Spaces:
Paused
Paused
Update app/main.py
Browse files- app/main.py +22 -147
app/main.py
CHANGED
|
@@ -3,7 +3,7 @@ import tempfile
|
|
| 3 |
import logging
|
| 4 |
import traceback
|
| 5 |
from pathlib import Path
|
| 6 |
-
from typing import
|
| 7 |
import asyncio
|
| 8 |
from datetime import datetime
|
| 9 |
|
|
@@ -40,15 +40,6 @@ except ImportError as e:
|
|
| 40 |
|
| 41 |
# Data models
|
| 42 |
class OCRResponse(BaseModel):
|
| 43 |
-
"""
|
| 44 |
-
OCR processing response model
|
| 45 |
-
|
| 46 |
-
Fields:
|
| 47 |
-
- success: Whether the OCR processing was successful
|
| 48 |
-
- text: Extracted text content
|
| 49 |
-
- method: Processing method used (PyMuPDF, TrOCR, Basic, etc.)
|
| 50 |
-
- metadata: Additional processing information (pages, file size, image dimensions, etc.)
|
| 51 |
-
"""
|
| 52 |
success: bool
|
| 53 |
text: str
|
| 54 |
method: str
|
|
@@ -71,43 +62,30 @@ class OCRService:
|
|
| 71 |
try:
|
| 72 |
logger.info("Loading TrOCR model...")
|
| 73 |
model_name = "microsoft/trocr-base-printed"
|
| 74 |
-
|
| 75 |
self.processor = TrOCRProcessor.from_pretrained(model_name)
|
| 76 |
self.model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
| 77 |
self.model_loaded = True
|
| 78 |
-
|
| 79 |
logger.info("✅ TrOCR model loaded successfully")
|
| 80 |
except Exception as e:
|
| 81 |
logger.error(f"❌ Failed to load TrOCR model: {e}")
|
| 82 |
self.model_loaded = False
|
| 83 |
|
| 84 |
async def extract_text_from_pdf(self, file_path: str) -> OCRResponse:
|
| 85 |
-
"""Extract text from PDF using PyMuPDF"""
|
| 86 |
if not PDF_AVAILABLE:
|
| 87 |
-
return OCRResponse(
|
| 88 |
-
|
| 89 |
-
text="",
|
| 90 |
-
method="error",
|
| 91 |
-
metadata={"error": "PDF processing not available"}
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
try:
|
| 95 |
doc = fitz.open(file_path)
|
| 96 |
pages_text = []
|
| 97 |
total_chars = 0
|
| 98 |
-
total_pages = doc.page_count
|
| 99 |
-
|
| 100 |
-
# Process up to 10 pages to avoid timeout
|
| 101 |
for page_num in range(min(total_pages, 10)):
|
| 102 |
page = doc[page_num]
|
| 103 |
text = page.get_text()
|
| 104 |
pages_text.append(text)
|
| 105 |
total_chars += len(text)
|
| 106 |
-
|
| 107 |
doc.close()
|
| 108 |
-
|
| 109 |
full_text = "\n\n--- Page Break ---\n\n".join(pages_text)
|
| 110 |
-
|
| 111 |
return OCRResponse(
|
| 112 |
success=True,
|
| 113 |
text=full_text,
|
|
@@ -119,27 +97,17 @@ class OCRService:
|
|
| 119 |
"file_size_kb": os.path.getsize(file_path) / 1024
|
| 120 |
}
|
| 121 |
)
|
| 122 |
-
|
| 123 |
except Exception as e:
|
| 124 |
logger.error(f"PDF processing error: {e}")
|
| 125 |
-
return OCRResponse(
|
| 126 |
-
success=False,
|
| 127 |
-
text="",
|
| 128 |
-
method="error",
|
| 129 |
-
metadata={"error": str(e)}
|
| 130 |
-
)
|
| 131 |
|
| 132 |
async def extract_text_from_image(self, file_path: str) -> OCRResponse:
|
| 133 |
-
"""Extract text from image using TrOCR"""
|
| 134 |
try:
|
| 135 |
image = Image.open(file_path)
|
| 136 |
-
|
| 137 |
if self.model_loaded and self.processor and self.model:
|
| 138 |
-
# Use TrOCR
|
| 139 |
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
|
| 140 |
generated_ids = self.model.generate(pixel_values)
|
| 141 |
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 142 |
-
|
| 143 |
return OCRResponse(
|
| 144 |
success=True,
|
| 145 |
text=generated_text,
|
|
@@ -151,7 +119,6 @@ class OCRService:
|
|
| 151 |
}
|
| 152 |
)
|
| 153 |
else:
|
| 154 |
-
# Fallback method
|
| 155 |
return OCRResponse(
|
| 156 |
success=True,
|
| 157 |
text=f"Image processed: {image.size} pixels, {image.mode} mode\nTrOCR model not loaded - text extraction limited",
|
|
@@ -162,20 +129,12 @@ class OCRService:
|
|
| 162 |
"note": "TrOCR model not available"
|
| 163 |
}
|
| 164 |
)
|
| 165 |
-
|
| 166 |
except Exception as e:
|
| 167 |
logger.error(f"Image processing error: {e}")
|
| 168 |
-
return OCRResponse(
|
| 169 |
-
success=False,
|
| 170 |
-
text="",
|
| 171 |
-
method="error",
|
| 172 |
-
metadata={"error": str(e)}
|
| 173 |
-
)
|
| 174 |
|
| 175 |
-
# Initialize services
|
| 176 |
ocr_service = OCRService()
|
| 177 |
|
| 178 |
-
# Create FastAPI app
|
| 179 |
app = FastAPI(
|
| 180 |
title="Legal Dashboard API",
|
| 181 |
description="Advanced Legal Document Processing System",
|
|
@@ -184,7 +143,6 @@ app = FastAPI(
|
|
| 184 |
redoc_url="/api/redoc"
|
| 185 |
)
|
| 186 |
|
| 187 |
-
# Add CORS middleware
|
| 188 |
app.add_middleware(
|
| 189 |
CORSMiddleware,
|
| 190 |
allow_origins=["*"],
|
|
@@ -193,17 +151,15 @@ app.add_middleware(
|
|
| 193 |
allow_headers=["*"],
|
| 194 |
)
|
| 195 |
|
| 196 |
-
#
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
app.mount("/static", StaticFiles(directory=
|
| 202 |
|
| 203 |
-
# Startup event to load ML models
|
| 204 |
@app.on_event("startup")
|
| 205 |
async def startup_event():
|
| 206 |
-
"""Load ML models on application startup"""
|
| 207 |
if ML_AVAILABLE:
|
| 208 |
try:
|
| 209 |
logger.info("🚀 Loading OCR models on startup...")
|
|
@@ -211,58 +167,16 @@ async def startup_event():
|
|
| 211 |
except Exception as e:
|
| 212 |
logger.error(f"❌ Failed to load models on startup: {e}")
|
| 213 |
|
| 214 |
-
# Routes
|
| 215 |
@app.get("/", response_class=HTMLResponse)
|
| 216 |
async def root():
|
| 217 |
-
"""Serve main
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
else:
|
| 223 |
-
# Return inline HTML if file doesn't exist
|
| 224 |
-
return HTMLResponse("""
|
| 225 |
-
<!DOCTYPE html>
|
| 226 |
-
<html>
|
| 227 |
-
<head>
|
| 228 |
-
<title>Legal Dashboard</title>
|
| 229 |
-
<meta charset="UTF-8">
|
| 230 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
| 231 |
-
<style>
|
| 232 |
-
body { font-family: Arial, sans-serif; margin: 0; padding: 20px; background: #f5f5f5; }
|
| 233 |
-
.container { max-width: 800px; margin: 0 auto; background: white; padding: 30px; border-radius: 10px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); }
|
| 234 |
-
.header { text-align: center; color: #333; margin-bottom: 30px; }
|
| 235 |
-
.status { padding: 15px; background: #e8f5e8; border-left: 4px solid #4CAF50; margin: 20px 0; }
|
| 236 |
-
.nav { display: flex; gap: 10px; margin: 20px 0; flex-wrap: wrap; }
|
| 237 |
-
.nav a { padding: 10px 20px; background: #4CAF50; color: white; text-decoration: none; border-radius: 5px; }
|
| 238 |
-
.nav a:hover { background: #45a049; }
|
| 239 |
-
</style>
|
| 240 |
-
</head>
|
| 241 |
-
<body>
|
| 242 |
-
<div class="container">
|
| 243 |
-
<div class="header">
|
| 244 |
-
<h1>🏛️ Legal Dashboard</h1>
|
| 245 |
-
<p>Advanced Legal Document Processing System</p>
|
| 246 |
-
</div>
|
| 247 |
-
<div class="status">
|
| 248 |
-
<strong>✅ System Status:</strong> FastAPI backend is running successfully!
|
| 249 |
-
</div>
|
| 250 |
-
<div class="nav">
|
| 251 |
-
<a href="/api/docs">📚 API Documentation</a>
|
| 252 |
-
<a href="/health">❤️ Health Check</a>
|
| 253 |
-
<a href="/system/status">📊 System Status</a>
|
| 254 |
-
</div>
|
| 255 |
-
<p><strong>Note:</strong> Please create static/index.html for the full frontend interface.</p>
|
| 256 |
-
</div>
|
| 257 |
-
</body>
|
| 258 |
-
</html>
|
| 259 |
-
""")
|
| 260 |
-
except Exception as e:
|
| 261 |
-
raise HTTPException(status_code=500, detail=f"Error serving main page: {str(e)}")
|
| 262 |
|
| 263 |
@app.get("/health")
|
| 264 |
async def health_check():
|
| 265 |
-
"""Health check endpoint"""
|
| 266 |
return {
|
| 267 |
"status": "healthy",
|
| 268 |
"message": "Legal Dashboard is running",
|
|
@@ -276,7 +190,6 @@ async def health_check():
|
|
| 276 |
|
| 277 |
@app.get("/system/status", response_model=SystemStatus)
|
| 278 |
async def get_system_status():
|
| 279 |
-
"""Get detailed system status"""
|
| 280 |
return SystemStatus(
|
| 281 |
status="healthy",
|
| 282 |
services={
|
|
@@ -298,67 +211,38 @@ async def get_system_status():
|
|
| 298 |
|
| 299 |
@app.post("/api/ocr/extract-pdf", response_model=OCRResponse)
|
| 300 |
async def extract_pdf_text(file: UploadFile = File(...)):
|
| 301 |
-
"""Extract text from PDF file"""
|
| 302 |
if not file.filename.lower().endswith('.pdf'):
|
| 303 |
raise HTTPException(status_code=400, detail="File must be a PDF")
|
| 304 |
-
|
| 305 |
temp_path = None
|
| 306 |
try:
|
| 307 |
-
# Save uploaded file temporarily
|
| 308 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
|
| 309 |
content = await file.read()
|
| 310 |
temp_file.write(content)
|
| 311 |
temp_path = temp_file.name
|
| 312 |
-
|
| 313 |
-
# Process PDF
|
| 314 |
-
result = await ocr_service.extract_text_from_pdf(temp_path)
|
| 315 |
-
return result
|
| 316 |
-
|
| 317 |
-
except Exception as e:
|
| 318 |
-
logger.error(f"PDF extraction error: {e}")
|
| 319 |
-
raise HTTPException(status_code=500, detail=f"PDF processing failed: {str(e)}")
|
| 320 |
finally:
|
| 321 |
-
# Clean up temp file
|
| 322 |
if temp_path and os.path.exists(temp_path):
|
| 323 |
-
|
| 324 |
-
os.unlink(temp_path)
|
| 325 |
-
except Exception as e:
|
| 326 |
-
logger.warning(f"Failed to cleanup temp file {temp_path}: {e}")
|
| 327 |
|
| 328 |
@app.post("/api/ocr/extract-image", response_model=OCRResponse)
|
| 329 |
async def extract_image_text(file: UploadFile = File(...)):
|
| 330 |
-
"""Extract text from image file"""
|
| 331 |
allowed_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']
|
| 332 |
if not any(file.filename.lower().endswith(ext) for ext in allowed_extensions):
|
| 333 |
raise HTTPException(status_code=400, detail="File must be an image (JPG, PNG, BMP, TIFF)")
|
| 334 |
-
|
| 335 |
temp_path = None
|
| 336 |
try:
|
| 337 |
-
# Save uploaded file temporarily
|
| 338 |
file_extension = Path(file.filename).suffix
|
| 339 |
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
|
| 340 |
content = await file.read()
|
| 341 |
temp_file.write(content)
|
| 342 |
temp_path = temp_file.name
|
| 343 |
-
|
| 344 |
-
# Process image
|
| 345 |
-
result = await ocr_service.extract_text_from_image(temp_path)
|
| 346 |
-
return result
|
| 347 |
-
|
| 348 |
-
except Exception as e:
|
| 349 |
-
logger.error(f"Image extraction error: {e}")
|
| 350 |
-
raise HTTPException(status_code=500, detail=f"Image processing failed: {str(e)}")
|
| 351 |
finally:
|
| 352 |
-
# Clean up temp file
|
| 353 |
if temp_path and os.path.exists(temp_path):
|
| 354 |
-
|
| 355 |
-
os.unlink(temp_path)
|
| 356 |
-
except Exception as e:
|
| 357 |
-
logger.warning(f"Failed to cleanup temp file {temp_path}: {e}")
|
| 358 |
|
| 359 |
@app.get("/api/test")
|
| 360 |
async def test_endpoint():
|
| 361 |
-
"""Test endpoint for debugging"""
|
| 362 |
return {
|
| 363 |
"message": "API is working!",
|
| 364 |
"pdf_available": PDF_AVAILABLE,
|
|
@@ -367,7 +251,6 @@ async def test_endpoint():
|
|
| 367 |
"timestamp": datetime.now().isoformat()
|
| 368 |
}
|
| 369 |
|
| 370 |
-
# Error handlers
|
| 371 |
@app.exception_handler(Exception)
|
| 372 |
async def global_exception_handler(request: Request, exc: Exception):
|
| 373 |
logger.error(f"Global exception: {exc}")
|
|
@@ -383,12 +266,4 @@ async def global_exception_handler(request: Request, exc: Exception):
|
|
| 383 |
|
| 384 |
if __name__ == "__main__":
|
| 385 |
import uvicorn
|
| 386 |
-
|
| 387 |
-
# Run on port 7860 for Hugging Face Spaces
|
| 388 |
-
uvicorn.run(
|
| 389 |
-
"main:app",
|
| 390 |
-
host="0.0.0.0",
|
| 391 |
-
port=7860,
|
| 392 |
-
reload=False,
|
| 393 |
-
log_level="info"
|
| 394 |
-
)
|
|
|
|
| 3 |
import logging
|
| 4 |
import traceback
|
| 5 |
from pathlib import Path
|
| 6 |
+
from typing import Dict, Any
|
| 7 |
import asyncio
|
| 8 |
from datetime import datetime
|
| 9 |
|
|
|
|
| 40 |
|
| 41 |
# Data models
|
| 42 |
class OCRResponse(BaseModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
success: bool
|
| 44 |
text: str
|
| 45 |
method: str
|
|
|
|
| 62 |
try:
|
| 63 |
logger.info("Loading TrOCR model...")
|
| 64 |
model_name = "microsoft/trocr-base-printed"
|
|
|
|
| 65 |
self.processor = TrOCRProcessor.from_pretrained(model_name)
|
| 66 |
self.model = VisionEncoderDecoderModel.from_pretrained(model_name)
|
| 67 |
self.model_loaded = True
|
|
|
|
| 68 |
logger.info("✅ TrOCR model loaded successfully")
|
| 69 |
except Exception as e:
|
| 70 |
logger.error(f"❌ Failed to load TrOCR model: {e}")
|
| 71 |
self.model_loaded = False
|
| 72 |
|
| 73 |
async def extract_text_from_pdf(self, file_path: str) -> OCRResponse:
|
|
|
|
| 74 |
if not PDF_AVAILABLE:
|
| 75 |
+
return OCRResponse(success=False, text="", method="error",
|
| 76 |
+
metadata={"error": "PDF processing not available"})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
try:
|
| 78 |
doc = fitz.open(file_path)
|
| 79 |
pages_text = []
|
| 80 |
total_chars = 0
|
| 81 |
+
total_pages = doc.page_count
|
|
|
|
|
|
|
| 82 |
for page_num in range(min(total_pages, 10)):
|
| 83 |
page = doc[page_num]
|
| 84 |
text = page.get_text()
|
| 85 |
pages_text.append(text)
|
| 86 |
total_chars += len(text)
|
|
|
|
| 87 |
doc.close()
|
|
|
|
| 88 |
full_text = "\n\n--- Page Break ---\n\n".join(pages_text)
|
|
|
|
| 89 |
return OCRResponse(
|
| 90 |
success=True,
|
| 91 |
text=full_text,
|
|
|
|
| 97 |
"file_size_kb": os.path.getsize(file_path) / 1024
|
| 98 |
}
|
| 99 |
)
|
|
|
|
| 100 |
except Exception as e:
|
| 101 |
logger.error(f"PDF processing error: {e}")
|
| 102 |
+
return OCRResponse(success=False, text="", method="error", metadata={"error": str(e)})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
async def extract_text_from_image(self, file_path: str) -> OCRResponse:
|
|
|
|
| 105 |
try:
|
| 106 |
image = Image.open(file_path)
|
|
|
|
| 107 |
if self.model_loaded and self.processor and self.model:
|
|
|
|
| 108 |
pixel_values = self.processor(images=image, return_tensors="pt").pixel_values
|
| 109 |
generated_ids = self.model.generate(pixel_values)
|
| 110 |
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
| 111 |
return OCRResponse(
|
| 112 |
success=True,
|
| 113 |
text=generated_text,
|
|
|
|
| 119 |
}
|
| 120 |
)
|
| 121 |
else:
|
|
|
|
| 122 |
return OCRResponse(
|
| 123 |
success=True,
|
| 124 |
text=f"Image processed: {image.size} pixels, {image.mode} mode\nTrOCR model not loaded - text extraction limited",
|
|
|
|
| 129 |
"note": "TrOCR model not available"
|
| 130 |
}
|
| 131 |
)
|
|
|
|
| 132 |
except Exception as e:
|
| 133 |
logger.error(f"Image processing error: {e}")
|
| 134 |
+
return OCRResponse(success=False, text="", method="error", metadata={"error": str(e)})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
|
|
|
| 136 |
ocr_service = OCRService()
|
| 137 |
|
|
|
|
| 138 |
app = FastAPI(
|
| 139 |
title="Legal Dashboard API",
|
| 140 |
description="Advanced Legal Document Processing System",
|
|
|
|
| 143 |
redoc_url="/api/redoc"
|
| 144 |
)
|
| 145 |
|
|
|
|
| 146 |
app.add_middleware(
|
| 147 |
CORSMiddleware,
|
| 148 |
allow_origins=["*"],
|
|
|
|
| 151 |
allow_headers=["*"],
|
| 152 |
)
|
| 153 |
|
| 154 |
+
# Use frontend folder as static files
|
| 155 |
+
frontend_dir = Path("frontend")
|
| 156 |
+
if not frontend_dir.exists():
|
| 157 |
+
logger.warning("⚠️ Frontend directory not found. UI may not load correctly.")
|
| 158 |
+
else:
|
| 159 |
+
app.mount("/static", StaticFiles(directory=frontend_dir), name="static")
|
| 160 |
|
|
|
|
| 161 |
@app.on_event("startup")
|
| 162 |
async def startup_event():
|
|
|
|
| 163 |
if ML_AVAILABLE:
|
| 164 |
try:
|
| 165 |
logger.info("🚀 Loading OCR models on startup...")
|
|
|
|
| 167 |
except Exception as e:
|
| 168 |
logger.error(f"❌ Failed to load models on startup: {e}")
|
| 169 |
|
|
|
|
| 170 |
@app.get("/", response_class=HTMLResponse)
|
| 171 |
async def root():
|
| 172 |
+
"""Serve main frontend file"""
|
| 173 |
+
html_file = Path("frontend/index.html")
|
| 174 |
+
if html_file.exists():
|
| 175 |
+
return FileResponse(html_file)
|
| 176 |
+
return HTMLResponse("<h1>⚠️ Frontend not found</h1><p>Please ensure frontend/index.html exists.</p>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
@app.get("/health")
|
| 179 |
async def health_check():
|
|
|
|
| 180 |
return {
|
| 181 |
"status": "healthy",
|
| 182 |
"message": "Legal Dashboard is running",
|
|
|
|
| 190 |
|
| 191 |
@app.get("/system/status", response_model=SystemStatus)
|
| 192 |
async def get_system_status():
|
|
|
|
| 193 |
return SystemStatus(
|
| 194 |
status="healthy",
|
| 195 |
services={
|
|
|
|
| 211 |
|
| 212 |
@app.post("/api/ocr/extract-pdf", response_model=OCRResponse)
|
| 213 |
async def extract_pdf_text(file: UploadFile = File(...)):
|
|
|
|
| 214 |
if not file.filename.lower().endswith('.pdf'):
|
| 215 |
raise HTTPException(status_code=400, detail="File must be a PDF")
|
|
|
|
| 216 |
temp_path = None
|
| 217 |
try:
|
|
|
|
| 218 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.pdf') as temp_file:
|
| 219 |
content = await file.read()
|
| 220 |
temp_file.write(content)
|
| 221 |
temp_path = temp_file.name
|
| 222 |
+
return await ocr_service.extract_text_from_pdf(temp_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
finally:
|
|
|
|
| 224 |
if temp_path and os.path.exists(temp_path):
|
| 225 |
+
os.unlink(temp_path)
|
|
|
|
|
|
|
|
|
|
| 226 |
|
| 227 |
@app.post("/api/ocr/extract-image", response_model=OCRResponse)
|
| 228 |
async def extract_image_text(file: UploadFile = File(...)):
|
|
|
|
| 229 |
allowed_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff']
|
| 230 |
if not any(file.filename.lower().endswith(ext) for ext in allowed_extensions):
|
| 231 |
raise HTTPException(status_code=400, detail="File must be an image (JPG, PNG, BMP, TIFF)")
|
|
|
|
| 232 |
temp_path = None
|
| 233 |
try:
|
|
|
|
| 234 |
file_extension = Path(file.filename).suffix
|
| 235 |
with tempfile.NamedTemporaryFile(delete=False, suffix=file_extension) as temp_file:
|
| 236 |
content = await file.read()
|
| 237 |
temp_file.write(content)
|
| 238 |
temp_path = temp_file.name
|
| 239 |
+
return await ocr_service.extract_text_from_image(temp_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
finally:
|
|
|
|
| 241 |
if temp_path and os.path.exists(temp_path):
|
| 242 |
+
os.unlink(temp_path)
|
|
|
|
|
|
|
|
|
|
| 243 |
|
| 244 |
@app.get("/api/test")
|
| 245 |
async def test_endpoint():
|
|
|
|
| 246 |
return {
|
| 247 |
"message": "API is working!",
|
| 248 |
"pdf_available": PDF_AVAILABLE,
|
|
|
|
| 251 |
"timestamp": datetime.now().isoformat()
|
| 252 |
}
|
| 253 |
|
|
|
|
| 254 |
@app.exception_handler(Exception)
|
| 255 |
async def global_exception_handler(request: Request, exc: Exception):
|
| 256 |
logger.error(f"Global exception: {exc}")
|
|
|
|
| 266 |
|
| 267 |
if __name__ == "__main__":
|
| 268 |
import uvicorn
|
| 269 |
+
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=False, log_level="info")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|