary")
|
| 288 |
+
|
| 289 |
+
with gr.Row():
|
| 290 |
+
stats_text = gr.Textbox(
|
| 291 |
+
label="📈 آمار متنی",
|
| 292 |
+
interactive=False,
|
| 293 |
+
lines=10
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
stats_plot = gr.HTML(
|
| 297 |
+
label="📊 نمودارها"
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
stats_btn.click(
|
| 301 |
+
fn=scraper_interface.get_database_stats,
|
| 302 |
+
outputs=[stats_text, stats_plot]
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
with gr.Tab("📚 راهنما"):
|
| 306 |
+
gr.Markdown("""
|
| 307 |
+
# 🤖 راهنمای اسکراپر پیشرفته
|
| 308 |
+
|
| 309 |
+
## ویژگیهای پیشرفته
|
| 310 |
+
|
| 311 |
+
### 🧠 پردازش زبان طبیعی (NLP)
|
| 312 |
+
- استخراج خودکار کلمات کلیدی
|
| 313 |
+
- تولید خلاصه متن
|
| 314 |
+
- تحلیل احساسات
|
| 315 |
+
- شناسایی موجودیتهای حقوقی
|
| 316 |
+
- جستجوی هوشمند بر اساس شباهت معنایی
|
| 317 |
+
|
| 318 |
+
### 📊 تحلیل پیشرفته
|
| 319 |
+
- امتیازدهی اهمیت اسناد
|
| 320 |
+
- طبقهبندی خودکار
|
| 321 |
+
- آمار و نمودارهای تحلیلی
|
| 322 |
+
- گزارشهای آماری
|
| 323 |
+
|
| 324 |
+
## منابع پیشنهادی
|
| 325 |
+
|
| 326 |
+
- **مجلس شورای اسلامی**: https://rc.majlis.ir
|
| 327 |
+
- **دولت**: https://dolat.ir
|
| 328 |
+
- **خبرگزاریها**: IRIB, IRNA, Tasnim, Mehr, Fars
|
| 329 |
+
|
| 330 |
+
## نکات فنی
|
| 331 |
+
|
| 332 |
+
- سیستم از فایل robots.txt پیروی میکند
|
| 333 |
+
- محدودیت سرعت درخواست رعایت میشود
|
| 334 |
+
- دادهها در پایگاه داده SQLite ذخیره میشوند
|
| 335 |
+
- از مدلهای هوش مصنوعی برای پردازش استفاده میشود
|
| 336 |
+
|
| 337 |
+
⚠️ **تذکر**: این ابزار برای مقاصد آموزشی و پژوهشی ارائه شده است.
|
| 338 |
+
""")
|
| 339 |
+
|
| 340 |
+
return interface
|
| 341 |
+
|
| 342 |
+
def main():
|
| 343 |
+
"""Main entry point for Hugging Face Spaces"""
|
| 344 |
+
print("🚀 راه اندازی اسکراپر پیشرفته اسناد حقوقی...")
|
| 345 |
+
print("📁 ایجاد دایرکتوریهای مورد نیاز...")
|
| 346 |
+
|
| 347 |
+
# Create required directories
|
| 348 |
+
os.makedirs("/app/data", exist_ok=True)
|
| 349 |
+
os.makedirs("/app/logs", exist_ok=True)
|
| 350 |
+
os.makedirs("/app/cache", exist_ok=True)
|
| 351 |
+
|
| 352 |
+
# Create interface
|
| 353 |
+
interface = create_scraper_interface()
|
| 354 |
+
|
| 355 |
+
# Launch with Hugging Face optimized settings
|
| 356 |
+
interface.launch(
|
| 357 |
+
server_name="0.0.0.0",
|
| 358 |
+
server_port=7860,
|
| 359 |
+
share=False,
|
| 360 |
+
show_error=True,
|
| 361 |
+
debug=False,
|
| 362 |
+
enable_queue=True
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
if __name__ == "__main__":
|
| 366 |
+
main()
|
app/legal_scraper_interface.py
ADDED
|
@@ -0,0 +1,1190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import time
|
| 3 |
+
import json
|
| 4 |
+
import csv
|
| 5 |
+
import sqlite3
|
| 6 |
+
import logging
|
| 7 |
+
from datetime import datetime, timedelta
|
| 8 |
+
from typing import Dict, List, Optional, Tuple, Union
|
| 9 |
+
from dataclasses import dataclass, asdict
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
import re
|
| 12 |
+
import pandas as pd
|
| 13 |
+
import numpy as np
|
| 14 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 15 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 16 |
+
from bs4 import BeautifulSoup
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
import torch
|
| 20 |
+
from transformers import AutoTokenizer, AutoModel
|
| 21 |
+
TORCH_AVAILABLE = True
|
| 22 |
+
except ImportError:
|
| 23 |
+
TORCH_AVAILABLE = False
|
| 24 |
+
print("⚠️ PyTorch not available, running without advanced NLP features")
|
| 25 |
+
|
| 26 |
+
try:
|
| 27 |
+
import hazm
|
| 28 |
+
from hazm import Normalizer, word_tokenize, sent_tokenize
|
| 29 |
+
HAZM_AVAILABLE = True
|
| 30 |
+
except ImportError:
|
| 31 |
+
HAZM_AVAILABLE = False
|
| 32 |
+
print("⚠️ Hazm not available, using basic text processing")
|
| 33 |
+
|
| 34 |
+
# Configure logging
|
| 35 |
+
logging.basicConfig(
|
| 36 |
+
level=logging.INFO,
|
| 37 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 38 |
+
handlers=[
|
| 39 |
+
logging.FileHandler('legal_scraper.log'),
|
| 40 |
+
logging.StreamHandler()
|
| 41 |
+
]
|
| 42 |
+
)
|
| 43 |
+
logger = logging.getLogger(__name__)
|
| 44 |
+
|
| 45 |
+
# Predefined Iranian legal and news sources
|
| 46 |
+
IRANIAN_LEGAL_SOURCES = [
|
| 47 |
+
"https://www.irna.ir", # خبرگزاری جمهوری اسلامی
|
| 48 |
+
"https://www.tasnimnews.com", # خبرگزاری تسنیم
|
| 49 |
+
"https://www.mehrnews.com", # خبرگزاری مهر
|
| 50 |
+
"https://www.farsnews.ir", # خبرگزاری فارس
|
| 51 |
+
"https://iribnews.ir", # خبرگزاری صدا و سیما
|
| 52 |
+
"https://www.dolat.ir", # پورتال دولت
|
| 53 |
+
"https://rc.majlis.ir", # مرکز پژوهشهای مجلس
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
@dataclass
|
| 57 |
+
class LegalDocument:
|
| 58 |
+
"""Enhanced legal document with NLP features"""
|
| 59 |
+
title: str
|
| 60 |
+
content: str
|
| 61 |
+
source_url: str
|
| 62 |
+
document_type: str
|
| 63 |
+
date_published: Optional[str] = None
|
| 64 |
+
date_scraped: str = None
|
| 65 |
+
category: Optional[str] = None
|
| 66 |
+
tags: List[str] = None
|
| 67 |
+
summary: Optional[str] = None
|
| 68 |
+
importance_score: float = 0.0
|
| 69 |
+
sentiment_score: float = 0.0
|
| 70 |
+
legal_entities: List[str] = None
|
| 71 |
+
keywords: List[str] = None
|
| 72 |
+
embedding: List[float] = None
|
| 73 |
+
language: str = "fa"
|
| 74 |
+
|
| 75 |
+
def __post_init__(self):
|
| 76 |
+
if self.date_scraped is None:
|
| 77 |
+
self.date_scraped = datetime.now().isoformat()
|
| 78 |
+
if self.tags is None:
|
| 79 |
+
self.tags = []
|
| 80 |
+
if self.legal_entities is None:
|
| 81 |
+
self.legal_entities = []
|
| 82 |
+
if self.keywords is None:
|
| 83 |
+
self.keywords = []
|
| 84 |
+
|
| 85 |
+
class PersianNLPProcessor:
|
| 86 |
+
"""Persian NLP processor using available models"""
|
| 87 |
+
|
| 88 |
+
def __init__(self):
|
| 89 |
+
if HAZM_AVAILABLE:
|
| 90 |
+
self.normalizer = Normalizer()
|
| 91 |
+
else:
|
| 92 |
+
self.normalizer = None
|
| 93 |
+
|
| 94 |
+
self.device = torch.device('cpu')
|
| 95 |
+
|
| 96 |
+
self.tokenizer = None
|
| 97 |
+
self.model = None
|
| 98 |
+
|
| 99 |
+
if TORCH_AVAILABLE:
|
| 100 |
+
try:
|
| 101 |
+
model_names = [
|
| 102 |
+
"HooshvareLab/bert-fa-base-uncased",
|
| 103 |
+
"HooshvareLab/bert-base-parsbert-uncased",
|
| 104 |
+
"distilbert-base-multilingual-cased"
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
for model_name in model_names:
|
| 108 |
+
try:
|
| 109 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 110 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 111 |
+
self.model.to(self.device)
|
| 112 |
+
logger.info(f"✅ Loaded model: {model_name}")
|
| 113 |
+
break
|
| 114 |
+
except Exception as e:
|
| 115 |
+
logger.warning(f"⚠️ Failed to load {model_name}: {e}")
|
| 116 |
+
continue
|
| 117 |
+
except Exception as e:
|
| 118 |
+
logger.error(f"❌ Failed to load any Persian BERT model: {e}")
|
| 119 |
+
|
| 120 |
+
self.legal_categories = {
|
| 121 |
+
'قانون': ['قانون', 'ماده', 'بند', 'فصل', 'تبصره', 'اصلاحیه'],
|
| 122 |
+
'رای': ['رای', 'حکم', 'دادگاه', 'قاضی', 'محکوم', 'دادرسی'],
|
| 123 |
+
'آییننامه': ['آییننامه', 'دستورالعمل', 'بخشنامه', 'مقررات'],
|
| 124 |
+
'اخبار': ['خبر', 'گزارش', 'اعلام', 'اطلاعیه', 'بیانیه'],
|
| 125 |
+
'نظریه': ['نظریه', 'تفسیر', 'استعلام', 'پاسخ', 'رأی']
|
| 126 |
+
}
|
| 127 |
+
|
| 128 |
+
self.tfidf = None
|
| 129 |
+
self._init_tfidf()
|
| 130 |
+
|
| 131 |
+
def _init_tfidf(self):
|
| 132 |
+
"""Initialize TF-IDF vectorizer"""
|
| 133 |
+
try:
|
| 134 |
+
self.tfidf = TfidfVectorizer(
|
| 135 |
+
max_features=1000,
|
| 136 |
+
stop_words=self._get_persian_stopwords(),
|
| 137 |
+
ngram_range=(1, 2),
|
| 138 |
+
min_df=1,
|
| 139 |
+
max_df=0.8
|
| 140 |
+
)
|
| 141 |
+
except Exception as e:
|
| 142 |
+
logger.error(f"TF-IDF initialization failed: {e}")
|
| 143 |
+
|
| 144 |
+
def _get_persian_stopwords(self) -> List[str]:
|
| 145 |
+
"""Get Persian stopwords"""
|
| 146 |
+
return [
|
| 147 |
+
'در', 'به', 'از', 'که', 'این', 'آن', 'با', 'را', 'و', 'است',
|
| 148 |
+
'برای', 'تا', 'کرد', 'شد', 'می', 'خود', 'هم', 'نیز', 'یا', 'اما',
|
| 149 |
+
'اگر', 'چون', 'پس', 'بعد', 'قبل', 'روی', 'زیر', 'کنار', 'داخل',
|
| 150 |
+
'نیست', 'بود', 'باشد', 'کند', 'کنند', 'شود', 'گردد', 'دارد', 'دارند'
|
| 151 |
+
]
|
| 152 |
+
|
| 153 |
+
def normalize_text(self, text: str) -> str:
|
| 154 |
+
"""Normalize Persian text"""
|
| 155 |
+
if not text:
|
| 156 |
+
return ""
|
| 157 |
+
|
| 158 |
+
try:
|
| 159 |
+
text = re.sub(r'[^\w\s\u0600-\u06FF]', ' ', text)
|
| 160 |
+
text = re.sub(r'\s+', ' ', text)
|
| 161 |
+
|
| 162 |
+
if self.normalizer:
|
| 163 |
+
text = self.normalizer.normalize(text)
|
| 164 |
+
|
| 165 |
+
return text.strip()
|
| 166 |
+
except Exception as e:
|
| 167 |
+
logger.error(f"Text normalization failed: {e}")
|
| 168 |
+
return text.strip()
|
| 169 |
+
|
| 170 |
+
def extract_keywords(self, text: str, top_k: int = 10) -> List[str]:
|
| 171 |
+
"""Extract keywords using TF-IDF"""
|
| 172 |
+
try:
|
| 173 |
+
if not self.tfidf or not text:
|
| 174 |
+
return []
|
| 175 |
+
|
| 176 |
+
normalized_text = self.normalize_text(text)
|
| 177 |
+
|
| 178 |
+
if HAZM_AVAILABLE:
|
| 179 |
+
tokens = word_tokenize(normalized_text)
|
| 180 |
+
processed_text = ' '.join(tokens)
|
| 181 |
+
else:
|
| 182 |
+
processed_text = normalized_text
|
| 183 |
+
|
| 184 |
+
tfidf_matrix = self.tfidf.fit_transform([processed_text])
|
| 185 |
+
feature_names = self.tfidf.get_feature_names_out()
|
| 186 |
+
scores = tfidf_matrix.toarray()[0]
|
| 187 |
+
|
| 188 |
+
keyword_scores = list(zip(feature_names, scores))
|
| 189 |
+
keyword_scores.sort(key=lambda x: x[1], reverse=True)
|
| 190 |
+
|
| 191 |
+
return [kw[0] for kw in keyword_scores[:top_k] if kw[1] > 0]
|
| 192 |
+
|
| 193 |
+
except Exception as e:
|
| 194 |
+
logger.error(f"Keyword extraction failed: {e}")
|
| 195 |
+
return []
|
| 196 |
+
|
| 197 |
+
def classify_document(self, text: str) -> Tuple[str, float]:
|
| 198 |
+
"""Classify document type with confidence score"""
|
| 199 |
+
try:
|
| 200 |
+
normalized_text = self.normalize_text(text.lower())
|
| 201 |
+
|
| 202 |
+
scores = {}
|
| 203 |
+
for category, keywords in self.legal_categories.items():
|
| 204 |
+
score = 0
|
| 205 |
+
for keyword in keywords:
|
| 206 |
+
count = normalized_text.count(keyword)
|
| 207 |
+
score += count * (len(keyword) / 5)
|
| 208 |
+
|
| 209 |
+
if len(normalized_text) > 0:
|
| 210 |
+
scores[category] = score / (len(normalized_text) / 1000)
|
| 211 |
+
else:
|
| 212 |
+
scores[category] = 0
|
| 213 |
+
|
| 214 |
+
if not scores or max(scores.values()) == 0:
|
| 215 |
+
return "عمومی", 0.0
|
| 216 |
+
|
| 217 |
+
best_category = max(scores.items(), key=lambda x: x[1])
|
| 218 |
+
total_score = sum(scores.values())
|
| 219 |
+
confidence = min(best_category[1] / total_score, 1.0) if total_score > 0 else 0.0
|
| 220 |
+
|
| 221 |
+
return best_category[0], confidence
|
| 222 |
+
|
| 223 |
+
except Exception as e:
|
| 224 |
+
logger.error(f"Document classification failed: {e}")
|
| 225 |
+
return "عمومی", 0.0
|
| 226 |
+
|
| 227 |
+
def calculate_importance_score(self, doc: LegalDocument) -> float:
|
| 228 |
+
"""Calculate document importance score"""
|
| 229 |
+
try:
|
| 230 |
+
score = 0.0
|
| 231 |
+
|
| 232 |
+
title_lower = doc.title.lower()
|
| 233 |
+
high_importance_words = ['قانون', 'اساسی', 'حکم', 'رای', 'مصوبه']
|
| 234 |
+
medium_importance_words = ['آییننامه', 'بخشنامه', 'دستورالعمل']
|
| 235 |
+
|
| 236 |
+
for word in high_importance_words:
|
| 237 |
+
if word in title_lower:
|
| 238 |
+
score += 0.3
|
| 239 |
+
break
|
| 240 |
+
|
| 241 |
+
for word in medium_importance_words:
|
| 242 |
+
if word in title_lower:
|
| 243 |
+
score += 0.2
|
| 244 |
+
break
|
| 245 |
+
|
| 246 |
+
content_length = len(doc.content)
|
| 247 |
+
if content_length > 5000:
|
| 248 |
+
score += 0.25
|
| 249 |
+
elif content_length > 2000:
|
| 250 |
+
score += 0.15
|
| 251 |
+
elif content_length > 500:
|
| 252 |
+
score += 0.1
|
| 253 |
+
|
| 254 |
+
if doc.date_published:
|
| 255 |
+
try:
|
| 256 |
+
date_formats = ['%Y-%m-%d', '%Y/%m/%d', '%d/%m/%Y']
|
| 257 |
+
pub_date = None
|
| 258 |
+
|
| 259 |
+
for fmt in date_formats:
|
| 260 |
+
try:
|
| 261 |
+
pub_date = datetime.strptime(doc.date_published, fmt)
|
| 262 |
+
break
|
| 263 |
+
except:
|
| 264 |
+
continue
|
| 265 |
+
|
| 266 |
+
if pub_date:
|
| 267 |
+
days_old = (datetime.now() - pub_date).days
|
| 268 |
+
if days_old < 30:
|
| 269 |
+
score += 0.25
|
| 270 |
+
elif days_old < 365:
|
| 271 |
+
score += 0.15
|
| 272 |
+
elif days_old < 1825:
|
| 273 |
+
score += 0.05
|
| 274 |
+
except:
|
| 275 |
+
pass
|
| 276 |
+
|
| 277 |
+
legal_keywords = ['قانون', 'ماده', 'بند', 'حکم', 'رای', 'دادگاه', 'محکمه']
|
| 278 |
+
content_lower = doc.content.lower()
|
| 279 |
+
keyword_count = sum(content_lower.count(kw) for kw in legal_keywords)
|
| 280 |
+
word_count = len(doc.content.split())
|
| 281 |
+
|
| 282 |
+
if word_count > 0:
|
| 283 |
+
keyword_density = keyword_count / word_count
|
| 284 |
+
score += min(keyword_density * 5, 0.2)
|
| 285 |
+
|
| 286 |
+
type_bonuses = {
|
| 287 |
+
'law': 0.2,
|
| 288 |
+
'ruling': 0.15,
|
| 289 |
+
'regulation': 0.1,
|
| 290 |
+
'news': 0.05
|
| 291 |
+
}
|
| 292 |
+
score += type_bonuses.get(doc.document_type, 0)
|
| 293 |
+
|
| 294 |
+
return min(score, 1.0)
|
| 295 |
+
|
| 296 |
+
except Exception as e:
|
| 297 |
+
logger.error(f"Importance score calculation failed: {e}")
|
| 298 |
+
return 0.0
|
| 299 |
+
|
| 300 |
+
def extract_legal_entities(self, text: str) -> List[str]:
|
| 301 |
+
"""Extract legal entities from text"""
|
| 302 |
+
try:
|
| 303 |
+
entities = []
|
| 304 |
+
|
| 305 |
+
patterns = {
|
| 306 |
+
'قوانین': r'قانون\s+[\u0600-\u06FF\s]{3,30}',
|
| 307 |
+
'مواد': r'ماده\s+\d+[\u0600-\u06FF\s]*',
|
| 308 |
+
'دادگاهها': r'دادگاه\s+[\u0600-\u06FF\s]{3,30}',
|
| 309 |
+
'مراجع': r'(وزارت|سازمان|اداره|شورای|کمیته)\s+[\u0600-\u06FF\s]{3,30}',
|
| 310 |
+
'احکام': r'(حکم|رای)\s+(شماره\s+)?\d+',
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
for entity_type, pattern in patterns.items():
|
| 314 |
+
matches = re.findall(pattern, text)
|
| 315 |
+
for match in matches:
|
| 316 |
+
clean_match = re.sub(r'\s+', ' ', match.strip())
|
| 317 |
+
if len(clean_match) > 5 and len(clean_match) < 100:
|
| 318 |
+
entities.append(clean_match)
|
| 319 |
+
|
| 320 |
+
unique_entities = list(dict.fromkeys(entities))
|
| 321 |
+
return unique_entities[:15]
|
| 322 |
+
|
| 323 |
+
except Exception as e:
|
| 324 |
+
logger.error(f"Entity extraction failed: {e}")
|
| 325 |
+
return []
|
| 326 |
+
|
| 327 |
+
def get_text_embedding(self, text: str) -> Optional[List[float]]:
|
| 328 |
+
"""Get text embedding using available model"""
|
| 329 |
+
if not self.model or not self.tokenizer or not TORCH_AVAILABLE:
|
| 330 |
+
return None
|
| 331 |
+
|
| 332 |
+
try:
|
| 333 |
+
normalized_text = self.normalize_text(text)
|
| 334 |
+
if len(normalized_text) > 512:
|
| 335 |
+
normalized_text = normalized_text[:512]
|
| 336 |
+
|
| 337 |
+
if not normalized_text:
|
| 338 |
+
return None
|
| 339 |
+
|
| 340 |
+
inputs = self.tokenizer(
|
| 341 |
+
normalized_text,
|
| 342 |
+
return_tensors="pt",
|
| 343 |
+
padding=True,
|
| 344 |
+
truncation=True,
|
| 345 |
+
max_length=512
|
| 346 |
+
).to(self.device)
|
| 347 |
+
|
| 348 |
+
with torch.no_grad():
|
| 349 |
+
outputs = self.model(**inputs)
|
| 350 |
+
embedding = outputs.last_hidden_state[:, 0, :].cpu().numpy()[0]
|
| 351 |
+
|
| 352 |
+
return embedding.tolist()
|
| 353 |
+
|
| 354 |
+
except Exception as e:
|
| 355 |
+
logger.error(f"Embedding generation failed: {e}")
|
| 356 |
+
return None
|
| 357 |
+
|
| 358 |
+
def generate_summary(self, text: str, max_length: int = 200) -> str:
|
| 359 |
+
"""Generate text summary"""
|
| 360 |
+
try:
|
| 361 |
+
if len(text) <= max_length:
|
| 362 |
+
return text
|
| 363 |
+
|
| 364 |
+
if HAZM_AVAILABLE:
|
| 365 |
+
sentences = sent_tokenize(text)
|
| 366 |
+
else:
|
| 367 |
+
sentences = re.split(r'[.!?]+', text)
|
| 368 |
+
sentences = [s.strip() for s in sentences if s.strip()]
|
| 369 |
+
|
| 370 |
+
if len(sentences) <= 2:
|
| 371 |
+
return text[:max_length] + "..." if len(text) > max_length else text
|
| 372 |
+
|
| 373 |
+
keywords = self.extract_keywords(text, top_k=15)
|
| 374 |
+
|
| 375 |
+
sentence_scores = []
|
| 376 |
+
for sentence in sentences:
|
| 377 |
+
if len(sentence) < 20:
|
| 378 |
+
continue
|
| 379 |
+
|
| 380 |
+
score = 0
|
| 381 |
+
sentence_lower = sentence.lower()
|
| 382 |
+
|
| 383 |
+
for kw in keywords:
|
| 384 |
+
if kw in sentence_lower:
|
| 385 |
+
score += 1
|
| 386 |
+
|
| 387 |
+
legal_terms = ['قانون', 'ماده', 'حکم', 'رای', 'دادگاه']
|
| 388 |
+
for term in legal_terms:
|
| 389 |
+
if term in sentence_lower:
|
| 390 |
+
score += 0.5
|
| 391 |
+
|
| 392 |
+
if len(sentence) > 200:
|
| 393 |
+
score *= 0.8
|
| 394 |
+
|
| 395 |
+
sentence_scores.append((sentence, score))
|
| 396 |
+
|
| 397 |
+
sentence_scores.sort(key=lambda x: x[1], reverse=True)
|
| 398 |
+
|
| 399 |
+
selected_sentences = []
|
| 400 |
+
current_length = 0
|
| 401 |
+
|
| 402 |
+
for sentence, score in sentence_scores:
|
| 403 |
+
if current_length + len(sentence) <= max_length:
|
| 404 |
+
selected_sentences.append(sentence)
|
| 405 |
+
current_length += len(sentence)
|
| 406 |
+
else:
|
| 407 |
+
break
|
| 408 |
+
|
| 409 |
+
if not selected_sentences:
|
| 410 |
+
return text[:max_length] + "..."
|
| 411 |
+
|
| 412 |
+
summary = ' '.join(selected_sentences)
|
| 413 |
+
return summary if len(summary) <= max_length else summary[:max_length] + "..."
|
| 414 |
+
|
| 415 |
+
except Exception as e:
|
| 416 |
+
logger.error(f"Summary generation failed: {e}")
|
| 417 |
+
return text[:max_length] + "..." if len(text) > max_length else text
|
| 418 |
+
|
| 419 |
+
def process_document(self, doc: LegalDocument) -> LegalDocument:
|
| 420 |
+
"""Process document with all available NLP features"""
|
| 421 |
+
try:
|
| 422 |
+
logger.info(f"Processing document: {doc.title[:50]}...")
|
| 423 |
+
|
| 424 |
+
doc.keywords = self.extract_keywords(doc.content)
|
| 425 |
+
|
| 426 |
+
doc_type, confidence = self.classify_document(doc.content)
|
| 427 |
+
if confidence > 0.3:
|
| 428 |
+
doc.category = doc_type
|
| 429 |
+
|
| 430 |
+
doc.importance_score = self.calculate_importance_score(doc)
|
| 431 |
+
|
| 432 |
+
doc.legal_entities = self.extract_legal_entities(doc.content)
|
| 433 |
+
|
| 434 |
+
doc.summary = self.generate_summary(doc.content)
|
| 435 |
+
|
| 436 |
+
doc.embedding = self.get_text_embedding(doc.content)
|
| 437 |
+
|
| 438 |
+
logger.info(f"✅ Processed: {doc.title[:30]}... (Score: {doc.importance_score:.2f})")
|
| 439 |
+
|
| 440 |
+
return doc
|
| 441 |
+
|
| 442 |
+
except Exception as e:
|
| 443 |
+
logger.error(f"Document processing failed: {e}")
|
| 444 |
+
return doc
|
| 445 |
+
|
| 446 |
+
class EnhancedLegalScraper:
|
| 447 |
+
"""Enhanced legal scraper with real web scraping and NLP"""
|
| 448 |
+
|
| 449 |
+
def __init__(self, delay: float = 1.0):
|
| 450 |
+
self.delay = delay
|
| 451 |
+
self.session = requests.Session()
|
| 452 |
+
|
| 453 |
+
try:
|
| 454 |
+
self.nlp_processor = PersianNLPProcessor()
|
| 455 |
+
logger.info("✅ NLP processor initialized")
|
| 456 |
+
except Exception as e:
|
| 457 |
+
logger.error(f"❌ NLP processor initialization failed: {e}")
|
| 458 |
+
self.nlp_processor = None
|
| 459 |
+
|
| 460 |
+
self.db_path = self._get_db_path()
|
| 461 |
+
|
| 462 |
+
self.session.headers.update({
|
| 463 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
|
| 464 |
+
'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
|
| 465 |
+
'Accept-Language': 'fa,en-US;q=0.7,en;q=0.3',
|
| 466 |
+
'Accept-Encoding': 'gzip, deflate',
|
| 467 |
+
'Connection': 'keep-alive',
|
| 468 |
+
'Upgrade-Insecure-Requests': '1',
|
| 469 |
+
})
|
| 470 |
+
|
| 471 |
+
self._init_database()
|
| 472 |
+
|
| 473 |
+
def _get_db_path(self) -> str:
|
| 474 |
+
"""Get appropriate database path for the environment"""
|
| 475 |
+
possible_paths = [
|
| 476 |
+
"/tmp/legal_scraper.db",
|
| 477 |
+
"./data/legal_scraper.db",
|
| 478 |
+
"legal_scraper.db"
|
| 479 |
+
]
|
| 480 |
+
|
| 481 |
+
for path in possible_paths:
|
| 482 |
+
try:
|
| 483 |
+
Path(path).parent.mkdir(parents=True, exist_ok=True)
|
| 484 |
+
return path
|
| 485 |
+
except:
|
| 486 |
+
continue
|
| 487 |
+
|
| 488 |
+
return ":memory:"
|
| 489 |
+
|
| 490 |
+
def _init_database(self):
|
| 491 |
+
"""Initialize enhanced database with NLP fields"""
|
| 492 |
+
try:
|
| 493 |
+
conn = sqlite3.connect(self.db_path)
|
| 494 |
+
cursor = conn.cursor()
|
| 495 |
+
|
| 496 |
+
cursor.execute('''
|
| 497 |
+
CREATE TABLE IF NOT EXISTS legal_documents (
|
| 498 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 499 |
+
title TEXT NOT NULL,
|
| 500 |
+
content TEXT NOT NULL,
|
| 501 |
+
source_url TEXT UNIQUE NOT NULL,
|
| 502 |
+
document_type TEXT NOT NULL,
|
| 503 |
+
date_published TEXT,
|
| 504 |
+
date_scraped TEXT NOT NULL,
|
| 505 |
+
category TEXT,
|
| 506 |
+
tags TEXT,
|
| 507 |
+
summary TEXT,
|
| 508 |
+
importance_score REAL DEFAULT 0.0,
|
| 509 |
+
sentiment_score REAL DEFAULT 0.0,
|
| 510 |
+
legal_entities TEXT,
|
| 511 |
+
keywords TEXT,
|
| 512 |
+
embedding TEXT,
|
| 513 |
+
language TEXT DEFAULT 'fa',
|
| 514 |
+
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 515 |
+
)
|
| 516 |
+
''')
|
| 517 |
+
|
| 518 |
+
indexes = [
|
| 519 |
+
'CREATE INDEX IF NOT EXISTS idx_source_url ON legal_documents(source_url)',
|
| 520 |
+
'CREATE INDEX IF NOT EXISTS idx_document_type ON legal_documents(document_type)',
|
| 521 |
+
'CREATE INDEX IF NOT EXISTS idx_importance_score ON legal_documents(importance_score DESC)',
|
| 522 |
+
'CREATE INDEX IF NOT EXISTS idx_category ON legal_documents(category)',
|
| 523 |
+
'CREATE INDEX IF NOT EXISTS idx_date_published ON legal_documents(date_published)',
|
| 524 |
+
'CREATE INDEX IF NOT EXISTS idx_date_scraped ON legal_documents(date_scraped DESC)'
|
| 525 |
+
]
|
| 526 |
+
|
| 527 |
+
for index in indexes:
|
| 528 |
+
cursor.execute(index)
|
| 529 |
+
|
| 530 |
+
conn.commit()
|
| 531 |
+
conn.close()
|
| 532 |
+
logger.info(f"✅ Database initialized: {self.db_path}")
|
| 533 |
+
|
| 534 |
+
except Exception as e:
|
| 535 |
+
logger.error(f"❌ Database initialization failed: {e}")
|
| 536 |
+
raise
|
| 537 |
+
|
| 538 |
+
def save_document(self, doc: LegalDocument) -> bool:
|
| 539 |
+
"""Save enhanced document to database"""
|
| 540 |
+
try:
|
| 541 |
+
conn = sqlite3.connect(self.db_path)
|
| 542 |
+
cursor = conn.cursor()
|
| 543 |
+
|
| 544 |
+
cursor.execute('''
|
| 545 |
+
INSERT OR REPLACE INTO legal_documents
|
| 546 |
+
(title, content, source_url, document_type, date_published,
|
| 547 |
+
date_scraped, category, tags, summary, importance_score,
|
| 548 |
+
sentiment_score, legal_entities, keywords, embedding, language)
|
| 549 |
+
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
|
| 550 |
+
''', (
|
| 551 |
+
doc.title,
|
| 552 |
+
doc.content,
|
| 553 |
+
doc.source_url,
|
| 554 |
+
doc.document_type,
|
| 555 |
+
doc.date_published,
|
| 556 |
+
doc.date_scraped,
|
| 557 |
+
doc.category,
|
| 558 |
+
json.dumps(doc.tags, ensure_ascii=False) if doc.tags else None,
|
| 559 |
+
doc.summary,
|
| 560 |
+
doc.importance_score,
|
| 561 |
+
doc.sentiment_score,
|
| 562 |
+
json.dumps(doc.legal_entities, ensure_ascii=False) if doc.legal_entities else None,
|
| 563 |
+
json.dumps(doc.keywords, ensure_ascii=False) if doc.keywords else None,
|
| 564 |
+
json.dumps(doc.embedding) if doc.embedding else None,
|
| 565 |
+
doc.language
|
| 566 |
+
))
|
| 567 |
+
|
| 568 |
+
conn.commit()
|
| 569 |
+
conn.close()
|
| 570 |
+
return True
|
| 571 |
+
|
| 572 |
+
except Exception as e:
|
| 573 |
+
logger.error(f"Failed to save document {doc.source_url}: {e}")
|
| 574 |
+
return False
|
| 575 |
+
|
| 576 |
+
def get_enhanced_statistics(self) -> Dict:
|
| 577 |
+
"""Get comprehensive statistics with NLP insights"""
|
| 578 |
+
try:
|
| 579 |
+
conn = sqlite3.connect(self.db_path)
|
| 580 |
+
cursor = conn.cursor()
|
| 581 |
+
|
| 582 |
+
stats = {}
|
| 583 |
+
|
| 584 |
+
cursor.execute('SELECT COUNT(*) FROM legal_documents')
|
| 585 |
+
stats['total_documents'] = cursor.fetchone()[0]
|
| 586 |
+
|
| 587 |
+
cursor.execute('SELECT document_type, COUNT(*) FROM legal_documents GROUP BY document_type')
|
| 588 |
+
stats['by_type'] = dict(cursor.fetchall())
|
| 589 |
+
|
| 590 |
+
cursor.execute('SELECT category, COUNT(*) FROM legal_documents WHERE category IS NOT NULL GROUP BY category')
|
| 591 |
+
stats['by_category'] = dict(cursor.fetchall())
|
| 592 |
+
|
| 593 |
+
cursor.execute('SELECT COUNT(*) FROM legal_documents WHERE importance_score >= 0.7')
|
| 594 |
+
high_importance = cursor.fetchone()[0]
|
| 595 |
+
cursor.execute('SELECT COUNT(*) FROM legal_documents WHERE importance_score >= 0.3 AND importance_score < 0.7')
|
| 596 |
+
medium_importance = cursor.fetchone()[0]
|
| 597 |
+
cursor.execute('SELECT COUNT(*) FROM legal_documents WHERE importance_score < 0.3')
|
| 598 |
+
low_importance = cursor.fetchone()[0]
|
| 599 |
+
|
| 600 |
+
stats['importance_distribution'] = {
|
| 601 |
+
'high': high_importance,
|
| 602 |
+
'medium': medium_importance,
|
| 603 |
+
'low': low_importance
|
| 604 |
+
}
|
| 605 |
+
|
| 606 |
+
cursor.execute('SELECT keywords FROM legal_documents WHERE keywords IS NOT NULL')
|
| 607 |
+
all_keywords = []
|
| 608 |
+
for row in cursor.fetchall():
|
| 609 |
+
try:
|
| 610 |
+
keywords = json.loads(row[0])
|
| 611 |
+
all_keywords.extend(keywords)
|
| 612 |
+
except:
|
| 613 |
+
continue
|
| 614 |
+
|
| 615 |
+
if all_keywords:
|
| 616 |
+
keyword_counts = {}
|
| 617 |
+
for kw in all_keywords:
|
| 618 |
+
keyword_counts[kw] = keyword_counts.get(kw, 0) + 1
|
| 619 |
+
|
| 620 |
+
topទ
|
| 621 |
+
top_keywords = sorted(keyword_counts.items(), key=lambda x: x[1], reverse=True)[:25]
|
| 622 |
+
stats['top_keywords'] = dict(top_keywords)
|
| 623 |
+
|
| 624 |
+
cursor.execute('''
|
| 625 |
+
SELECT DATE(date_scraped) as day, COUNT(*)
|
| 626 |
+
FROM legal_documents
|
| 627 |
+
WHERE date_scraped >= date('now', '-7 days')
|
| 628 |
+
GROUP BY DATE(date_scraped)
|
| 629 |
+
ORDER BY day DESC
|
| 630 |
+
''')
|
| 631 |
+
stats['recent_activity'] = dict(cursor.fetchall())
|
| 632 |
+
|
| 633 |
+
cursor.execute('''
|
| 634 |
+
SELECT document_type, AVG(importance_score)
|
| 635 |
+
FROM legal_documents
|
| 636 |
+
GROUP BY document_type
|
| 637 |
+
''')
|
| 638 |
+
stats['avg_importance_by_type'] = dict(cursor.fetchall())
|
| 639 |
+
|
| 640 |
+
cursor.execute('SELECT COUNT(*) FROM legal_documents WHERE embedding IS NOT NULL')
|
| 641 |
+
stats['documents_with_embeddings'] = cursor.fetchone()[0]
|
| 642 |
+
|
| 643 |
+
cursor.execute('SELECT language, COUNT(*) FROM legal_documents GROUP BY language')
|
| 644 |
+
stats['by_language'] = dict(cursor.fetchall())
|
| 645 |
+
|
| 646 |
+
conn.close()
|
| 647 |
+
return stats
|
| 648 |
+
|
| 649 |
+
except Exception as e:
|
| 650 |
+
logger.error(f"Statistics generation failed: {e}")
|
| 651 |
+
return {
|
| 652 |
+
'total_documents': 0,
|
| 653 |
+
'by_type': {},
|
| 654 |
+
'by_category': {},
|
| 655 |
+
'importance_distribution': {'high': 0, 'medium': 0, 'low': 0},
|
| 656 |
+
'top_keywords': {},
|
| 657 |
+
'recent_activity': {},
|
| 658 |
+
'avg_importance_by_type': {},
|
| 659 |
+
'documents_with_embeddings': 0,
|
| 660 |
+
'by_language': {}
|
| 661 |
+
}
|
| 662 |
+
|
| 663 |
+
def search_with_similarity(self, query: str, limit: int = 20) -> List[Dict]:
|
| 664 |
+
"""Advanced search using embeddings and similarity"""
|
| 665 |
+
if not self.nlp_processor or not self.nlp_processor.model:
|
| 666 |
+
return self._text_search(query, limit)
|
| 667 |
+
|
| 668 |
+
try:
|
| 669 |
+
query_embedding = self.nlp_processor.get_text_embedding(query)
|
| 670 |
+
if not query_embedding:
|
| 671 |
+
return self._text_search(query, limit)
|
| 672 |
+
|
| 673 |
+
conn = sqlite3.connect(self.db_path)
|
| 674 |
+
cursor = conn.cursor()
|
| 675 |
+
|
| 676 |
+
cursor.execute('''
|
| 677 |
+
SELECT id, title, content, source_url, document_type,
|
| 678 |
+
importance_score, summary, embedding
|
| 679 |
+
FROM legal_documents
|
| 680 |
+
WHERE embedding IS NOT NULL
|
| 681 |
+
''')
|
| 682 |
+
|
| 683 |
+
results = []
|
| 684 |
+
query_vector = np.array(query_embedding)
|
| 685 |
+
|
| 686 |
+
for row in cursor.fetchall():
|
| 687 |
+
try:
|
| 688 |
+
doc_embedding = json.loads(row[7])
|
| 689 |
+
doc_vector = np.array(doc_embedding)
|
| 690 |
+
|
| 691 |
+
similarity = cosine_similarity([query_vector], [doc_vector])[0][0]
|
| 692 |
+
|
| 693 |
+
combined_score = (similarity * 0.7) + (row[5] * 0.3)
|
| 694 |
+
|
| 695 |
+
results.append({
|
| 696 |
+
'id': row[0],
|
| 697 |
+
'title': row[1],
|
| 698 |
+
'content': row[2][:500] + "..." if len(row[2]) > 500 else row[2],
|
| 699 |
+
'source_url': row[3],
|
| 700 |
+
'document_type': row[4],
|
| 701 |
+
'importance_score': row[5],
|
| 702 |
+
'summary': row[6],
|
| 703 |
+
'similarity_score': similarity,
|
| 704 |
+
'combined_score': combined_score
|
| 705 |
+
})
|
| 706 |
+
|
| 707 |
+
except Exception as e:
|
| 708 |
+
logger.error(f"Error processing document embedding: {e}")
|
| 709 |
+
continue
|
| 710 |
+
|
| 711 |
+
results.sort(key=lambda x: x['combined_score'], reverse=True)
|
| 712 |
+
conn.close()
|
| 713 |
+
|
| 714 |
+
return results[:limit]
|
| 715 |
+
|
| 716 |
+
except Exception as e:
|
| 717 |
+
logger.error(f"Similarity search failed: {e}")
|
| 718 |
+
return self._text_search(query, limit)
|
| 719 |
+
|
| 720 |
+
def _text_search(self, query: str, limit: int = 20) -> List[Dict]:
|
| 721 |
+
"""Fallback text search"""
|
| 722 |
+
try:
|
| 723 |
+
conn = sqlite3.connect(self.db_path)
|
| 724 |
+
cursor = conn.cursor()
|
| 725 |
+
|
| 726 |
+
if self.nlp_processor:
|
| 727 |
+
normalized_query = self.nlp_processor.normalize_text(query)
|
| 728 |
+
else:
|
| 729 |
+
normalized_query = query
|
| 730 |
+
|
| 731 |
+
query_words = normalized_query.split()
|
| 732 |
+
|
| 733 |
+
search_conditions = []
|
| 734 |
+
params = []
|
| 735 |
+
|
| 736 |
+
for word in query_words:
|
| 737 |
+
search_conditions.append("(title LIKE ? OR content LIKE ?)")
|
| 738 |
+
params.extend([f'%{word}%', f'%{word}%'])
|
| 739 |
+
|
| 740 |
+
where_clause = " OR ".join(search_conditions)
|
| 741 |
+
|
| 742 |
+
cursor.execute(f'''
|
| 743 |
+
SELECT id, title, content, source_url, document_type,
|
| 744 |
+
importance_score, summary
|
| 745 |
+
FROM legal_documents
|
| 746 |
+
WHERE {where_clause}
|
| 747 |
+
ORDER BY importance_score DESC
|
| 748 |
+
LIMIT ?
|
| 749 |
+
''', params + [limit])
|
| 750 |
+
|
| 751 |
+
results = []
|
| 752 |
+
for row in cursor.fetchall():
|
| 753 |
+
results.append({
|
| 754 |
+
'id': row[0],
|
| 755 |
+
'title': row[1],
|
| 756 |
+
'content': row[2][:500] + "..." if len(row[2]) > 500 else row[2],
|
| 757 |
+
'source_url': row[3],
|
| 758 |
+
'document_type': row[4],
|
| 759 |
+
'importance_score': row[5],
|
| 760 |
+
'summary': row[6],
|
| 761 |
+
'similarity_score': 0.0
|
| 762 |
+
})
|
| 763 |
+
|
| 764 |
+
conn.close()
|
| 765 |
+
return results
|
| 766 |
+
|
| 767 |
+
except Exception as e:
|
| 768 |
+
logger.error(f"Text search failed: {e}")
|
| 769 |
+
return []
|
| 770 |
+
|
| 771 |
+
def export_to_csv(self, filename: str = None) -> str:
|
| 772 |
+
"""Export data to CSV with full details"""
|
| 773 |
+
try:
|
| 774 |
+
if not filename:
|
| 775 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
| 776 |
+
filename = f"legal_documents_{timestamp}.csv"
|
| 777 |
+
|
| 778 |
+
conn = sqlite3.connect(self.db_path)
|
| 779 |
+
|
| 780 |
+
query = '''
|
| 781 |
+
SELECT title, content, source_url, document_type,
|
| 782 |
+
date_published, date_scraped, category, summary,
|
| 783 |
+
importance_score, keywords, legal_entities
|
| 784 |
+
FROM legal_documents
|
| 785 |
+
ORDER BY importance_score DESC, date_scraped DESC
|
| 786 |
+
'''
|
| 787 |
+
|
| 788 |
+
df = pd.read_sql_query(query, conn)
|
| 789 |
+
conn.close()
|
| 790 |
+
|
| 791 |
+
for col in ['keywords', 'legal_entities']:
|
| 792 |
+
if col in df.columns:
|
| 793 |
+
df[col] = df[col].apply(lambda x: ', '.join(json.loads(x)) if x else '')
|
| 794 |
+
|
| 795 |
+
df.to_csv(filename, index=False, encoding='utf-8-sig')
|
| 796 |
+
logger.info(f"✅ Data exported to CSV: {filename}")
|
| 797 |
+
|
| 798 |
+
return filename
|
| 799 |
+
|
| 800 |
+
except Exception as e:
|
| 801 |
+
logger.error(f"CSV export failed: {e}")
|
| 802 |
+
return ""
|
| 803 |
+
|
| 804 |
+
def scrape_real_sources(self, urls: List[str] = IRANIAN_LEGAL_SOURCES, max_docs: int = 20) -> List[LegalDocument]:
|
| 805 |
+
"""Real web scraping implementation with source-specific extraction"""
|
| 806 |
+
documents = []
|
| 807 |
+
|
| 808 |
+
for i, url in enumerate(urls):
|
| 809 |
+
if len(documents) >= max_docs:
|
| 810 |
+
break
|
| 811 |
+
|
| 812 |
+
try:
|
| 813 |
+
logger.info(f"🔄 Scraping {i+1}/{len(urls)}: {url}")
|
| 814 |
+
time.sleep(self.delay)
|
| 815 |
+
|
| 816 |
+
response = self.session.get(url, timeout=15)
|
| 817 |
+
response.raise_for_status()
|
| 818 |
+
|
| 819 |
+
if response.encoding == 'ISO-8859-1':
|
| 820 |
+
response.encoding = response.apparent_encoding
|
| 821 |
+
|
| 822 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
| 823 |
+
|
| 824 |
+
# Extract documents using source-specific logic
|
| 825 |
+
extracted_items = self._extract_source_specific_content(soup, url, max_docs - len(documents))
|
| 826 |
+
|
| 827 |
+
for item in extracted_items:
|
| 828 |
+
if len(documents) >= max_docs:
|
| 829 |
+
break
|
| 830 |
+
|
| 831 |
+
doc = LegalDocument(
|
| 832 |
+
title=item['title'],
|
| 833 |
+
content=item['content'],
|
| 834 |
+
source_url=item['url'],
|
| 835 |
+
document_type=self._determine_document_type(item['title'], item['content']),
|
| 836 |
+
date_published=item['date']
|
| 837 |
+
)
|
| 838 |
+
|
| 839 |
+
if self.nlp_processor:
|
| 840 |
+
doc = self.nlp_processor.process_document(doc)
|
| 841 |
+
|
| 842 |
+
documents.append(doc)
|
| 843 |
+
logger.info(f"✅ Extracted: {doc.title[:50]}...")
|
| 844 |
+
|
| 845 |
+
except Exception as e:
|
| 846 |
+
logger.error(f"❌ Error scraping {url}: {e}")
|
| 847 |
+
continue
|
| 848 |
+
|
| 849 |
+
documents.sort(key=lambda x: x.importance_score, reverse=True)
|
| 850 |
+
return documents
|
| 851 |
+
|
| 852 |
+
def _extract_source_specific_content(self, soup: BeautifulSoup, url: str, max_items: int) -> List[Dict]:
|
| 853 |
+
"""Extract content based on source-specific selectors"""
|
| 854 |
+
if 'irna.ir' in url:
|
| 855 |
+
return self._extract_irna_content(soup, url, max_items)
|
| 856 |
+
elif 'tasnimnews.com' in url:
|
| 857 |
+
return self._extract_tasnim_content(soup, url, max_items)
|
| 858 |
+
elif 'mehrnews.com' in url:
|
| 859 |
+
return self._extract_mehr_content(soup, url, max_items)
|
| 860 |
+
elif 'farsnews.ir' in url:
|
| 861 |
+
return self._extract_fars_content(soup, url, max_items)
|
| 862 |
+
else:
|
| 863 |
+
return self._extract_generic_content(soup, url, max_items)
|
| 864 |
+
|
| 865 |
+
def _extract_irna_content(self, soup: BeautifulSoup, base_url: str, max_items: int) -> List[Dict]:
|
| 866 |
+
"""Extract content from IRNA"""
|
| 867 |
+
items = []
|
| 868 |
+
try:
|
| 869 |
+
articles = soup.select('.news-item, .article, .story')[:max_items]
|
| 870 |
+
|
| 871 |
+
for article in articles:
|
| 872 |
+
title_elem = soup.select_one('h1, h2, h3, .title, .headline, a')
|
| 873 |
+
if title_elem:
|
| 874 |
+
title = title_elem.get_text(strip=True)
|
| 875 |
+
content = article.get_text(strip=True)
|
| 876 |
+
|
| 877 |
+
if len(title) > 10 and len(content) > 100:
|
| 878 |
+
items.append({
|
| 879 |
+
'title': title,
|
| 880 |
+
'content': content,
|
| 881 |
+
'url': base_url,
|
| 882 |
+
'date': self._extract_date(soup)
|
| 883 |
+
})
|
| 884 |
+
|
| 885 |
+
if not items:
|
| 886 |
+
main_content = soup.select_one('main, .main-content, .content, article')
|
| 887 |
+
if main_content:
|
| 888 |
+
title = soup.select_one('h1, title')
|
| 889 |
+
title_text = title.get_text(strip=True) if title else "خبر ایرنا"
|
| 890 |
+
content_text = main_content.get_text(strip=True)
|
| 891 |
+
|
| 892 |
+
if len(content_text) > 200:
|
| 893 |
+
items.append({
|
| 894 |
+
'title': title_text,
|
| 895 |
+
'content': content_text,
|
| 896 |
+
'url': base_url,
|
| 897 |
+
'date': self._extract_date(soup)
|
| 898 |
+
})
|
| 899 |
+
|
| 900 |
+
except Exception as e:
|
| 901 |
+
logger.error(f"IRNA extraction error: {e}")
|
| 902 |
+
|
| 903 |
+
return items
|
| 904 |
+
|
| 905 |
+
def _extract_tasnim_content(self, soup: BeautifulSoup, base_url: str, max_items: int) -> List[Dict]:
|
| 906 |
+
"""Extract content from Tasnim"""
|
| 907 |
+
items = []
|
| 908 |
+
try:
|
| 909 |
+
articles = soup.select('.news-box, .item, .story-item')[:max_items]
|
| 910 |
+
|
| 911 |
+
for article in articles:
|
| 912 |
+
title_elem = article.select_one('h2, h3, .title, a')
|
| 913 |
+
if title_elem:
|
| 914 |
+
title = title_elem.get_text(strip=True)
|
| 915 |
+
content = article.get_text(strip=True)
|
| 916 |
+
|
| 917 |
+
if len(title) > 10 and len(content) > 100:
|
| 918 |
+
items.append({
|
| 919 |
+
'title': title,
|
| 920 |
+
'content': content,
|
| 921 |
+
'url': base_url,
|
| 922 |
+
'date': self._extract_date(soup)
|
| 923 |
+
})
|
| 924 |
+
|
| 925 |
+
if not items:
|
| 926 |
+
main_content = soup.select_one('.news-content, .story-body, main')
|
| 927 |
+
if main_content:
|
| 928 |
+
title = soup.select_one('h1, .news-title')
|
| 929 |
+
title_text = title.get_text(strip=True) if title else "خبر تسنیم"
|
| 930 |
+
content_text = main_content.get_text(strip=True)
|
| 931 |
+
|
| 932 |
+
if len(content_text) > 200:
|
| 933 |
+
items.append({
|
| 934 |
+
'title': title_text,
|
| 935 |
+
'content': content_text,
|
| 936 |
+
'url': base_url,
|
| 937 |
+
'date': self._extract_date(soup)
|
| 938 |
+
})
|
| 939 |
+
|
| 940 |
+
except Exception as e:
|
| 941 |
+
logger.error(f"Tasnim extraction error: {e}")
|
| 942 |
+
|
| 943 |
+
return items
|
| 944 |
+
|
| 945 |
+
def _extract_mehr_content(self, soup: BeautifulSoup, base_url: str, max_items: int) -> List[Dict]:
|
| 946 |
+
"""Extract content from Mehr News"""
|
| 947 |
+
items = []
|
| 948 |
+
try:
|
| 949 |
+
articles = soup.select('.news-item, .article-item, .story')[:max_items]
|
| 950 |
+
|
| 951 |
+
for article in articles:
|
| 952 |
+
title_elem = article.select_one('h2, h3, .title, .headline')
|
| 953 |
+
if title_elem:
|
| 954 |
+
title = title_elem.get_text(strip=True)
|
| 955 |
+
content = article.get_text(strip=True)
|
| 956 |
+
|
| 957 |
+
if len(title) > 10 and len(content) > 100:
|
| 958 |
+
items.append({
|
| 959 |
+
'title': title,
|
| 960 |
+
'content': content,
|
| 961 |
+
'url': base_url,
|
| 962 |
+
'date': self._extract_date(soup)
|
| 963 |
+
})
|
| 964 |
+
|
| 965 |
+
if not items:
|
| 966 |
+
main_content = soup.select_one('.content, .news-body, article')
|
| 967 |
+
if main_content:
|
| 968 |
+
title = soup.select_one('h1, .page-title')
|
| 969 |
+
title_text = title.get_text(strip=True) if title else "خبر مهر"
|
| 970 |
+
content_text = main_content.get_text(strip=True)
|
| 971 |
+
|
| 972 |
+
if len(content_text) > 200:
|
| 973 |
+
items.append({
|
| 974 |
+
'title': title_text,
|
| 975 |
+
'content': content_text,
|
| 976 |
+
'url': base_url,
|
| 977 |
+
'date': self._extract_date(soup)
|
| 978 |
+
})
|
| 979 |
+
|
| 980 |
+
except Exception as e:
|
| 981 |
+
logger.error(f"Mehr extraction error: {e}")
|
| 982 |
+
|
| 983 |
+
return items
|
| 984 |
+
|
| 985 |
+
def _extract_fars_content(self, soup: BeautifulSoup, base_url: str, max_items: int) -> List[Dict]:
|
| 986 |
+
"""Extract content from Fars News"""
|
| 987 |
+
items = []
|
| 988 |
+
try:
|
| 989 |
+
articles = soup.select('.news, .item, .story-item')[:max_items]
|
| 990 |
+
|
| 991 |
+
for article in articles:
|
| 992 |
+
title_elem = article.select_one('h2, h3, .title, a')
|
| 993 |
+
if title_elem:
|
| 994 |
+
title = title_elem.get_text(strip=True)
|
| 995 |
+
content = article.get_text(strip=True)
|
| 996 |
+
|
| 997 |
+
if len(title) > 10 and len(content) > 100:
|
| 998 |
+
items.append({
|
| 999 |
+
'title': title,
|
| 1000 |
+
'content': content,
|
| 1001 |
+
'url': base_url,
|
| 1002 |
+
'date': self._extract_date(soup)
|
| 1003 |
+
})
|
| 1004 |
+
|
| 1005 |
+
if not items:
|
| 1006 |
+
main_content = soup.select_one('.news-content, .story, main')
|
| 1007 |
+
if main_content:
|
| 1008 |
+
title = soup.select_one('h1, .news-title')
|
| 1009 |
+
title_text = title.get_text(strip=True) if title else "خبر فارس"
|
| 1010 |
+
content_text = main_content.get_text(strip=True)
|
| 1011 |
+
|
| 1012 |
+
if len(content_text) > 200:
|
| 1013 |
+
items.append({
|
| 1014 |
+
'title': title_text,
|
| 1015 |
+
'content': content_text,
|
| 1016 |
+
'url': base_url,
|
| 1017 |
+
'date': self._extract_date(soup)
|
| 1018 |
+
})
|
| 1019 |
+
|
| 1020 |
+
except Exception as e:
|
| 1021 |
+
logger.error(f"Fars extraction error: {e}")
|
| 1022 |
+
|
| 1023 |
+
return items
|
| 1024 |
+
|
| 1025 |
+
def _extract_generic_content(self, soup: BeautifulSoup, base_url: str, max_items: int) -> List[Dict]:
|
| 1026 |
+
"""Generic content extraction for unknown sources"""
|
| 1027 |
+
items = []
|
| 1028 |
+
try:
|
| 1029 |
+
articles = soup.select('article, .article, .post, .news-item, .story')[:max_items]
|
| 1030 |
+
|
| 1031 |
+
for article in articles:
|
| 1032 |
+
title_elem = article.select_one('h1, h2, h3, .title, .headline')
|
| 1033 |
+
if title_elem:
|
| 1034 |
+
title = title_elem.get_text(strip=True)
|
| 1035 |
+
content = article.get_text(strip=True)
|
| 1036 |
+
|
| 1037 |
+
if len(title) > 10 and len(content) > 150:
|
| 1038 |
+
items.append({
|
| 1039 |
+
'title': title,
|
| 1040 |
+
'content': content,
|
| 1041 |
+
'url': base_url,
|
| 1042 |
+
'date': self._extract_date(soup)
|
| 1043 |
+
})
|
| 1044 |
+
|
| 1045 |
+
if not items:
|
| 1046 |
+
title_elem = soup.select_one('h1, title')
|
| 1047 |
+
content_elem = soup.select_one('main, .main-content, .content, .entry-content, body')
|
| 1048 |
+
|
| 1049 |
+
if title_elem and content_elem:
|
| 1050 |
+
for unwanted in content_elem(['script', 'style', 'nav', 'header', 'footer']):
|
| 1051 |
+
unwanted.decompose()
|
| 1052 |
+
|
| 1053 |
+
title = title_elem.get_text(strip=True)
|
| 1054 |
+
content = content_elem.get_text(strip=True)
|
| 1055 |
+
|
| 1056 |
+
if len(title) > 5 and len(content) > 200:
|
| 1057 |
+
items.append({
|
| 1058 |
+
'title': title,
|
| 1059 |
+
'content': content,
|
| 1060 |
+
'url': base_url,
|
| 1061 |
+
'date': self._extract_date(soup)
|
| 1062 |
+
})
|
| 1063 |
+
|
| 1064 |
+
except Exception as e:
|
| 1065 |
+
logger.error(f"Generic extraction error: {e}")
|
| 1066 |
+
|
| 1067 |
+
return items
|
| 1068 |
+
|
| 1069 |
+
def _extract_document_from_soup(self, soup: BeautifulSoup, url: str) -> Optional[LegalDocument]:
|
| 1070 |
+
"""Extract main document from BeautifulSoup object using source-specific logic"""
|
| 1071 |
+
try:
|
| 1072 |
+
items = self._extract_source_specific_content(soup, url, 1)
|
| 1073 |
+
|
| 1074 |
+
if not items:
|
| 1075 |
+
return None
|
| 1076 |
+
|
| 1077 |
+
item = items[0]
|
| 1078 |
+
|
| 1079 |
+
return LegalDocument(
|
| 1080 |
+
title=item['title'],
|
| 1081 |
+
content=item['content'],
|
| 1082 |
+
source_url=item['url'],
|
| 1083 |
+
document_type=self._determine_document_type(item['title'], item['content']),
|
| 1084 |
+
date_published=item['date']
|
| 1085 |
+
)
|
| 1086 |
+
|
| 1087 |
+
except Exception as e:
|
| 1088 |
+
logger.error(f"Document extraction failed: {e}")
|
| 1089 |
+
return None
|
| 1090 |
+
|
| 1091 |
+
def _extract_additional_articles(self, soup: BeautifulSoup, base_url: str) -> List[LegalDocument]:
|
| 1092 |
+
"""Extract additional articles from the same page using source-specific logic"""
|
| 1093 |
+
documents = []
|
| 1094 |
+
|
| 1095 |
+
try:
|
| 1096 |
+
items = self._extract_source_specific_content(soup, base_url, 3)
|
| 1097 |
+
|
| 1098 |
+
for item in items:
|
| 1099 |
+
doc = LegalDocument(
|
| 1100 |
+
title=item['title'],
|
| 1101 |
+
content=item['content'],
|
| 1102 |
+
source_url=item['url'],
|
| 1103 |
+
document_type=self._determine_document_type(item['title'], item['content']),
|
| 1104 |
+
date_published=item['date']
|
| 1105 |
+
)
|
| 1106 |
+
|
| 1107 |
+
documents.append(doc)
|
| 1108 |
+
|
| 1109 |
+
except Exception as e:
|
| 1110 |
+
logger.error(f"Additional articles extraction failed: {e}")
|
| 1111 |
+
|
| 1112 |
+
return documents[:3]
|
| 1113 |
+
|
| 1114 |
+
def _determine_document_type(self, title: str, content: str) -> str:
|
| 1115 |
+
"""Determine document type based on content"""
|
| 1116 |
+
text = (title + " " + content).lower()
|
| 1117 |
+
|
| 1118 |
+
if any(word in text for word in ['قانون', 'ماده', 'فصل', 'بند', 'تبصره']):
|
| 1119 |
+
return 'law'
|
| 1120 |
+
elif any(word in text for word in ['رای', 'حکم', 'دادگاه', 'قاضی']):
|
| 1121 |
+
return 'ruling'
|
| 1122 |
+
elif any(word in text for word in ['آییننامه', 'دستورالعمل', 'بخشنامه']):
|
| 1123 |
+
return 'regulation'
|
| 1124 |
+
elif any(word in text for word in ['خبر', 'اعلام', 'گزارش', 'اطلاعیه']):
|
| 1125 |
+
return 'news'
|
| 1126 |
+
else:
|
| 1127 |
+
return 'general'
|
| 1128 |
+
|
| 1129 |
+
def _extract_date(self, soup: BeautifulSoup) -> Optional[str]:
|
| 1130 |
+
"""Extract publication date"""
|
| 1131 |
+
try:
|
| 1132 |
+
date_selectors = [
|
| 1133 |
+
'meta[name="article:published_time"]',
|
| 1134 |
+
'meta[property="article:published_time"]',
|
| 1135 |
+
'meta[name="date"]',
|
| 1136 |
+
'meta[name="DC.date"]',
|
| 1137 |
+
'.date',
|
| 1138 |
+
'.publish-date',
|
| 1139 |
+
'.article-date',
|
| 1140 |
+
'time[datetime]'
|
| 1141 |
+
]
|
| 1142 |
+
|
| 1143 |
+
for selector in date_selectors:
|
| 1144 |
+
element = soup.select_one(selector)
|
| 1145 |
+
if element:
|
| 1146 |
+
date_str = element.get('content') or element.get('datetime') or element.get_text()
|
| 1147 |
+
if date_str:
|
| 1148 |
+
return self._normalize_date(date_str)
|
| 1149 |
+
|
| 1150 |
+
text = soup.get_text()
|
| 1151 |
+
persian_date_patterns = [
|
| 1152 |
+
r'(\d{4}/\d{1,2}/\d{1,2})',
|
| 1153 |
+
r'(\d{1,2}/\d{1,2}/\d{4})',
|
| 1154 |
+
r'(\d{4}-\d{1,2}-\d{1,2})'
|
| 1155 |
+
]
|
| 1156 |
+
|
| 1157 |
+
for pattern in persian_date_patterns:
|
| 1158 |
+
match = re.search(pattern, text)
|
| 1159 |
+
if match:
|
| 1160 |
+
return match.group(1)
|
| 1161 |
+
|
| 1162 |
+
return None
|
| 1163 |
+
|
| 1164 |
+
except Exception:
|
| 1165 |
+
return None
|
| 1166 |
+
|
| 1167 |
+
def _normalize_date(self, date_str: str) -> Optional[str]:
|
| 1168 |
+
"""Normalize date string to standard format"""
|
| 1169 |
+
try:
|
| 1170 |
+
date_str = re.sub(r'[^\d/\-:]', ' ', date_str).strip()
|
| 1171 |
+
|
| 1172 |
+
formats = [
|
| 1173 |
+
'%Y-%m-%d',
|
| 1174 |
+
'%Y/%m/%d',
|
| 1175 |
+
'%d/%m/%Y',
|
| 1176 |
+
'%Y-%m-%d %H:%M:%S',
|
| 1177 |
+
'%Y/%m/%d %H:%M:%S'
|
| 1178 |
+
]
|
| 1179 |
+
|
| 1180 |
+
for fmt in formats:
|
| 1181 |
+
try:
|
| 1182 |
+
parsed_date = datetime.strptime(date_str, fmt)
|
| 1183 |
+
return parsed_date.strftime('%Y-%m-%d')
|
| 1184 |
+
except ValueError:
|
| 1185 |
+
continue
|
| 1186 |
+
|
| 1187 |
+
return date_str
|
| 1188 |
+
|
| 1189 |
+
except Exception:
|
| 1190 |
+
return None
|