Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +423 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,425 @@
|
|
1 |
-
|
2 |
-
import
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
# Welcome to Streamlit!
|
8 |
-
|
9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
11 |
-
forums](https://discuss.streamlit.io).
|
12 |
-
|
13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
14 |
-
"""
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
# === ClimatePulse: Chatbot Analisis Opini Publik ===
|
2 |
+
import torch
|
|
|
3 |
import streamlit as st
|
4 |
+
import pandas as pd
|
5 |
+
import pydeck as pdk
|
6 |
+
import altair as alt
|
7 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification, AutoModelForSequenceClassification
|
8 |
+
from geopy.geocoders import Nominatim
|
9 |
+
from datetime import datetime
|
10 |
+
import os
|
11 |
+
|
12 |
+
# === Setup Halaman ===
|
13 |
+
st.set_page_config(page_title="ClimatePulse", layout="centered")
|
14 |
+
|
15 |
+
# === Load Model & Pipeline ===
|
16 |
+
device = 0 if torch.cuda.is_available() else -1
|
17 |
+
|
18 |
+
# Sentimen
|
19 |
+
sent_tokenizer = AutoTokenizer.from_pretrained("mdhugol/indonesia-bert-sentiment-classification")
|
20 |
+
sent_model = AutoModelForSequenceClassification.from_pretrained("mdhugol/indonesia-bert-sentiment-classification")
|
21 |
+
pipe_sent = pipeline("sentiment-analysis", model=sent_model, tokenizer=sent_tokenizer)
|
22 |
+
|
23 |
+
# Emosi
|
24 |
+
pipe_emo = pipeline("sentiment-analysis", model="azizp128/prediksi-emosi-indobert", device=device)
|
25 |
+
|
26 |
+
# NER
|
27 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("cahya/bert-base-indonesian-NER")
|
28 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("cahya/bert-base-indonesian-NER")
|
29 |
+
pipe_ner = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, aggregation_strategy="simple")
|
30 |
+
|
31 |
+
label_map = {'LABEL_0': 'Positif', 'LABEL_1': 'Netral', 'LABEL_2': 'Negatif'}
|
32 |
+
|
33 |
+
# === Custom Dark Mode Style + Logo ===
|
34 |
+
page_bg = '''
|
35 |
+
<style>
|
36 |
+
[data-testid="stAppViewContainer"] {
|
37 |
+
background-color: #0e1525;
|
38 |
+
color: white;
|
39 |
+
}
|
40 |
+
[data-testid="stHeader"] {
|
41 |
+
background-color: rgba(0,0,0,0);
|
42 |
+
}
|
43 |
+
[data-testid="stSidebar"] > div:first-child {
|
44 |
+
background-color: #1f2937;
|
45 |
+
}
|
46 |
+
.block-container {
|
47 |
+
padding-top: 2rem;
|
48 |
+
padding-bottom: 2rem;
|
49 |
+
font-family: "Segoe UI", sans-serif;
|
50 |
+
}
|
51 |
+
h1, h2, h3, h4, h5 {
|
52 |
+
font-family: 'Segoe UI', sans-serif;
|
53 |
+
color: #10B981;
|
54 |
+
}
|
55 |
+
.stButton>button {
|
56 |
+
background-color: #10B981;
|
57 |
+
color: white;
|
58 |
+
border-radius: 8px;
|
59 |
+
padding: 0.5rem 1rem;
|
60 |
+
font-size: 1rem;
|
61 |
+
border: none;
|
62 |
+
}
|
63 |
+
.stTextInput>div>div>input, .stTextArea>div>textarea {
|
64 |
+
background-color: #1f2937;
|
65 |
+
color: white;
|
66 |
+
border-radius: 6px;
|
67 |
+
border: 1px solid #374151;
|
68 |
+
}
|
69 |
+
</style>
|
70 |
+
'''
|
71 |
+
st.markdown(page_bg, unsafe_allow_html=True)
|
72 |
+
|
73 |
+
# === Judul Halaman dengan Logo di Sebelah Teks ===
|
74 |
+
col1, col2 = st.columns([1, 8])
|
75 |
+
with col1:
|
76 |
+
st.image("logo.png", width=60)
|
77 |
+
|
78 |
+
with col2:
|
79 |
+
st.markdown("""
|
80 |
+
<div style='display: flex; flex-direction: column; justify-content: center;'>
|
81 |
+
<h4 style='color: #10B981; margin-bottom: 0;'>ClimatePulse - Analisis Opini SDG 13</h4>
|
82 |
+
<h1 style='color: white; margin-top: 0;'>Perubahan Iklim di Media Sosial</h1>
|
83 |
+
<p style='color: gray;'>Telusuri opini publik, sentimen, emosi, dan entitas terkait kebijakan dan bencana iklim</p>
|
84 |
+
</div>
|
85 |
+
""", unsafe_allow_html=True)
|
86 |
+
|
87 |
+
# === Form Input User ===
|
88 |
+
with st.form(key="input_form"):
|
89 |
+
text_input = st.text_area("Input Teks / Tweet", placeholder="Contoh: PLTN dibangun di Papua, saya takut dan kecewa", height=120)
|
90 |
+
submit = st.form_submit_button("π ANALISIS")
|
91 |
+
|
92 |
+
# === Analisis dan Visualisasi Lain Tetap ===
|
93 |
+
# (seluruh isi kode berikutnya tetap seperti sebelumnya)
|
94 |
+
# === Tidak ditampilkan ulang agar tidak duplikasi ===
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
# === Analisis dan Visualisasi Lain Tetap ===
|
99 |
+
# (seluruh isi kode berikutnya tetap seperti sebelumnya)
|
100 |
+
# === Tidak ditampilkan ulang agar tidak duplikasi ===
|
101 |
+
|
102 |
+
|
103 |
+
# === Proses Analisis Tunggal ===
|
104 |
+
if submit and text_input.strip():
|
105 |
+
with st.spinner("Menganalisis opini publik..."):
|
106 |
+
sent = pipe_sent(text_input)[0]
|
107 |
+
sent_label = label_map.get(sent['label'], sent['label'])
|
108 |
+
emo = pipe_emo(text_input)[0]['label'].capitalize()
|
109 |
+
ner = pipe_ner(text_input)
|
110 |
+
ents = [e['word'] for e in ner]
|
111 |
+
|
112 |
+
lokasi_kunci = [
|
113 |
+
# === Wilayah Umum / Pulau ===
|
114 |
+
"sumatera", "jawa", "kalimantan", "sulawesi", "papua", "maluku", "nusa tenggara", "kepulauan seribu",
|
115 |
+
|
116 |
+
# === Nama Provinsi Lengkap (38) ===
|
117 |
+
"aceh", "sumatera utara", "sumatera barat", "riau", "kepulauan riau", "jambi", "bengkulu",
|
118 |
+
"sumatera selatan", "bangka belitung", "lampung",
|
119 |
+
"banten", "dki jakarta", "jawa barat", "jawa tengah", "daerah istimewa yogyakarta", "jawa timur",
|
120 |
+
"bali", "nusa tenggara barat", "nusa tenggara timur",
|
121 |
+
"kalimantan barat", "kalimantan tengah", "kalimantan selatan", "kalimantan timur", "kalimantan utara",
|
122 |
+
"sulawesi utara", "sulawesi tengah", "sulawesi selatan", "sulawesi tenggara", "gorontalo", "sulawesi barat",
|
123 |
+
"maluku", "maluku utara",
|
124 |
+
"papua", "papua barat", "papua selatan", "papua tengah", "papua pegunungan", "papua barat daya",
|
125 |
+
|
126 |
+
# === Ibu Kota Provinsi ===
|
127 |
+
"banda aceh", "medan", "padang", "pekanbaru", "tanjungpinang", "jambi", "bengkulu",
|
128 |
+
"palembang", "pangkalpinang", "bandar lampung",
|
129 |
+
"serang", "jakarta", "bandung", "semarang", "yogyakarta", "surabaya",
|
130 |
+
"denpasar", "mataram", "kupang",
|
131 |
+
"pontianak", "palangka raya", "banjarmasin", "samarinda", "tarakan",
|
132 |
+
"manado", "palu", "makassar", "kendari", "gorontalo", "mamuju",
|
133 |
+
"ambon", "ternate",
|
134 |
+
"jayapura", "manokwari", "merauke", "nabire", "wamena", "fakfak", "sorong", "timika",
|
135 |
+
|
136 |
+
# === Kota/Kabupaten Besar atau Strategis ===
|
137 |
+
"bekasi", "bogor", "depok", "tangerang", "cirebon", "tegal", "purwokerto", "solo", "magelang",
|
138 |
+
"malang", "kediri", "sidoarjo", "pasuruan", "probolinggo", "lumajang", "blitar", "jember",
|
139 |
+
"banyuwangi", "cilacap", "padangsidimpuan", "binjai", "sibolga", "lubuklinggau", "palopo",
|
140 |
+
"parepare", "bitung", "tomohon", "kotamobagu", "kotabaru", "pangkalan bun", "ketapang",
|
141 |
+
"palu", "baubau", "karangasem", "buleleng", "labuan bajo", "ende", "bima", "dompu",
|
142 |
+
|
143 |
+
# === Lokasi Baru / Khusus / Otorita ===
|
144 |
+
"nusantara", # Ibu kota negara baru di Kaltim
|
145 |
+
"penajam paser utara", "balikpapan", "samarinda", "bontang", # Kaltim area
|
146 |
+
"kepri", "ntb", "ntt", "kaltim", "kalteng", "kalsel", "kalbar", "kaltara", # singkatan populer
|
147 |
+
|
148 |
+
# === Lokasi Adat/Kultural (yang sering disebut) ===
|
149 |
+
"minangkabau", "batak", "dayak", "asmat", "ambon", "bugis", "toraja", "sunda", "madura", "tapanuli"
|
150 |
+
]
|
151 |
+
|
152 |
+
locs = []
|
153 |
+
for e in ner:
|
154 |
+
ent_text = e['word'].lower()
|
155 |
+
if e['entity_group'] == 'LOC':
|
156 |
+
locs.append(e['word'])
|
157 |
+
else:
|
158 |
+
for keyword in lokasi_kunci:
|
159 |
+
if keyword in ent_text:
|
160 |
+
locs.append(keyword.capitalize())
|
161 |
+
locs = list(set(locs))
|
162 |
+
|
163 |
+
geolocator = Nominatim(user_agent="climatepulse")
|
164 |
+
geo_locs = []
|
165 |
+
for loc in locs:
|
166 |
+
try:
|
167 |
+
location = geolocator.geocode(loc)
|
168 |
+
if location:
|
169 |
+
geo_locs.append({
|
170 |
+
'lokasi': loc,
|
171 |
+
'lat': location.latitude,
|
172 |
+
'lon': location.longitude,
|
173 |
+
'jumlah': 1
|
174 |
+
})
|
175 |
+
except:
|
176 |
+
continue
|
177 |
+
|
178 |
+
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
179 |
+
df_log_single = pd.DataFrame([{
|
180 |
+
"timestamp": now,
|
181 |
+
"text": text_input,
|
182 |
+
"sentimen": sent_label,
|
183 |
+
"emosi": emo
|
184 |
+
}])
|
185 |
+
|
186 |
+
log_file = "log_tren.csv"
|
187 |
+
if os.path.exists(log_file):
|
188 |
+
pd.concat([pd.read_csv(log_file), df_log_single]).to_csv(log_file, index=False)
|
189 |
+
else:
|
190 |
+
df_log_single.to_csv(log_file, index=False)
|
191 |
+
|
192 |
+
|
193 |
+
emoji_map = {
|
194 |
+
"Senang": "π",
|
195 |
+
"Sedih": "π’",
|
196 |
+
"Marah": "π‘",
|
197 |
+
"Takut": "π¨",
|
198 |
+
"Kecewa": "π",
|
199 |
+
"Netral": "π"
|
200 |
+
}
|
201 |
+
# === Tampilkan Hasil ===
|
202 |
+
|
203 |
+
st.markdown(f"""
|
204 |
+
<div style='background-color: #1f2937; padding: 1rem; border-radius: 10px;'>
|
205 |
+
<h3 style='color: white;'>Hasil Analisis</h3>
|
206 |
+
<p><b>Sentimen:</b> <span style='color: red;'>{sent_label}</span> β|β
|
207 |
+
<b>Emosi:</b> <span style='color: #facc15;'>{emo} {emoji_map.get(emo, '')}</span></p>
|
208 |
+
<p><b>π Lokasi:</b> {', '.join(locs) or "Tidak ditemukan"}</p>
|
209 |
+
<p><b>π Entitas:</b> {', '.join(ents) or "Tidak ditemukan"}</p>
|
210 |
+
</div>
|
211 |
+
""", unsafe_allow_html=True)
|
212 |
+
|
213 |
+
# === Tambahan: Peta Opini Publik berdasarkan Log ===
|
214 |
+
if os.path.exists("log_tren.csv"):
|
215 |
+
df_log = pd.read_csv("log_tren.csv")
|
216 |
+
lokasi_kunci = [
|
217 |
+
# === Wilayah Umum / Pulau ===
|
218 |
+
"sumatera", "jawa", "kalimantan", "sulawesi", "papua", "maluku", "nusa tenggara", "kepulauan seribu",
|
219 |
+
|
220 |
+
# === Nama Provinsi Lengkap (38) ===
|
221 |
+
"aceh", "sumatera utara", "sumatera barat", "riau", "kepulauan riau", "jambi", "bengkulu",
|
222 |
+
"sumatera selatan", "bangka belitung", "lampung",
|
223 |
+
"banten", "dki jakarta", "jawa barat", "jawa tengah", "daerah istimewa yogyakarta", "jawa timur",
|
224 |
+
"bali", "nusa tenggara barat", "nusa tenggara timur",
|
225 |
+
"kalimantan barat", "kalimantan tengah", "kalimantan selatan", "kalimantan timur", "kalimantan utara",
|
226 |
+
"sulawesi utara", "sulawesi tengah", "sulawesi selatan", "sulawesi tenggara", "gorontalo", "sulawesi barat",
|
227 |
+
"maluku", "maluku utara",
|
228 |
+
"papua", "papua barat", "papua selatan", "papua tengah", "papua pegunungan", "papua barat daya",
|
229 |
+
|
230 |
+
# === Ibu Kota Provinsi ===
|
231 |
+
"banda aceh", "medan", "padang", "pekanbaru", "tanjungpinang", "jambi", "bengkulu",
|
232 |
+
"palembang", "pangkalpinang", "bandar lampung",
|
233 |
+
"serang", "jakarta", "bandung", "semarang", "yogyakarta", "surabaya",
|
234 |
+
"denpasar", "mataram", "kupang",
|
235 |
+
"pontianak", "palangka raya", "banjarmasin", "samarinda", "tarakan",
|
236 |
+
"manado", "palu", "makassar", "kendari", "gorontalo", "mamuju",
|
237 |
+
"ambon", "ternate",
|
238 |
+
"jayapura", "manokwari", "merauke", "nabire", "wamena", "fakfak", "sorong", "timika",
|
239 |
+
|
240 |
+
# === Kota/Kabupaten Besar atau Strategis ===
|
241 |
+
"bekasi", "bogor", "depok", "tangerang", "cirebon", "tegal", "purwokerto", "solo", "magelang",
|
242 |
+
"malang", "kediri", "sidoarjo", "pasuruan", "probolinggo", "lumajang", "blitar", "jember",
|
243 |
+
"banyuwangi", "cilacap", "padangsidimpuan", "binjai", "sibolga", "lubuklinggau", "palopo",
|
244 |
+
"parepare", "bitung", "tomohon", "kotamobagu", "kotabaru", "pangkalan bun", "ketapang",
|
245 |
+
"palu", "baubau", "karangasem", "buleleng", "labuan bajo", "ende", "bima", "dompu",
|
246 |
+
|
247 |
+
# === Lokasi Baru / Khusus / Otorita ===
|
248 |
+
"nusantara", # Ibu kota negara baru di Kaltim
|
249 |
+
"penajam paser utara", "balikpapan", "samarinda", "bontang", # Kaltim area
|
250 |
+
"kepri", "ntb", "ntt", "kaltim", "kalteng", "kalsel", "kalbar", "kaltara", # singkatan populer
|
251 |
+
|
252 |
+
# === Lokasi Adat/Kultural (yang sering disebut) ===
|
253 |
+
"minangkabau", "batak", "dayak", "asmat", "ambon", "bugis", "toraja", "sunda", "madura", "tapanuli"
|
254 |
+
]
|
255 |
+
lokasi_counter = {}
|
256 |
+
for text in df_log['text']:
|
257 |
+
for keyword in lokasi_kunci:
|
258 |
+
if keyword in text.lower():
|
259 |
+
lokasi = keyword.capitalize()
|
260 |
+
lokasi_counter[lokasi] = lokasi_counter.get(lokasi, 0) + 1
|
261 |
+
|
262 |
+
geo_locs = []
|
263 |
+
geolocator = Nominatim(user_agent="climatepulse-map")
|
264 |
+
for lokasi, jumlah in lokasi_counter.items():
|
265 |
+
try:
|
266 |
+
location = geolocator.geocode(lokasi)
|
267 |
+
if location:
|
268 |
+
geo_locs.append({
|
269 |
+
'lokasi': lokasi,
|
270 |
+
'lat': location.latitude,
|
271 |
+
'lon': location.longitude,
|
272 |
+
'jumlah': jumlah
|
273 |
+
})
|
274 |
+
except:
|
275 |
+
continue
|
276 |
+
|
277 |
+
if geo_locs:
|
278 |
+
map_df = pd.DataFrame(geo_locs)
|
279 |
+
st.markdown("### πΊοΈ Peta Opini Publik")
|
280 |
+
st.pydeck_chart(pdk.Deck(
|
281 |
+
map_style=None,
|
282 |
+
initial_view_state=pdk.ViewState(latitude=-2.5, longitude=117.0, zoom=4, pitch=0),
|
283 |
+
layers=[
|
284 |
+
pdk.Layer(
|
285 |
+
"ScatterplotLayer",
|
286 |
+
data=map_df,
|
287 |
+
get_position='[lon, lat]',
|
288 |
+
get_color='[255, 100, 100, 160]',
|
289 |
+
get_radius='jumlah * 10000',
|
290 |
+
pickable=True,
|
291 |
+
auto_highlight=True
|
292 |
+
)
|
293 |
+
],
|
294 |
+
tooltip={"text": "{lokasi}: {jumlah} opini"}
|
295 |
+
))
|
296 |
+
else:
|
297 |
+
st.info("β Tidak ada lokasi yang berhasil dipetakan dari histori log.")
|
298 |
+
|
299 |
+
|
300 |
+
st.markdown("### π Tren Waktu Sentimen")
|
301 |
+
if os.path.exists("log_tren.csv"):
|
302 |
+
df_log = pd.read_csv("log_tren.csv")
|
303 |
+
df_log['timestamp'] = pd.to_datetime(df_log['timestamp'])
|
304 |
+
df_log['tanggal'] = df_log['timestamp'].dt.date
|
305 |
+
trend_all = df_log.groupby(['tanggal', 'sentimen']).size().reset_index(name='jumlah')
|
306 |
+
chart = alt.Chart(trend_all).mark_line(point=True).encode(
|
307 |
+
x='tanggal:T',
|
308 |
+
y='jumlah:Q',
|
309 |
+
color='sentimen:N'
|
310 |
+
).properties(width=600)
|
311 |
+
st.altair_chart(chart, use_container_width=True)
|
312 |
+
|
313 |
+
# === Upload CSV untuk Analisis Massal ===
|
314 |
+
st.markdown("---")
|
315 |
+
st.markdown("### π₯ Analisis CSV Massal")
|
316 |
+
uploaded_file = st.file_uploader("Upload file CSV berisi kolom 'text'", type=["csv"])
|
317 |
+
|
318 |
+
if uploaded_file is not None:
|
319 |
+
df_csv = pd.read_csv(uploaded_file)
|
320 |
+
st.write("Pratinjau Data:", df_csv.head())
|
321 |
+
|
322 |
+
if "text" in df_csv.columns:
|
323 |
+
result_data = []
|
324 |
+
geo_locs = []
|
325 |
+
log_rows = []
|
326 |
+
lokasi_kunci = [
|
327 |
+
# === Wilayah Umum / Pulau ===
|
328 |
+
"sumatera", "jawa", "kalimantan", "sulawesi", "papua", "maluku", "nusa tenggara", "kepulauan seribu",
|
329 |
+
|
330 |
+
# === Nama Provinsi Lengkap (38) ===
|
331 |
+
"aceh", "sumatera utara", "sumatera barat", "riau", "kepulauan riau", "jambi", "bengkulu",
|
332 |
+
"sumatera selatan", "bangka belitung", "lampung",
|
333 |
+
"banten", "dki jakarta", "jawa barat", "jawa tengah", "daerah istimewa yogyakarta", "jawa timur",
|
334 |
+
"bali", "nusa tenggara barat", "nusa tenggara timur",
|
335 |
+
"kalimantan barat", "kalimantan tengah", "kalimantan selatan", "kalimantan timur", "kalimantan utara",
|
336 |
+
"sulawesi utara", "sulawesi tengah", "sulawesi selatan", "sulawesi tenggara", "gorontalo", "sulawesi barat",
|
337 |
+
"maluku", "maluku utara",
|
338 |
+
"papua", "papua barat", "papua selatan", "papua tengah", "papua pegunungan", "papua barat daya",
|
339 |
+
|
340 |
+
# === Ibu Kota Provinsi ===
|
341 |
+
"banda aceh", "medan", "padang", "pekanbaru", "tanjungpinang", "jambi", "bengkulu",
|
342 |
+
"palembang", "pangkalpinang", "bandar lampung",
|
343 |
+
"serang", "jakarta", "bandung", "semarang", "yogyakarta", "surabaya",
|
344 |
+
"denpasar", "mataram", "kupang",
|
345 |
+
"pontianak", "palangka raya", "banjarmasin", "samarinda", "tarakan",
|
346 |
+
"manado", "palu", "makassar", "kendari", "gorontalo", "mamuju",
|
347 |
+
"ambon", "ternate",
|
348 |
+
"jayapura", "manokwari", "merauke", "nabire", "wamena", "fakfak", "sorong", "timika",
|
349 |
+
|
350 |
+
# === Kota/Kabupaten Besar atau Strategis ===
|
351 |
+
"bekasi", "bogor", "depok", "tangerang", "cirebon", "tegal", "purwokerto", "solo", "magelang",
|
352 |
+
"malang", "kediri", "sidoarjo", "pasuruan", "probolinggo", "lumajang", "blitar", "jember",
|
353 |
+
"banyuwangi", "cilacap", "padangsidimpuan", "binjai", "sibolga", "lubuklinggau", "palopo",
|
354 |
+
"parepare", "bitung", "tomohon", "kotamobagu", "kotabaru", "pangkalan bun", "ketapang",
|
355 |
+
"palu", "baubau", "karangasem", "buleleng", "labuan bajo", "ende", "bima", "dompu",
|
356 |
+
|
357 |
+
# === Lokasi Baru / Khusus / Otorita ===
|
358 |
+
"nusantara", # Ibu kota negara baru di Kaltim
|
359 |
+
"penajam paser utara", "balikpapan", "samarinda", "bontang", # Kaltim area
|
360 |
+
"kepri", "ntb", "ntt", "kaltim", "kalteng", "kalsel", "kalbar", "kaltara", # singkatan populer
|
361 |
+
|
362 |
+
# === Lokasi Adat/Kultural (yang sering disebut) ===
|
363 |
+
"minangkabau", "batak", "dayak", "asmat", "ambon", "bugis", "toraja", "sunda", "madura", "tapanuli"
|
364 |
+
]
|
365 |
+
|
366 |
+
geolocator = Nominatim(user_agent="climatepulse")
|
367 |
+
|
368 |
+
for i, row in df_csv.iterrows():
|
369 |
+
text = str(row["text"])
|
370 |
+
sent = pipe_sent(text)[0]
|
371 |
+
sent_label = label_map.get(sent['label'], sent['label'])
|
372 |
+
emo = pipe_emo(text)[0]['label'].capitalize()
|
373 |
+
ner = pipe_ner(text)
|
374 |
+
ents = [e['word'] for e in ner]
|
375 |
+
|
376 |
+
locs = []
|
377 |
+
for e in ner:
|
378 |
+
ent_text = e['word'].lower()
|
379 |
+
if e['entity_group'] == 'LOC':
|
380 |
+
locs.append(e['word'])
|
381 |
+
else:
|
382 |
+
for keyword in lokasi_kunci:
|
383 |
+
if keyword in ent_text:
|
384 |
+
locs.append(keyword.capitalize())
|
385 |
+
locs = list(set(locs))
|
386 |
+
|
387 |
+
for loc in locs:
|
388 |
+
try:
|
389 |
+
location = geolocator.geocode(loc)
|
390 |
+
if location:
|
391 |
+
geo_locs.append({
|
392 |
+
'lokasi': loc,
|
393 |
+
'lat': location.latitude,
|
394 |
+
'lon': location.longitude,
|
395 |
+
'jumlah': 1
|
396 |
+
})
|
397 |
+
except:
|
398 |
+
continue
|
399 |
+
|
400 |
+
now = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
401 |
+
log_rows.append({"timestamp": now, "text": text, "sentimen": sent_label, "emosi": emo})
|
402 |
+
|
403 |
+
result_data.append({
|
404 |
+
"text": text,
|
405 |
+
"sentimen": sent_label,
|
406 |
+
"emosi": emo,
|
407 |
+
"entitas": ", ".join(ents)
|
408 |
+
})
|
409 |
+
|
410 |
+
df_result = pd.DataFrame(result_data)
|
411 |
+
st.success("Analisis selesai!")
|
412 |
+
st.dataframe(df_result)
|
413 |
+
|
414 |
+
csv_download = df_result.to_csv(index=False).encode('utf-8')
|
415 |
+
st.download_button("π₯ Download Hasil CSV", csv_download, "hasil_analisis.csv", "text/csv")
|
416 |
+
|
417 |
+
log_file = "log_tren.csv"
|
418 |
+
df_log_append = pd.DataFrame(log_rows)
|
419 |
+
if os.path.exists(log_file):
|
420 |
+
pd.concat([pd.read_csv(log_file), df_log_append]).to_csv(log_file, index=False)
|
421 |
+
else:
|
422 |
+
df_log_append.to_csv(log_file, index=False)
|
423 |
+
|
424 |
|
425 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|