Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import numpy as np | |
| import time | |
| import matplotlib.pyplot as plt | |
| from typing import Tuple, List | |
| from statistics import mean, median, stdev | |
| from lib import ( | |
| normalize_text, | |
| chunk_text, | |
| count_tokens, | |
| load_module_from_file, | |
| download_model_files, | |
| list_voice_files, | |
| download_voice_files, | |
| ensure_dir, | |
| concatenate_audio_chunks | |
| ) | |
| import spaces | |
| class TTSModel: | |
| """GPU-accelerated TTS model manager""" | |
| def __init__(self): | |
| self.model = None | |
| self.voices_dir = "voices" | |
| self.model_repo = "hexgrad/Kokoro-82M" | |
| ensure_dir(self.voices_dir) | |
| self.model_path = None | |
| # Load required modules | |
| py_modules = ["istftnet", "plbert", "models", "kokoro"] | |
| module_files = download_model_files(self.model_repo, [f"{m}.py" for m in py_modules]) | |
| for module_name, file_path in zip(py_modules, module_files): | |
| load_module_from_file(module_name, file_path) | |
| # Import required functions from kokoro module | |
| kokoro = __import__("kokoro") | |
| self.generate = kokoro.generate | |
| self.build_model = __import__("models").build_model | |
| def initialize(self) -> bool: | |
| """Initialize model and download voices""" | |
| try: | |
| print("Initializing model...") | |
| # Download model files | |
| model_files = download_model_files( | |
| self.model_repo, | |
| ["kokoro-v0_19.pth", "config.json"] | |
| ) | |
| self.model_path = model_files[0] # kokoro-v0_19.pth | |
| # Download voice files | |
| download_voice_files(self.model_repo, "voices", self.voices_dir) | |
| # Get list of available voices | |
| available_voices = self.list_voices() | |
| print("Model initialization complete") | |
| return True | |
| except Exception as e: | |
| print(f"Error initializing model: {str(e)}") | |
| return False | |
| def ensure_voice_downloaded(self, voice_name: str) -> bool: | |
| """Ensure specific voice is downloaded""" | |
| try: | |
| voice_path = os.path.join(self.voices_dir, "voices", f"{voice_name}.pt") | |
| if not os.path.exists(voice_path): | |
| print(f"Downloading voice {voice_name}.pt...") | |
| download_voice_files(self.model_repo, [f"{voice_name}.pt"], self.voices_dir) | |
| return True | |
| except Exception as e: | |
| print(f"Error downloading voice {voice_name}: {str(e)}") | |
| return False | |
| def list_voices(self) -> List[str]: | |
| """List available voices""" | |
| voices = [] | |
| voices_subdir = os.path.join(self.voices_dir, "voices") | |
| if os.path.exists(voices_subdir): | |
| for file in os.listdir(voices_subdir): | |
| if file.endswith(".pt"): | |
| voice_name = file[:-3] | |
| voices.append(voice_name) | |
| return voices | |
| # def _ensure_model_on_gpu(self) -> None: | |
| # """Ensure model is on GPU and stays there""" | |
| # if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu: | |
| # print("Moving model to GPU...") | |
| # with torch.cuda.device(0): | |
| # torch.cuda.set_device(0) | |
| # if hasattr(self.model, 'to'): | |
| # self.model.to('cuda') | |
| # else: | |
| # for name in self.model: | |
| # if isinstance(self.model[name], torch.Tensor): | |
| # self.model[name] = self.model[name].cuda() | |
| # self._model_on_gpu = True | |
| def _generate_audio(self, text: str, voicepack: torch.Tensor, lang: str, speed: float) -> np.ndarray: | |
| """GPU-accelerated audio generation""" | |
| try: | |
| with torch.cuda.device(0): | |
| torch.cuda.set_device(0) | |
| try: | |
| # Build model if needed | |
| if self.model is None: | |
| print("Building model...") | |
| device = torch.device('cuda') | |
| self.model = self.build_model(self.model_path, device=device) | |
| if self.model is None: | |
| raise ValueError("Failed to build model") | |
| print("Model built successfully") | |
| # Move model to GPU if needed | |
| if not hasattr(self.model, '_on_gpu'): | |
| print("Moving model to GPU...") | |
| if hasattr(self.model, 'to'): | |
| self.model = self.model.to('cuda') | |
| else: | |
| for name in self.model: | |
| if isinstance(self.model[name], torch.Tensor): | |
| self.model[name] = self.model[name].cuda() | |
| self.model._on_gpu = True | |
| except Exception as e: | |
| print(f"Error building model: {str(e)}") | |
| print("Attempting to continue") | |
| raise e | |
| # Move voicepack to GPU | |
| voicepack = voicepack.cuda() | |
| # Run generation with everything on GPU | |
| audio, _ = self.generate( | |
| self.model, | |
| text, | |
| voicepack, | |
| lang=lang, | |
| speed=speed | |
| ) | |
| return audio | |
| except Exception as e: | |
| print(f"Error in audio generation: {str(e)}") | |
| raise e | |
| # Duration will be set by the UI | |
| def generate_speech(self, text: str, voice_names: list[str], speed: float = 1.0, gpu_timeout: int = 60, progress_callback=None, progress_state=None, progress=None) -> Tuple[np.ndarray, float]: | |
| """Generate speech from text. Returns (audio_array, duration) | |
| Args: | |
| text: Input text to convert to speech | |
| voice_name: Name of voice to use | |
| speed: Speech speed multiplier | |
| progress_callback: Optional callback function(chunk_num, total_chunks, tokens_per_sec, rtf, progress_state, start_time, gpu_timeout, progress) | |
| progress_state: Dictionary tracking generation progress metrics | |
| progress: Progress callback from Gradio | |
| """ | |
| try: | |
| start_time = time.time() | |
| with torch.cuda.device(0): | |
| torch.cuda.set_device(0) | |
| if not text or not voice_names: | |
| raise ValueError("Text and voice name are required") | |
| # Build model directly on GPU | |
| # Build model if needed | |
| if self.model is None: | |
| print("Building model...") | |
| self.model = self.build_model(self.model_path, device='cuda') | |
| if self.model is None: | |
| raise ValueError("Failed to build model") | |
| print("Model built successfully") | |
| # Move model to GPU if needed | |
| if not hasattr(self.model, '_on_gpu'): | |
| print("Moving model to GPU...") | |
| if hasattr(self.model, 'to'): | |
| self.model = self.model.to('cuda') | |
| else: | |
| for name in self.model: | |
| if isinstance(self.model[name], torch.Tensor): | |
| self.model[name] = self.model[name].cuda() | |
| self.model._on_gpu = True | |
| t_voices = [] | |
| if isinstance(voice_names, list) and len(voice_names) > 1: | |
| for voice in voice_names: | |
| try: | |
| voice_path = os.path.join(self.voices_dir, "voices", f"{voice}.pt") | |
| voicepack = torch.load(voice_path, weights_only=True) | |
| t_voices.append(voicepack) | |
| except Exception as e: | |
| print(f"Warning: Failed to load voice {voice}: {str(e)}") | |
| # Combine voices by taking mean | |
| voicepack = torch.mean(torch.stack(t_voices), dim=0) | |
| voice_name = "_".join(voice_names) | |
| else: | |
| voice_name = voice_names[0] | |
| voice_path = os.path.join(self.voices_dir, "voices", f"{voice_name}.pt") | |
| voicepack = torch.load(voice_path, weights_only=True) | |
| # Count tokens and normalize text | |
| total_tokens = count_tokens(text) | |
| text = normalize_text(text) | |
| if not text: | |
| raise ValueError("Text is empty after normalization") | |
| # Break text into chunks for better memory management | |
| chunks = chunk_text(text) | |
| print(f"Processing {len(chunks)} chunks...") | |
| # Process all chunks within same GPU context | |
| audio_chunks = [] | |
| chunk_times = [] | |
| chunk_sizes = [] # Store chunk lengths | |
| total_processed_tokens = 0 | |
| total_processed_time = 0 | |
| for i, chunk in enumerate(chunks): | |
| chunk_start = time.time() | |
| chunk_audio = self._generate_audio( | |
| text=chunk, | |
| voicepack=voicepack, | |
| lang=voice_name[0], | |
| speed=speed | |
| ) | |
| chunk_time = time.time() - chunk_start | |
| # Calculate per-chunk metrics | |
| chunk_tokens = count_tokens(chunk) | |
| chunk_tokens_per_sec = chunk_tokens / chunk_time | |
| # Update totals for overall stats | |
| total_processed_tokens += chunk_tokens | |
| total_processed_time += chunk_time | |
| # Calculate processing speed metrics | |
| chunk_duration = len(chunk_audio) / 24000 # audio duration in seconds | |
| rtf = chunk_time / chunk_duration | |
| times_faster = 1 / rtf | |
| chunk_times.append(chunk_time) | |
| chunk_sizes.append(len(chunk)) | |
| print(f"Chunk {i+1}/{len(chunks)} processed in {chunk_time:.2f}s") | |
| print(f"Current tokens/sec: {chunk_tokens_per_sec:.2f}") | |
| print(f"Real-time factor: {rtf:.2f}x") | |
| print(f"{times_faster:.1f}x faster than real-time") | |
| audio_chunks.append(chunk_audio) | |
| # Call progress callback if provided | |
| if progress_callback: | |
| progress_callback( | |
| i + 1, # chunk_num | |
| len(chunks), # total_chunks | |
| chunk_tokens_per_sec, # Pass per-chunk rate instead of cumulative | |
| rtf, | |
| progress_state, # Added | |
| start_time, # Added | |
| gpu_timeout, # Use the timeout value from UI | |
| progress # Added | |
| ) | |
| # Concatenate audio chunks | |
| audio = concatenate_audio_chunks(audio_chunks) | |
| # Return audio and metrics | |
| return ( | |
| audio, # Audio array | |
| len(audio) / 24000, # Duration | |
| { | |
| "chunk_times": chunk_times, | |
| "chunk_sizes": chunk_sizes, | |
| "tokens_per_sec": [float(x) for x in progress_state["tokens_per_sec"]], | |
| "rtf": [float(x) for x in progress_state["rtf"]], | |
| "total_tokens": total_tokens, | |
| "total_time": time.time() - start_time | |
| } | |
| ) | |
| except Exception as e: | |
| print(f"Error generating speech: {str(e)}") | |
| raise | |