Spaces:
Runtime error
Runtime error
Add audio and text utility modules, update requirements, and revise README
Browse files- README.md +26 -27
- app.py +114 -30
- lib/__init__.py +34 -0
- lib/audio_utils.py +23 -0
- lib/file_utils.py +101 -0
- lib/text_utils.py +56 -0
- requirements.txt +1 -1
- tts_model.py +213 -210
README.md
CHANGED
|
@@ -1,47 +1,46 @@
|
|
| 1 |
---
|
| 2 |
-
title: Kokoro TTS
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.9.1
|
| 8 |
app_file: app.py
|
| 9 |
-
pinned:
|
| 10 |
-
license:
|
| 11 |
-
short_description: A100 GPU Accelerated Inference applied to Kokoro-82M TTS
|
| 12 |
-
models:
|
| 13 |
-
- hexgrad/Kokoro-82M
|
| 14 |
---
|
| 15 |
|
| 16 |
# Kokoro TTS Demo Space
|
| 17 |
|
| 18 |
A Zero GPU-optimized Hugging Face Space for the Kokoro TTS model.
|
| 19 |
-
|
| 20 |
## Overview
|
| 21 |
|
| 22 |
This Space provides a Gradio interface for the Kokoro TTS model, allowing users to:
|
| 23 |
- Convert text to speech using multiple voices
|
| 24 |
- Adjust speech speed
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
| 40 |
- PyTorch 2.2.2
|
| 41 |
- Gradio 5.9.1
|
| 42 |
-
-
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
|
| 45 |
|
| 46 |
-
## Notes
|
| 47 |
-
- Model Warm-Up takes some time, it shines at longer lengths.
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Kokoro TTS Demo
|
| 3 |
+
emoji: 🎙️
|
| 4 |
+
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.9.1
|
| 8 |
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# Kokoro TTS Demo Space
|
| 14 |
|
| 15 |
A Zero GPU-optimized Hugging Face Space for the Kokoro TTS model.
|
|
|
|
| 16 |
## Overview
|
| 17 |
|
| 18 |
This Space provides a Gradio interface for the Kokoro TTS model, allowing users to:
|
| 19 |
- Convert text to speech using multiple voices
|
| 20 |
- Adjust speech speed
|
| 21 |
+
## Project Structure
|
| 22 |
+
|
| 23 |
+
```
|
| 24 |
+
.
|
| 25 |
+
├── app.py # Main Gradio interface
|
| 26 |
+
├── tts_model.py # GPU-accelerated TTS model manager
|
| 27 |
+
├── lib/ # Utility modules
|
| 28 |
+
│ ├── __init__.py # Package exports
|
| 29 |
+
│ ├── text_utils.py # Text processing utilities
|
| 30 |
+
│ ├── file_utils.py # File operations
|
| 31 |
+
│ └── audio_utils.py # Audio processing
|
| 32 |
+
└── requirements.txt # Project dependencies
|
| 33 |
+
```
|
| 34 |
+
|
| 35 |
+
## Dependencies
|
| 36 |
+
|
| 37 |
+
Main dependencies:
|
| 38 |
- PyTorch 2.2.2
|
| 39 |
- Gradio 5.9.1
|
| 40 |
+
- Transformers 4.47.1
|
| 41 |
+
- HuggingFace Hub ≥0.25.1
|
| 42 |
+
|
| 43 |
+
For a complete list, see requirements.txt.
|
| 44 |
|
| 45 |
|
| 46 |
|
|
|
|
|
|
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
|
|
|
| 4 |
from tts_model import TTSModel
|
| 5 |
-
|
| 6 |
|
| 7 |
# Set HF_HOME for faster restarts with cached models/voices
|
| 8 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
|
@@ -22,81 +23,164 @@ def initialize_model():
|
|
| 22 |
voice_list = initialize_model()
|
| 23 |
|
| 24 |
@spaces.GPU(duration=120) # Allow 5 minutes for processing
|
| 25 |
-
def generate_speech_from_ui(text, voice_name, speed):
|
| 26 |
"""Handle text-to-speech generation from the Gradio UI"""
|
| 27 |
try:
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
except Exception as e:
|
| 34 |
-
raise gr.Error(str(e))
|
| 35 |
|
| 36 |
# Create Gradio interface
|
| 37 |
with gr.Blocks(title="Kokoro TTS Demo") as demo:
|
| 38 |
gr.HTML(
|
| 39 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
|
| 41 |
<h1>Kokoro TTS Demo</h1>
|
| 42 |
<p>Convert text to natural-sounding speech using various voices.</p>
|
| 43 |
</div>
|
|
|
|
| 44 |
"""
|
| 45 |
)
|
| 46 |
|
| 47 |
with gr.Row():
|
| 48 |
-
|
| 49 |
-
|
| 50 |
text_input = gr.TextArea(
|
| 51 |
label="Text to speak",
|
| 52 |
-
placeholder="Enter text here
|
| 53 |
-
lines=
|
| 54 |
value=open("the_time_machine_hgwells.txt").read()[:1000]
|
| 55 |
)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
audio_output = gr.Audio(
|
| 74 |
label="Generated Speech",
|
| 75 |
type="numpy",
|
| 76 |
format="wav",
|
| 77 |
autoplay=False
|
| 78 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
duration_text = gr.Textbox(
|
| 80 |
label="Processing Info",
|
| 81 |
interactive=False,
|
| 82 |
-
lines=
|
| 83 |
)
|
| 84 |
|
| 85 |
# Set up event handler
|
| 86 |
submit_btn.click(
|
| 87 |
fn=generate_speech_from_ui,
|
| 88 |
inputs=[text_input, voice_dropdown, speed_slider],
|
| 89 |
-
outputs=[audio_output, duration_text]
|
|
|
|
| 90 |
)
|
| 91 |
-
|
| 92 |
|
| 93 |
# Add text analysis info
|
| 94 |
with gr.Row():
|
| 95 |
with gr.Column():
|
| 96 |
gr.Markdown("""
|
| 97 |
### Demo Text Info
|
| 98 |
-
The
|
| 99 |
""")
|
|
|
|
| 100 |
|
| 101 |
# Launch the app
|
| 102 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import spaces
|
| 4 |
+
import time
|
| 5 |
from tts_model import TTSModel
|
| 6 |
+
from lib import format_audio_output
|
| 7 |
|
| 8 |
# Set HF_HOME for faster restarts with cached models/voices
|
| 9 |
os.environ["HF_HOME"] = "/data/.huggingface"
|
|
|
|
| 23 |
voice_list = initialize_model()
|
| 24 |
|
| 25 |
@spaces.GPU(duration=120) # Allow 5 minutes for processing
|
| 26 |
+
def generate_speech_from_ui(text, voice_name, speed, progress=gr.Progress(track_tqdm=False)):
|
| 27 |
"""Handle text-to-speech generation from the Gradio UI"""
|
| 28 |
try:
|
| 29 |
+
start_time = time.time()
|
| 30 |
+
gpu_timeout = 120 # seconds
|
| 31 |
+
|
| 32 |
+
# Create progress state
|
| 33 |
+
progress_state = {
|
| 34 |
+
"progress": 0.0,
|
| 35 |
+
"tokens_per_sec": 0.0,
|
| 36 |
+
"gpu_time_left": gpu_timeout
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
def update_progress(chunk_num, total_chunks, tokens_per_sec, rtf):
|
| 40 |
+
progress_state["progress"] = chunk_num / total_chunks
|
| 41 |
+
progress_state["tokens_per_sec"] = tokens_per_sec
|
| 42 |
+
|
| 43 |
+
# Update GPU time remaining
|
| 44 |
+
elapsed = time.time() - start_time
|
| 45 |
+
gpu_time_left = max(0, gpu_timeout - elapsed)
|
| 46 |
+
progress_state["gpu_time_left"] = gpu_time_left
|
| 47 |
+
|
| 48 |
+
# Only update progress display during processing
|
| 49 |
+
progress(progress_state["progress"], desc=f"Processing chunk {chunk_num}/{total_chunks} | GPU Time Left: {int(gpu_time_left)}s")
|
| 50 |
+
|
| 51 |
+
# Generate speech with progress tracking
|
| 52 |
+
audio_array, duration = model.generate_speech(
|
| 53 |
+
text,
|
| 54 |
+
voice_name,
|
| 55 |
+
speed,
|
| 56 |
+
progress_callback=update_progress
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Format output for Gradio
|
| 60 |
+
audio_output, duration_text = format_audio_output(audio_array)
|
| 61 |
+
|
| 62 |
+
# Calculate final metrics
|
| 63 |
+
total_time = time.time() - start_time
|
| 64 |
+
total_duration = len(audio_array) / 24000 # audio duration in seconds
|
| 65 |
+
final_rtf = total_time / total_duration if total_duration > 0 else 0
|
| 66 |
+
|
| 67 |
+
# Prepare final metrics display
|
| 68 |
+
metrics_text = (
|
| 69 |
+
f"Tokens/sec: {progress_state['tokens_per_sec']:.1f}\n" +
|
| 70 |
+
f"Real-time factor: {final_rtf:.2f}x (Processing Time / Audio Duration)\n" +
|
| 71 |
+
f"GPU Time Used: {int(total_time)}s of {gpu_timeout}s"
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
return (
|
| 75 |
+
audio_output,
|
| 76 |
+
metrics_text,
|
| 77 |
+
duration_text
|
| 78 |
+
)
|
| 79 |
except Exception as e:
|
| 80 |
+
raise gr.Error(f"Generation failed: {str(e)}")
|
| 81 |
|
| 82 |
# Create Gradio interface
|
| 83 |
with gr.Blocks(title="Kokoro TTS Demo") as demo:
|
| 84 |
gr.HTML(
|
| 85 |
"""
|
| 86 |
+
<div style="display: flex; justify-content: flex-end; padding: 10px; gap: 10px;">
|
| 87 |
+
<a href="https://huggingface.co/hexgrad/Kokoro-82M" target="_blank">
|
| 88 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/model-on-hf-md-dark.svg" alt="Model on HF">
|
| 89 |
+
</a>
|
| 90 |
+
<a class="github-button" href="https://github.com/remsky/Kokoro-FastAPI" data-color-scheme="no-preference: light; light: light; dark: dark;" data-size="large" data-show-count="true" aria-label="Star remsky/Kokoro-FastAPI on GitHub">Repo for Local Use</a>
|
| 91 |
+
</div>
|
| 92 |
<div style="text-align: center; max-width: 800px; margin: 0 auto;">
|
| 93 |
<h1>Kokoro TTS Demo</h1>
|
| 94 |
<p>Convert text to natural-sounding speech using various voices.</p>
|
| 95 |
</div>
|
| 96 |
+
<script async defer src="https://buttons.github.io/buttons.js"></script>
|
| 97 |
"""
|
| 98 |
)
|
| 99 |
|
| 100 |
with gr.Row():
|
| 101 |
+
# Column 1: Text Input
|
| 102 |
+
with gr.Column():
|
| 103 |
text_input = gr.TextArea(
|
| 104 |
label="Text to speak",
|
| 105 |
+
placeholder="Enter text here or upload a .txt file",
|
| 106 |
+
lines=10,
|
| 107 |
value=open("the_time_machine_hgwells.txt").read()[:1000]
|
| 108 |
)
|
| 109 |
+
|
| 110 |
+
# Column 2: Controls
|
| 111 |
+
with gr.Column():
|
| 112 |
+
file_input = gr.File(
|
| 113 |
+
label="Upload .txt file",
|
| 114 |
+
file_types=[".txt"],
|
| 115 |
+
type="binary"
|
| 116 |
)
|
| 117 |
+
|
| 118 |
+
def load_text_from_file(file_bytes):
|
| 119 |
+
if file_bytes is None:
|
| 120 |
+
return None
|
| 121 |
+
try:
|
| 122 |
+
return file_bytes.decode('utf-8')
|
| 123 |
+
except Exception as e:
|
| 124 |
+
raise gr.Error(f"Failed to read file: {str(e)}")
|
| 125 |
+
|
| 126 |
+
file_input.change(
|
| 127 |
+
fn=load_text_from_file,
|
| 128 |
+
inputs=[file_input],
|
| 129 |
+
outputs=[text_input]
|
| 130 |
)
|
| 131 |
+
|
| 132 |
+
with gr.Group():
|
| 133 |
+
voice_dropdown = gr.Dropdown(
|
| 134 |
+
label="Voice",
|
| 135 |
+
choices=voice_list,
|
| 136 |
+
value=voice_list[0] if voice_list else None,
|
| 137 |
+
allow_custom_value=True
|
| 138 |
+
)
|
| 139 |
+
speed_slider = gr.Slider(
|
| 140 |
+
label="Speed",
|
| 141 |
+
minimum=0.5,
|
| 142 |
+
maximum=2.0,
|
| 143 |
+
value=1.0,
|
| 144 |
+
step=0.1
|
| 145 |
+
)
|
| 146 |
+
submit_btn = gr.Button("Generate Speech", variant="primary")
|
| 147 |
|
| 148 |
+
# Column 3: Output
|
| 149 |
+
with gr.Column():
|
| 150 |
audio_output = gr.Audio(
|
| 151 |
label="Generated Speech",
|
| 152 |
type="numpy",
|
| 153 |
format="wav",
|
| 154 |
autoplay=False
|
| 155 |
)
|
| 156 |
+
progress_bar = gr.Progress(track_tqdm=False)
|
| 157 |
+
metrics_text = gr.Textbox(
|
| 158 |
+
label="Processing Metrics",
|
| 159 |
+
interactive=False,
|
| 160 |
+
lines=3
|
| 161 |
+
)
|
| 162 |
duration_text = gr.Textbox(
|
| 163 |
label="Processing Info",
|
| 164 |
interactive=False,
|
| 165 |
+
lines=2
|
| 166 |
)
|
| 167 |
|
| 168 |
# Set up event handler
|
| 169 |
submit_btn.click(
|
| 170 |
fn=generate_speech_from_ui,
|
| 171 |
inputs=[text_input, voice_dropdown, speed_slider],
|
| 172 |
+
outputs=[audio_output, metrics_text, duration_text],
|
| 173 |
+
show_progress=True
|
| 174 |
)
|
|
|
|
| 175 |
|
| 176 |
# Add text analysis info
|
| 177 |
with gr.Row():
|
| 178 |
with gr.Column():
|
| 179 |
gr.Markdown("""
|
| 180 |
### Demo Text Info
|
| 181 |
+
The demo text is loaded from H.G. Wells' "The Time Machine". This classic text demonstrates the system's ability to handle long-form content through chunking.
|
| 182 |
""")
|
| 183 |
+
|
| 184 |
|
| 185 |
# Launch the app
|
| 186 |
if __name__ == "__main__":
|
lib/__init__.py
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .text_utils import normalize_text, chunk_text, count_tokens
|
| 2 |
+
from .file_utils import (
|
| 3 |
+
load_module_from_file,
|
| 4 |
+
download_model_files,
|
| 5 |
+
list_voice_files,
|
| 6 |
+
download_voice_files,
|
| 7 |
+
ensure_dir
|
| 8 |
+
)
|
| 9 |
+
from .audio_utils import (
|
| 10 |
+
convert_float_to_int16,
|
| 11 |
+
get_audio_duration,
|
| 12 |
+
format_audio_output,
|
| 13 |
+
concatenate_audio_chunks
|
| 14 |
+
)
|
| 15 |
+
|
| 16 |
+
__all__ = [
|
| 17 |
+
# Text utilities
|
| 18 |
+
'normalize_text',
|
| 19 |
+
'chunk_text',
|
| 20 |
+
'count_tokens',
|
| 21 |
+
|
| 22 |
+
# File utilities
|
| 23 |
+
'load_module_from_file',
|
| 24 |
+
'download_model_files',
|
| 25 |
+
'list_voice_files',
|
| 26 |
+
'download_voice_files',
|
| 27 |
+
'ensure_dir',
|
| 28 |
+
|
| 29 |
+
# Audio utilities
|
| 30 |
+
'convert_float_to_int16',
|
| 31 |
+
'get_audio_duration',
|
| 32 |
+
'format_audio_output',
|
| 33 |
+
'concatenate_audio_chunks'
|
| 34 |
+
]
|
lib/audio_utils.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
from typing import Tuple
|
| 3 |
+
|
| 4 |
+
def convert_float_to_int16(audio_array: np.ndarray) -> np.ndarray:
|
| 5 |
+
"""Convert float audio array to int16 format"""
|
| 6 |
+
# Convert to float32 first to ensure proper scaling
|
| 7 |
+
audio_array = np.array(audio_array, dtype=np.float32)
|
| 8 |
+
# Scale to int16 range (-32768 to 32767)
|
| 9 |
+
return (audio_array * 32767).astype(np.int16)
|
| 10 |
+
|
| 11 |
+
def get_audio_duration(audio_array: np.ndarray, sample_rate: int = 24000) -> float:
|
| 12 |
+
"""Calculate duration of audio in seconds"""
|
| 13 |
+
return len(audio_array) / sample_rate
|
| 14 |
+
|
| 15 |
+
def format_audio_output(audio_array: np.ndarray, sample_rate: int = 24000) -> Tuple[Tuple[int, np.ndarray], str]:
|
| 16 |
+
"""Format audio array for Gradio output with duration info"""
|
| 17 |
+
audio_array = convert_float_to_int16(audio_array)
|
| 18 |
+
duration = get_audio_duration(audio_array, sample_rate)
|
| 19 |
+
return (sample_rate, audio_array), f"Audio Duration: {duration:.2f} seconds"
|
| 20 |
+
|
| 21 |
+
def concatenate_audio_chunks(chunks: list[np.ndarray]) -> np.ndarray:
|
| 22 |
+
"""Concatenate multiple audio chunks into a single array"""
|
| 23 |
+
return np.concatenate(chunks)
|
lib/file_utils.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import importlib.util
|
| 3 |
+
import sys
|
| 4 |
+
from huggingface_hub import hf_hub_download
|
| 5 |
+
from typing import List, Optional
|
| 6 |
+
|
| 7 |
+
def load_module_from_file(module_name: str, file_path: str):
|
| 8 |
+
"""Load a Python module from file path"""
|
| 9 |
+
spec = importlib.util.spec_from_file_location(module_name, file_path)
|
| 10 |
+
if spec is None or spec.loader is None:
|
| 11 |
+
raise ImportError(f"Cannot load module {module_name} from {file_path}")
|
| 12 |
+
module = importlib.util.module_from_spec(spec)
|
| 13 |
+
sys.modules[module_name] = module
|
| 14 |
+
spec.loader.exec_module(module)
|
| 15 |
+
return module
|
| 16 |
+
|
| 17 |
+
def download_model_files(repo_id: str, filenames: List[str], local_dir: Optional[str] = None) -> List[str]:
|
| 18 |
+
"""Download multiple files from Hugging Face Hub"""
|
| 19 |
+
paths = []
|
| 20 |
+
for filename in filenames:
|
| 21 |
+
try:
|
| 22 |
+
path = hf_hub_download(
|
| 23 |
+
repo_id=repo_id,
|
| 24 |
+
filename=filename,
|
| 25 |
+
local_dir=local_dir,
|
| 26 |
+
local_dir_use_symlinks=False
|
| 27 |
+
)
|
| 28 |
+
paths.append(path)
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"Error downloading {filename}: {str(e)}")
|
| 31 |
+
raise
|
| 32 |
+
return paths
|
| 33 |
+
|
| 34 |
+
def ensure_dir(path: str) -> None:
|
| 35 |
+
"""Ensure directory exists, create if it doesn't"""
|
| 36 |
+
os.makedirs(path, exist_ok=True)
|
| 37 |
+
|
| 38 |
+
def list_voice_files(voices_dir: str) -> List[str]:
|
| 39 |
+
"""List available voice files in directory"""
|
| 40 |
+
voices = []
|
| 41 |
+
try:
|
| 42 |
+
if not os.path.exists(voices_dir):
|
| 43 |
+
print(f"Voices directory does not exist: {voices_dir}")
|
| 44 |
+
return voices
|
| 45 |
+
|
| 46 |
+
files = os.listdir(voices_dir)
|
| 47 |
+
print(f"Found {len(files)} files in voices directory")
|
| 48 |
+
|
| 49 |
+
for file in files:
|
| 50 |
+
if file.endswith(".pt"):
|
| 51 |
+
voice_name = file[:-3] # Remove .pt extension
|
| 52 |
+
print(f"Found voice: {voice_name}")
|
| 53 |
+
voices.append(voice_name)
|
| 54 |
+
|
| 55 |
+
if not voices:
|
| 56 |
+
print("No voice files found in voices directory")
|
| 57 |
+
|
| 58 |
+
except Exception as e:
|
| 59 |
+
print(f"Error listing voices: {str(e)}")
|
| 60 |
+
import traceback
|
| 61 |
+
traceback.print_exc()
|
| 62 |
+
|
| 63 |
+
return sorted(voices)
|
| 64 |
+
|
| 65 |
+
def download_voice_files(repo_id: str, voices: List[str], voices_dir: str) -> None:
|
| 66 |
+
"""Download voice files from Hugging Face Hub"""
|
| 67 |
+
ensure_dir(voices_dir)
|
| 68 |
+
|
| 69 |
+
for voice in voices:
|
| 70 |
+
try:
|
| 71 |
+
voice_path = os.path.join(voices_dir, voice)
|
| 72 |
+
print(f"Attempting to download voice {voice} to {voice_path}")
|
| 73 |
+
|
| 74 |
+
try:
|
| 75 |
+
downloaded_path = hf_hub_download(
|
| 76 |
+
repo_id=repo_id,
|
| 77 |
+
filename=f"voices/{voice}",
|
| 78 |
+
local_dir=voices_dir,
|
| 79 |
+
local_dir_use_symlinks=False,
|
| 80 |
+
force_filename=voice
|
| 81 |
+
)
|
| 82 |
+
print(f"Download completed to: {downloaded_path}")
|
| 83 |
+
|
| 84 |
+
if not os.path.exists(voice_path):
|
| 85 |
+
print(f"Warning: File not found at expected path {voice_path}")
|
| 86 |
+
print(f"Checking download location: {downloaded_path}")
|
| 87 |
+
if os.path.exists(downloaded_path):
|
| 88 |
+
print(f"Moving file from {downloaded_path} to {voice_path}")
|
| 89 |
+
os.rename(downloaded_path, voice_path)
|
| 90 |
+
else:
|
| 91 |
+
print(f"Verified voice file exists: {voice_path}")
|
| 92 |
+
|
| 93 |
+
except Exception as e:
|
| 94 |
+
print(f"Error downloading voice {voice}: {str(e)}")
|
| 95 |
+
import traceback
|
| 96 |
+
traceback.print_exc()
|
| 97 |
+
|
| 98 |
+
except Exception as e:
|
| 99 |
+
print(f"Error downloading voice {voice}: {str(e)}")
|
| 100 |
+
import traceback
|
| 101 |
+
traceback.print_exc()
|
lib/text_utils.py
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tiktoken
|
| 2 |
+
|
| 3 |
+
def normalize_text(text: str) -> str:
|
| 4 |
+
"""Normalize text for TTS processing"""
|
| 5 |
+
if not text:
|
| 6 |
+
return ""
|
| 7 |
+
# Basic normalization - can be expanded based on needs
|
| 8 |
+
return text.strip()
|
| 9 |
+
|
| 10 |
+
def chunk_text(text: str, max_chars: int = 300) -> list[str]:
|
| 11 |
+
"""Break text into chunks at natural boundaries"""
|
| 12 |
+
chunks = []
|
| 13 |
+
current_chunk = ""
|
| 14 |
+
|
| 15 |
+
# Split on sentence boundaries first
|
| 16 |
+
sentences = text.replace(".", ".|").replace("!", "!|").replace("?", "?|").replace(";", ";|").split("|")
|
| 17 |
+
|
| 18 |
+
for sentence in sentences:
|
| 19 |
+
if not sentence.strip():
|
| 20 |
+
continue
|
| 21 |
+
|
| 22 |
+
# If sentence is already too long, break on commas
|
| 23 |
+
if len(sentence) > max_chars:
|
| 24 |
+
parts = sentence.split(",")
|
| 25 |
+
for part in parts:
|
| 26 |
+
if len(current_chunk) + len(part) <= max_chars:
|
| 27 |
+
current_chunk += part + ","
|
| 28 |
+
else:
|
| 29 |
+
# If part is still too long, break on whitespace
|
| 30 |
+
if len(part) > max_chars:
|
| 31 |
+
words = part.split()
|
| 32 |
+
for word in words:
|
| 33 |
+
if len(current_chunk) + len(word) > max_chars:
|
| 34 |
+
chunks.append(current_chunk.strip())
|
| 35 |
+
current_chunk = word + " "
|
| 36 |
+
else:
|
| 37 |
+
current_chunk += word + " "
|
| 38 |
+
else:
|
| 39 |
+
chunks.append(current_chunk.strip())
|
| 40 |
+
current_chunk = part + ","
|
| 41 |
+
else:
|
| 42 |
+
if len(current_chunk) + len(sentence) <= max_chars:
|
| 43 |
+
current_chunk += sentence
|
| 44 |
+
else:
|
| 45 |
+
chunks.append(current_chunk.strip())
|
| 46 |
+
current_chunk = sentence
|
| 47 |
+
|
| 48 |
+
if current_chunk:
|
| 49 |
+
chunks.append(current_chunk.strip())
|
| 50 |
+
|
| 51 |
+
return chunks
|
| 52 |
+
|
| 53 |
+
def count_tokens(text: str) -> int:
|
| 54 |
+
"""Count tokens in text using tiktoken"""
|
| 55 |
+
enc = tiktoken.get_encoding("cl100k_base")
|
| 56 |
+
return len(enc.encode(text))
|
requirements.txt
CHANGED
|
@@ -9,4 +9,4 @@ regex==2024.11.6
|
|
| 9 |
tiktoken==0.8.0
|
| 10 |
transformers==4.47.1
|
| 11 |
munch==4.0.0
|
| 12 |
-
|
|
|
|
| 9 |
tiktoken==0.8.0
|
| 10 |
transformers==4.47.1
|
| 11 |
munch==4.0.0
|
| 12 |
+
matplotlib==3.4.3
|
tts_model.py
CHANGED
|
@@ -1,122 +1,61 @@
|
|
| 1 |
import os
|
| 2 |
-
import io
|
| 3 |
-
import spaces
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
import time
|
| 7 |
-
import
|
| 8 |
-
import
|
| 9 |
-
from
|
| 10 |
-
import
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
return module
|
| 22 |
-
|
| 23 |
-
# Download and load required Python modules
|
| 24 |
-
py_modules = ["istftnet", "plbert", "models"]
|
| 25 |
-
for py_module in py_modules:
|
| 26 |
-
path = hf_hub_download(repo_id="hexgrad/Kokoro-82M", filename=f"{py_module}.py")
|
| 27 |
-
load_module_from_file(py_module, path)
|
| 28 |
-
|
| 29 |
-
# Load the kokoro module
|
| 30 |
-
kokoro_path = hf_hub_download(repo_id="hexgrad/Kokoro-82M", filename="kokoro.py")
|
| 31 |
-
kokoro = load_module_from_file("kokoro", kokoro_path)
|
| 32 |
-
|
| 33 |
-
# Import required functions
|
| 34 |
-
generate = kokoro.generate
|
| 35 |
-
normalize_text = kokoro.normalize_text
|
| 36 |
-
models = sys.modules['models']
|
| 37 |
-
build_model = models.build_model
|
| 38 |
-
|
| 39 |
-
# Set HF_HOME for faster restarts
|
| 40 |
-
os.environ["HF_HOME"] = "/data/.huggingface"
|
| 41 |
|
| 42 |
class TTSModel:
|
| 43 |
-
"""
|
| 44 |
|
| 45 |
def __init__(self):
|
| 46 |
self.model = None
|
| 47 |
self.voices_dir = "voices"
|
| 48 |
self.model_repo = "hexgrad/Kokoro-82M"
|
| 49 |
-
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
"""Initialize model and download voices"""
|
| 53 |
try:
|
| 54 |
print("Initializing model...")
|
| 55 |
|
| 56 |
-
# Download model
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
)
|
| 61 |
-
config_path = hf_hub_download(
|
| 62 |
-
repo_id=self.model_repo,
|
| 63 |
-
filename="config.json"
|
| 64 |
)
|
|
|
|
| 65 |
|
| 66 |
-
# Build model directly on GPU
|
| 67 |
with torch.cuda.device(0):
|
| 68 |
torch.cuda.set_device(0)
|
| 69 |
-
self.model = build_model(model_path, 'cuda')
|
| 70 |
self._model_on_gpu = True
|
| 71 |
|
| 72 |
-
# Download all available voices
|
| 73 |
-
voices = [
|
| 74 |
-
"af_bella.pt", "af_nicole.pt", "af_sarah.pt", "af_sky.pt", "af.pt",
|
| 75 |
-
"am_adam.pt", "am_michael.pt",
|
| 76 |
-
"bf_emma.pt", "bf_isabella.pt",
|
| 77 |
-
"bm_george.pt", "bm_lewis.pt"
|
| 78 |
-
]
|
| 79 |
-
for voice in voices:
|
| 80 |
-
try:
|
| 81 |
-
# Download voice file
|
| 82 |
-
# Create full destination path
|
| 83 |
-
voice_path = os.path.join(self.voices_dir, voice)
|
| 84 |
-
print(f"Attempting to download voice {voice} to {voice_path}")
|
| 85 |
-
|
| 86 |
-
# Ensure directory exists
|
| 87 |
-
os.makedirs(self.voices_dir, exist_ok=True)
|
| 88 |
-
|
| 89 |
-
# Download with explicit destination
|
| 90 |
-
try:
|
| 91 |
-
downloaded_path = hf_hub_download(
|
| 92 |
-
repo_id=self.model_repo,
|
| 93 |
-
filename=f"voices/{voice}",
|
| 94 |
-
local_dir=self.voices_dir,
|
| 95 |
-
local_dir_use_symlinks=False,
|
| 96 |
-
force_filename=voice
|
| 97 |
-
)
|
| 98 |
-
print(f"Download completed to: {downloaded_path}")
|
| 99 |
-
|
| 100 |
-
# Verify file exists
|
| 101 |
-
if not os.path.exists(voice_path):
|
| 102 |
-
print(f"Warning: File not found at expected path {voice_path}")
|
| 103 |
-
print(f"Checking download location: {downloaded_path}")
|
| 104 |
-
if os.path.exists(downloaded_path):
|
| 105 |
-
print(f"Moving file from {downloaded_path} to {voice_path}")
|
| 106 |
-
os.rename(downloaded_path, voice_path)
|
| 107 |
-
else:
|
| 108 |
-
print(f"Verified voice file exists: {voice_path}")
|
| 109 |
-
|
| 110 |
-
except Exception as e:
|
| 111 |
-
print(f"Error downloading voice {voice}: {str(e)}")
|
| 112 |
-
import traceback
|
| 113 |
-
traceback.print_exc()
|
| 114 |
-
|
| 115 |
-
except Exception as e:
|
| 116 |
-
print(f"Error downloading voice {voice}: {str(e)}")
|
| 117 |
-
import traceback
|
| 118 |
-
traceback.print_exc()
|
| 119 |
-
|
| 120 |
print("Model initialization complete")
|
| 121 |
return True
|
| 122 |
|
|
@@ -124,46 +63,35 @@ class TTSModel:
|
|
| 124 |
print(f"Error initializing model: {str(e)}")
|
| 125 |
return False
|
| 126 |
|
| 127 |
-
def
|
| 128 |
-
"""
|
| 129 |
-
voices = []
|
| 130 |
try:
|
| 131 |
-
|
| 132 |
-
if not os.path.exists(
|
| 133 |
-
print(f"
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
# Get list of files
|
| 137 |
-
files = os.listdir(self.voices_dir)
|
| 138 |
-
print(f"Found {len(files)} files in voices directory")
|
| 139 |
-
|
| 140 |
-
# Filter for .pt files
|
| 141 |
-
for file in files:
|
| 142 |
-
if file.endswith(".pt"):
|
| 143 |
-
voices.append(file[:-3]) # Remove .pt extension
|
| 144 |
-
print(f"Found voice: {file[:-3]}")
|
| 145 |
-
|
| 146 |
-
if not voices:
|
| 147 |
-
print("No voice files found in voices directory")
|
| 148 |
-
|
| 149 |
except Exception as e:
|
| 150 |
-
print(f"Error
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
|
| 156 |
-
def _ensure_model_on_gpu(self):
|
| 157 |
"""Ensure model is on GPU and stays there"""
|
| 158 |
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
|
| 159 |
print("Moving model to GPU...")
|
| 160 |
with torch.cuda.device(0):
|
| 161 |
torch.cuda.set_device(0)
|
| 162 |
-
# Move model to GPU using torch.nn.Module method
|
| 163 |
if hasattr(self.model, 'to'):
|
| 164 |
self.model.to('cuda')
|
| 165 |
else:
|
| 166 |
-
# Fallback for Munch object - move parameters individually
|
| 167 |
for name in self.model:
|
| 168 |
if isinstance(self.model[name], torch.Tensor):
|
| 169 |
self.model[name] = self.model[name].cuda()
|
|
@@ -190,7 +118,7 @@ class TTSModel:
|
|
| 190 |
voicepack = voicepack.cuda()
|
| 191 |
|
| 192 |
# Run generation with everything on GPU
|
| 193 |
-
audio, _ = generate(
|
| 194 |
self.model,
|
| 195 |
text,
|
| 196 |
voicepack,
|
|
@@ -203,63 +131,24 @@ class TTSModel:
|
|
| 203 |
except Exception as e:
|
| 204 |
print(f"Error in audio generation: {str(e)}")
|
| 205 |
raise e
|
| 206 |
-
|
| 207 |
-
def chunk_text(self, text: str, max_chars: int = 300) -> list[str]:
|
| 208 |
-
"""Break text into chunks at natural boundaries"""
|
| 209 |
-
chunks = []
|
| 210 |
-
current_chunk = ""
|
| 211 |
-
|
| 212 |
-
# Split on sentence boundaries first
|
| 213 |
-
sentences = text.replace(".", ".|").replace("!", "!|").replace("?", "?|").replace(";", ";|").split("|")
|
| 214 |
-
|
| 215 |
-
for sentence in sentences:
|
| 216 |
-
if not sentence.strip():
|
| 217 |
-
continue
|
| 218 |
-
|
| 219 |
-
# If sentence is already too long, break on commas
|
| 220 |
-
if len(sentence) > max_chars:
|
| 221 |
-
parts = sentence.split(",")
|
| 222 |
-
for part in parts:
|
| 223 |
-
if len(current_chunk) + len(part) <= max_chars:
|
| 224 |
-
current_chunk += part + ","
|
| 225 |
-
else:
|
| 226 |
-
# If part is still too long, break on whitespace
|
| 227 |
-
if len(part) > max_chars:
|
| 228 |
-
words = part.split()
|
| 229 |
-
for word in words:
|
| 230 |
-
if len(current_chunk) + len(word) > max_chars:
|
| 231 |
-
chunks.append(current_chunk.strip())
|
| 232 |
-
current_chunk = word + " "
|
| 233 |
-
else:
|
| 234 |
-
current_chunk += word + " "
|
| 235 |
-
else:
|
| 236 |
-
chunks.append(current_chunk.strip())
|
| 237 |
-
current_chunk = part + ","
|
| 238 |
-
else:
|
| 239 |
-
if len(current_chunk) + len(sentence) <= max_chars:
|
| 240 |
-
current_chunk += sentence
|
| 241 |
-
else:
|
| 242 |
-
chunks.append(current_chunk.strip())
|
| 243 |
-
current_chunk = sentence
|
| 244 |
-
|
| 245 |
-
if current_chunk:
|
| 246 |
-
chunks.append(current_chunk.strip())
|
| 247 |
-
|
| 248 |
-
return chunks
|
| 249 |
|
| 250 |
-
def generate_speech(self, text: str, voice_name: str, speed: float = 1.0) ->
|
| 251 |
-
"""Generate speech from text. Returns (audio_array, duration)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
try:
|
| 253 |
if not text or not voice_name:
|
| 254 |
raise ValueError("Text and voice name are required")
|
| 255 |
|
| 256 |
start_time = time.time()
|
| 257 |
|
| 258 |
-
#
|
| 259 |
-
|
| 260 |
-
total_tokens = len(enc.encode(text))
|
| 261 |
-
|
| 262 |
-
# Normalize text
|
| 263 |
text = normalize_text(text)
|
| 264 |
if not text:
|
| 265 |
raise ValueError("Text is empty after normalization")
|
|
@@ -269,49 +158,158 @@ class TTSModel:
|
|
| 269 |
torch.cuda.set_device(0)
|
| 270 |
|
| 271 |
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt")
|
| 272 |
-
if not os.path.exists(voice_path):
|
| 273 |
-
raise ValueError(f"Voice not found: {voice_name}")
|
| 274 |
|
| 275 |
-
#
|
|
|
|
|
|
|
| 276 |
voicepack = torch.load(voice_path, map_location='cuda', weights_only=True)
|
| 277 |
|
| 278 |
# Break text into chunks for better memory management
|
| 279 |
-
chunks =
|
| 280 |
print(f"Processing {len(chunks)} chunks...")
|
| 281 |
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
# Concatenate audio chunks
|
| 314 |
-
audio =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
# Calculate metrics
|
| 317 |
total_time = time.time() - start_time
|
|
@@ -321,6 +319,11 @@ class TTSModel:
|
|
| 321 |
print(f"Total tokens: {total_tokens}")
|
| 322 |
print(f"Total time: {total_time:.2f}s")
|
| 323 |
print(f"Tokens per second: {tokens_per_second:.2f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
return audio, len(audio) / 24000 # Return audio array and duration
|
| 326 |
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
import time
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from typing import Tuple, List
|
| 7 |
+
from statistics import mean, median, stdev
|
| 8 |
+
from lib import (
|
| 9 |
+
normalize_text,
|
| 10 |
+
chunk_text,
|
| 11 |
+
count_tokens,
|
| 12 |
+
load_module_from_file,
|
| 13 |
+
download_model_files,
|
| 14 |
+
list_voice_files,
|
| 15 |
+
download_voice_files,
|
| 16 |
+
ensure_dir,
|
| 17 |
+
concatenate_audio_chunks
|
| 18 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
class TTSModel:
|
| 21 |
+
"""GPU-accelerated TTS model manager"""
|
| 22 |
|
| 23 |
def __init__(self):
|
| 24 |
self.model = None
|
| 25 |
self.voices_dir = "voices"
|
| 26 |
self.model_repo = "hexgrad/Kokoro-82M"
|
| 27 |
+
ensure_dir(self.voices_dir)
|
| 28 |
|
| 29 |
+
# Load required modules
|
| 30 |
+
py_modules = ["istftnet", "plbert", "models", "kokoro"]
|
| 31 |
+
module_files = download_model_files(self.model_repo, [f"{m}.py" for m in py_modules])
|
| 32 |
+
|
| 33 |
+
for module_name, file_path in zip(py_modules, module_files):
|
| 34 |
+
load_module_from_file(module_name, file_path)
|
| 35 |
+
|
| 36 |
+
# Import required functions from kokoro module
|
| 37 |
+
kokoro = __import__("kokoro")
|
| 38 |
+
self.generate = kokoro.generate
|
| 39 |
+
self.build_model = __import__("models").build_model
|
| 40 |
+
|
| 41 |
+
def initialize(self) -> bool:
|
| 42 |
"""Initialize model and download voices"""
|
| 43 |
try:
|
| 44 |
print("Initializing model...")
|
| 45 |
|
| 46 |
+
# Download model files
|
| 47 |
+
model_files = download_model_files(
|
| 48 |
+
self.model_repo,
|
| 49 |
+
["kokoro-v0_19.pth", "config.json"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
)
|
| 51 |
+
model_path = model_files[0] # kokoro-v0_19.pth
|
| 52 |
|
| 53 |
+
# Build model directly on GPU
|
| 54 |
with torch.cuda.device(0):
|
| 55 |
torch.cuda.set_device(0)
|
| 56 |
+
self.model = self.build_model(model_path, 'cuda')
|
| 57 |
self._model_on_gpu = True
|
| 58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
print("Model initialization complete")
|
| 60 |
return True
|
| 61 |
|
|
|
|
| 63 |
print(f"Error initializing model: {str(e)}")
|
| 64 |
return False
|
| 65 |
|
| 66 |
+
def ensure_voice_downloaded(self, voice_name: str) -> bool:
|
| 67 |
+
"""Ensure specific voice is downloaded"""
|
|
|
|
| 68 |
try:
|
| 69 |
+
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt")
|
| 70 |
+
if not os.path.exists(voice_path):
|
| 71 |
+
print(f"Downloading voice {voice_name}.pt...")
|
| 72 |
+
download_voice_files(self.model_repo, [f"{voice_name}.pt"], self.voices_dir)
|
| 73 |
+
return True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
except Exception as e:
|
| 75 |
+
print(f"Error downloading voice {voice_name}: {str(e)}")
|
| 76 |
+
return False
|
| 77 |
+
|
| 78 |
+
def list_voices(self) -> List[str]:
|
| 79 |
+
"""List available voices"""
|
| 80 |
+
return [
|
| 81 |
+
"af_bella", "af_nicole", "af_sarah", "af_sky", "af",
|
| 82 |
+
"am_adam", "am_michael", "bf_emma", "bf_isabella",
|
| 83 |
+
"bm_george", "bm_lewis"
|
| 84 |
+
]
|
| 85 |
|
| 86 |
+
def _ensure_model_on_gpu(self) -> None:
|
| 87 |
"""Ensure model is on GPU and stays there"""
|
| 88 |
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
|
| 89 |
print("Moving model to GPU...")
|
| 90 |
with torch.cuda.device(0):
|
| 91 |
torch.cuda.set_device(0)
|
|
|
|
| 92 |
if hasattr(self.model, 'to'):
|
| 93 |
self.model.to('cuda')
|
| 94 |
else:
|
|
|
|
| 95 |
for name in self.model:
|
| 96 |
if isinstance(self.model[name], torch.Tensor):
|
| 97 |
self.model[name] = self.model[name].cuda()
|
|
|
|
| 118 |
voicepack = voicepack.cuda()
|
| 119 |
|
| 120 |
# Run generation with everything on GPU
|
| 121 |
+
audio, _ = self.generate(
|
| 122 |
self.model,
|
| 123 |
text,
|
| 124 |
voicepack,
|
|
|
|
| 131 |
except Exception as e:
|
| 132 |
print(f"Error in audio generation: {str(e)}")
|
| 133 |
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
def generate_speech(self, text: str, voice_name: str, speed: float = 1.0, progress_callback=None) -> Tuple[np.ndarray, float]:
|
| 136 |
+
"""Generate speech from text. Returns (audio_array, duration)
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
text: Input text to convert to speech
|
| 140 |
+
voice_name: Name of voice to use
|
| 141 |
+
speed: Speech speed multiplier
|
| 142 |
+
progress_callback: Optional callback function(chunk_num, total_chunks, tokens_per_sec, rtf)
|
| 143 |
+
"""
|
| 144 |
try:
|
| 145 |
if not text or not voice_name:
|
| 146 |
raise ValueError("Text and voice name are required")
|
| 147 |
|
| 148 |
start_time = time.time()
|
| 149 |
|
| 150 |
+
# Count tokens and normalize text
|
| 151 |
+
total_tokens = count_tokens(text)
|
|
|
|
|
|
|
|
|
|
| 152 |
text = normalize_text(text)
|
| 153 |
if not text:
|
| 154 |
raise ValueError("Text is empty after normalization")
|
|
|
|
| 158 |
torch.cuda.set_device(0)
|
| 159 |
|
| 160 |
voice_path = os.path.join(self.voices_dir, f"{voice_name}.pt")
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
# Ensure voice is downloaded and load directly to GPU
|
| 163 |
+
if not self.ensure_voice_downloaded(voice_name):
|
| 164 |
+
raise ValueError(f"Failed to download voice: {voice_name}")
|
| 165 |
voicepack = torch.load(voice_path, map_location='cuda', weights_only=True)
|
| 166 |
|
| 167 |
# Break text into chunks for better memory management
|
| 168 |
+
chunks = chunk_text(text)
|
| 169 |
print(f"Processing {len(chunks)} chunks...")
|
| 170 |
|
| 171 |
+
# Ensure model is initialized and on GPU
|
| 172 |
+
if self.model is None:
|
| 173 |
+
print("Model not initialized, reinitializing...")
|
| 174 |
+
if not self.initialize():
|
| 175 |
+
raise ValueError("Failed to initialize model")
|
| 176 |
|
| 177 |
+
# Move model to GPU if needed
|
| 178 |
+
if not hasattr(self, '_model_on_gpu') or not self._model_on_gpu:
|
| 179 |
+
print("Moving model to GPU...")
|
| 180 |
+
if hasattr(self.model, 'to'):
|
| 181 |
+
self.model.to('cuda')
|
| 182 |
+
else:
|
| 183 |
+
for name in self.model:
|
| 184 |
+
if isinstance(self.model[name], torch.Tensor):
|
| 185 |
+
self.model[name] = self.model[name].cuda()
|
| 186 |
+
self._model_on_gpu = True
|
| 187 |
|
| 188 |
+
# Process all chunks within same GPU context
|
| 189 |
+
audio_chunks = []
|
| 190 |
+
chunk_times = []
|
| 191 |
+
chunk_sizes = [] # Store chunk lengths
|
| 192 |
+
total_processed_tokens = 0
|
| 193 |
+
total_processed_time = 0
|
| 194 |
+
|
| 195 |
+
for i, chunk in enumerate(chunks):
|
| 196 |
+
chunk_start = time.time()
|
| 197 |
+
chunk_audio = self._generate_audio(
|
| 198 |
+
text=chunk,
|
| 199 |
+
voicepack=voicepack,
|
| 200 |
+
lang=voice_name[0],
|
| 201 |
+
speed=speed
|
| 202 |
+
)
|
| 203 |
+
chunk_time = time.time() - chunk_start
|
| 204 |
+
|
| 205 |
+
# Update metrics
|
| 206 |
+
chunk_tokens = count_tokens(chunk)
|
| 207 |
+
total_processed_tokens += chunk_tokens
|
| 208 |
+
total_processed_time += chunk_time
|
| 209 |
+
current_tokens_per_sec = total_processed_tokens / total_processed_time
|
| 210 |
+
|
| 211 |
+
# Calculate processing speed metrics
|
| 212 |
+
chunk_duration = len(chunk_audio) / 24000 # audio duration in seconds
|
| 213 |
+
rtf = chunk_time / chunk_duration
|
| 214 |
+
times_faster = 1 / rtf
|
| 215 |
+
|
| 216 |
+
chunk_times.append(chunk_time)
|
| 217 |
+
chunk_sizes.append(len(chunk))
|
| 218 |
+
print(f"Chunk {i+1}/{len(chunks)} processed in {chunk_time:.2f}s")
|
| 219 |
+
print(f"Current tokens/sec: {current_tokens_per_sec:.2f}")
|
| 220 |
+
print(f"Real-time factor: {rtf:.2f}x")
|
| 221 |
+
print(f"{times_faster:.1f}x faster than real-time")
|
| 222 |
+
|
| 223 |
+
audio_chunks.append(chunk_audio)
|
| 224 |
+
|
| 225 |
+
# Call progress callback if provided
|
| 226 |
+
if progress_callback:
|
| 227 |
+
progress_callback(i + 1, len(chunks), current_tokens_per_sec, rtf)
|
| 228 |
|
| 229 |
# Concatenate audio chunks
|
| 230 |
+
audio = concatenate_audio_chunks(audio_chunks)
|
| 231 |
+
|
| 232 |
+
def setup_plot(fig, ax, title):
|
| 233 |
+
"""Configure plot styling"""
|
| 234 |
+
# Improve grid
|
| 235 |
+
ax.grid(True, linestyle="--", alpha=0.3, color="#ffffff")
|
| 236 |
+
|
| 237 |
+
# Set title and labels with better fonts and more padding
|
| 238 |
+
ax.set_title(title, pad=40, fontsize=16, fontweight="bold", color="#ffffff")
|
| 239 |
+
ax.set_xlabel(ax.get_xlabel(), fontsize=14, fontweight="medium", color="#ffffff")
|
| 240 |
+
ax.set_ylabel(ax.get_ylabel(), fontsize=14, fontweight="medium", color="#ffffff")
|
| 241 |
+
|
| 242 |
+
# Improve tick labels
|
| 243 |
+
ax.tick_params(labelsize=12, colors="#ffffff")
|
| 244 |
+
|
| 245 |
+
# Style spines
|
| 246 |
+
for spine in ax.spines.values():
|
| 247 |
+
spine.set_color("#ffffff")
|
| 248 |
+
spine.set_alpha(0.3)
|
| 249 |
+
spine.set_linewidth(0.5)
|
| 250 |
+
|
| 251 |
+
# Set background colors
|
| 252 |
+
ax.set_facecolor("#1a1a2e")
|
| 253 |
+
fig.patch.set_facecolor("#1a1a2e")
|
| 254 |
+
|
| 255 |
+
return fig, ax
|
| 256 |
+
|
| 257 |
+
# Set dark style
|
| 258 |
+
plt.style.use("dark_background")
|
| 259 |
+
|
| 260 |
+
# Create figure with subplots
|
| 261 |
+
fig = plt.figure(figsize=(18, 16))
|
| 262 |
+
fig.patch.set_facecolor("#1a1a2e")
|
| 263 |
+
|
| 264 |
+
# Create subplot grid
|
| 265 |
+
gs = plt.GridSpec(2, 1, left=0.15, right=0.85, top=0.9, bottom=0.15, hspace=0.4)
|
| 266 |
+
|
| 267 |
+
# Processing times plot
|
| 268 |
+
ax1 = plt.subplot(gs[0])
|
| 269 |
+
chunks_x = list(range(1, len(chunks) + 1))
|
| 270 |
+
bars = ax1.bar(chunks_x, chunk_times, color='#ff2a6d', alpha=0.8)
|
| 271 |
+
|
| 272 |
+
# Add statistics lines
|
| 273 |
+
mean_time = mean(chunk_times)
|
| 274 |
+
median_time = median(chunk_times)
|
| 275 |
+
std_time = stdev(chunk_times) if len(chunk_times) > 1 else 0
|
| 276 |
+
|
| 277 |
+
ax1.axhline(y=mean_time, color='#05d9e8', linestyle='--',
|
| 278 |
+
label=f'Mean: {mean_time:.2f}s')
|
| 279 |
+
ax1.axhline(y=median_time, color='#d1f7ff', linestyle=':',
|
| 280 |
+
label=f'Median: {median_time:.2f}s')
|
| 281 |
+
|
| 282 |
+
# Add ±1 std dev range
|
| 283 |
+
if len(chunk_times) > 1:
|
| 284 |
+
ax1.axhspan(mean_time - std_time, mean_time + std_time,
|
| 285 |
+
color='#8c1eff', alpha=0.2, label='±1 Std Dev')
|
| 286 |
+
|
| 287 |
+
# Add value labels on top of bars
|
| 288 |
+
for bar in bars:
|
| 289 |
+
height = bar.get_height()
|
| 290 |
+
ax1.text(bar.get_x() + bar.get_width() / 2.0,
|
| 291 |
+
height,
|
| 292 |
+
f'{height:.2f}s',
|
| 293 |
+
ha='center',
|
| 294 |
+
va='bottom',
|
| 295 |
+
color='white',
|
| 296 |
+
fontsize=10)
|
| 297 |
+
|
| 298 |
+
ax1.set_xlabel('Chunk Number')
|
| 299 |
+
ax1.set_ylabel('Processing Time (seconds)')
|
| 300 |
+
setup_plot(fig, ax1, 'Chunk Processing Times')
|
| 301 |
+
ax1.legend(facecolor="#1a1a2e", edgecolor="#ffffff")
|
| 302 |
+
|
| 303 |
+
# Chunk sizes plot
|
| 304 |
+
ax2 = plt.subplot(gs[1])
|
| 305 |
+
ax2.plot(chunks_x, chunk_sizes, color='#ff9e00', marker='o', linewidth=2)
|
| 306 |
+
ax2.set_xlabel('Chunk Number')
|
| 307 |
+
ax2.set_ylabel('Chunk Size (chars)')
|
| 308 |
+
setup_plot(fig, ax2, 'Chunk Sizes')
|
| 309 |
+
|
| 310 |
+
# Save plot
|
| 311 |
+
plt.savefig('chunk_times.png')
|
| 312 |
+
plt.close()
|
| 313 |
|
| 314 |
# Calculate metrics
|
| 315 |
total_time = time.time() - start_time
|
|
|
|
| 319 |
print(f"Total tokens: {total_tokens}")
|
| 320 |
print(f"Total time: {total_time:.2f}s")
|
| 321 |
print(f"Tokens per second: {tokens_per_second:.2f}")
|
| 322 |
+
print(f"Mean chunk time: {mean_time:.2f}s")
|
| 323 |
+
print(f"Median chunk time: {median_time:.2f}s")
|
| 324 |
+
if len(chunk_times) > 1:
|
| 325 |
+
print(f"Std dev: {std_time:.2f}s")
|
| 326 |
+
print(f"\nChunk time plot saved as 'chunk_times.png'")
|
| 327 |
|
| 328 |
return audio, len(audio) / 24000 # Return audio array and duration
|
| 329 |
|