Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- Language_Translation_Transformer_in_PyTorch_from_Scratch.ipynb +0 -0
- app.py +91 -0
- model.py +627 -0
- requirements.txt +8 -0
- translation_model.pt +3 -0
Language_Translation_Transformer_in_PyTorch_from_Scratch.ipynb
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import spacy
|
| 4 |
+
import gradio as gr
|
| 5 |
+
from model import make_model, translate_sentence, Vocab
|
| 6 |
+
|
| 7 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def load_tokenizers():
|
| 11 |
+
try:
|
| 12 |
+
spacy_es = spacy.load("es_core_news_sm")
|
| 13 |
+
except OSError:
|
| 14 |
+
os.system("python -m spacy download es_core_news_sm")
|
| 15 |
+
spacy_es = spacy.load("es_core_news_sm")
|
| 16 |
+
try:
|
| 17 |
+
spacy_en = spacy.load("en_core_web_sm")
|
| 18 |
+
except OSError:
|
| 19 |
+
os.system("python -m spacy download en_core_web_sm")
|
| 20 |
+
spacy_en = spacy.load("en_core_web_sm")
|
| 21 |
+
print("Tokenizers loaded.")
|
| 22 |
+
return spacy_es, spacy_en
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
spacy_es, spacy_en = load_tokenizers()
|
| 26 |
+
|
| 27 |
+
if os.path.exists("vocab.pt"):
|
| 28 |
+
vocab_src, vocab_trg = torch.load("vocab.pt")
|
| 29 |
+
else:
|
| 30 |
+
raise FileNotFoundError(
|
| 31 |
+
"vocab.pt not found. Please build and save the vocabularies first."
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
model = make_model(
|
| 35 |
+
device,
|
| 36 |
+
vocab_src,
|
| 37 |
+
vocab_trg,
|
| 38 |
+
n_layers=3,
|
| 39 |
+
d_model=512,
|
| 40 |
+
d_ffn=2048,
|
| 41 |
+
n_heads=8,
|
| 42 |
+
dropout=0.1,
|
| 43 |
+
max_length=50,
|
| 44 |
+
)
|
| 45 |
+
model.to(device)
|
| 46 |
+
|
| 47 |
+
if os.path.exists("translation_model.pt"):
|
| 48 |
+
model.load_state_dict(torch.load("translation_model.pt", map_location=device))
|
| 49 |
+
print("Pretrained model loaded.")
|
| 50 |
+
else:
|
| 51 |
+
raise FileNotFoundError(
|
| 52 |
+
"translation_model.pt not found. Please train and save the model first."
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def translate(text):
|
| 57 |
+
translation = translate_sentence(
|
| 58 |
+
text, model, vocab_src, vocab_trg, spacy_es, device, max_length=50
|
| 59 |
+
)
|
| 60 |
+
return translation
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
css_str = """
|
| 64 |
+
.title {
|
| 65 |
+
font-size: 48px;
|
| 66 |
+
font-weight: bold;
|
| 67 |
+
text-align: center;
|
| 68 |
+
margin-bottom: 20px;
|
| 69 |
+
}
|
| 70 |
+
.description {
|
| 71 |
+
font-size: 20px;
|
| 72 |
+
text-align: center;
|
| 73 |
+
margin-bottom: 40px;
|
| 74 |
+
}
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
with gr.Blocks(css=css_str) as demo:
|
| 78 |
+
gr.Markdown("<div class='title'>Spanish-to-English Translator</div>")
|
| 79 |
+
gr.Markdown(
|
| 80 |
+
"<div class='description'>Enter a Spanish sentence below to receive its English translation.</div>"
|
| 81 |
+
)
|
| 82 |
+
with gr.Row():
|
| 83 |
+
txt_input = gr.Textbox(
|
| 84 |
+
label="Enter Spanish sentence", lines=2, placeholder="Ej: ¿Cómo estás?"
|
| 85 |
+
)
|
| 86 |
+
translate_btn = gr.Button("Translate")
|
| 87 |
+
txt_output = gr.Textbox(label="English Translation", lines=2)
|
| 88 |
+
translate_btn.click(fn=translate, inputs=txt_input, outputs=txt_output)
|
| 89 |
+
|
| 90 |
+
if __name__ == "__main__":
|
| 91 |
+
demo.launch(share=True)
|
model.py
ADDED
|
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
from collections import Counter
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Vocab:
|
| 10 |
+
def __init__(self, stoi, itos, default_index):
|
| 11 |
+
self.stoi = stoi # mapping from token to index
|
| 12 |
+
self.itos = itos # list of tokens
|
| 13 |
+
self.default_index = default_index # default index for unknown words
|
| 14 |
+
|
| 15 |
+
def __getitem__(self, token):
|
| 16 |
+
# Return index of token
|
| 17 |
+
return self.stoi.get(
|
| 18 |
+
token, self.default_index
|
| 19 |
+
) # If not found return the default index
|
| 20 |
+
|
| 21 |
+
def get_stoi(self):
|
| 22 |
+
return self.stoi
|
| 23 |
+
|
| 24 |
+
def lookup_tokens(self, indices):
|
| 25 |
+
# Return the tokens at indices
|
| 26 |
+
return [self.itos[i] for i in indices]
|
| 27 |
+
|
| 28 |
+
def __len__(self):
|
| 29 |
+
return len(self.itos)
|
| 30 |
+
|
| 31 |
+
def __contains__(self, token):
|
| 32 |
+
return token in self.stoi
|
| 33 |
+
|
| 34 |
+
def __iter__(self):
|
| 35 |
+
return iter(self.itos)
|
| 36 |
+
|
| 37 |
+
def __repr__(self):
|
| 38 |
+
return f"Vocab({len(self)} tokens)"
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def build_vocab_from_iterator(token_iterator, min_freq, specials):
|
| 42 |
+
counter = Counter() # Use counter to get tokens and frequencies
|
| 43 |
+
for tokens in token_iterator:
|
| 44 |
+
counter.update(tokens)
|
| 45 |
+
tokens = [
|
| 46 |
+
token for token, freq in counter.items() if freq >= min_freq
|
| 47 |
+
] # Keep tokens with frequency >= min_freq
|
| 48 |
+
tokens = sorted(tokens) # Sort alphabetically
|
| 49 |
+
itos = list(specials) + tokens
|
| 50 |
+
stoi = {token: idx for idx, token in enumerate(itos)} # token-to-index
|
| 51 |
+
return Vocab(stoi=stoi, itos=itos, default_index=stoi.get("<unk>", 0))
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
"""### Transformer Model"""
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# Embedding Layer
|
| 58 |
+
class EmbeddingLayer(nn.Module):
|
| 59 |
+
def __init__(self, vocab_size: int, d_model: int):
|
| 60 |
+
"""
|
| 61 |
+
vocab_size: size of the vocabulary
|
| 62 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 63 |
+
"""
|
| 64 |
+
super().__init__()
|
| 65 |
+
|
| 66 |
+
self.d_model = d_model
|
| 67 |
+
|
| 68 |
+
# Embedding look-up table (vocab_size, d_model)
|
| 69 |
+
self.lut = nn.Embedding(num_embeddings=vocab_size, embedding_dim=d_model)
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
# x shape: (batch_size, seq_len)
|
| 73 |
+
# Multiply by the sqrt of the d_model as a scale factor
|
| 74 |
+
return self.lut(x) * math.sqrt(self.d_model) # (batch_size, seq_len, d_model)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
"""**Positional Encoding Equations**
|
| 78 |
+
|
| 79 |
+
$PE(k, 2i) = sin(\frac{k}{10000^{\frac{2i}{d_{model}}}})$
|
| 80 |
+
|
| 81 |
+
$PE(k, 2i + 1) = cos(\frac{k}{10000^{\frac{2i}{d_{model}}}})$
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# Positional Encoding
|
| 86 |
+
class PositionalEncoding(nn.Module):
|
| 87 |
+
def __init__(self, d_model: int, dropout: float = 0.1, max_length: int = 5000):
|
| 88 |
+
"""
|
| 89 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 90 |
+
dropout: probability of dropout
|
| 91 |
+
max_length: max length of a sequence
|
| 92 |
+
"""
|
| 93 |
+
super().__init__()
|
| 94 |
+
|
| 95 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 96 |
+
|
| 97 |
+
pe = torch.zeros(max_length, d_model) # (max_length, d_model)
|
| 98 |
+
# Create position column
|
| 99 |
+
k = torch.arange(0, max_length).unsqueeze(dim=1) # (max_length, 1)
|
| 100 |
+
|
| 101 |
+
# Use the log version of the function for positional encodings
|
| 102 |
+
div_term = torch.exp(
|
| 103 |
+
torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)
|
| 104 |
+
) # (d_model / 2)
|
| 105 |
+
|
| 106 |
+
# Use sine for the even indices and cosine for the odd indices
|
| 107 |
+
pe[:, 0::2] = torch.sin(k * div_term)
|
| 108 |
+
pe[:, 1::2] = torch.cos(k * div_term)
|
| 109 |
+
|
| 110 |
+
pe = pe.unsqueeze(dim=0) # Add the batch dimension(1, max_length, d_model)
|
| 111 |
+
|
| 112 |
+
# We use a buffer because the positional encoding is fixed and not a model paramter that we want to be updated during backpropagation.
|
| 113 |
+
self.register_buffer(
|
| 114 |
+
"pe", pe
|
| 115 |
+
) # Buffers are saved with the model state and are moved to the correct device
|
| 116 |
+
|
| 117 |
+
def forward(self, x):
|
| 118 |
+
# x shape: (batch_size, seq_length, d_model)
|
| 119 |
+
# Add the positional encoding to the embeddings that are passed in
|
| 120 |
+
x += self.pe[:, : x.size(1)]
|
| 121 |
+
return self.dropout(x)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
"""**Multi-Head Self-Attention Equations:**
|
| 125 |
+
|
| 126 |
+
$Q = X W_q$
|
| 127 |
+
|
| 128 |
+
$K = X W_k$
|
| 129 |
+
|
| 130 |
+
$V = X W_v$
|
| 131 |
+
|
| 132 |
+
$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_{key}}})V$
|
| 133 |
+
"""
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
# Multi-Head Self-Attention
|
| 137 |
+
class MultiHeadAttention(nn.Module):
|
| 138 |
+
def __init__(self, d_model: int = 512, n_heads: int = 8, dropout: float = 0.1):
|
| 139 |
+
"""
|
| 140 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 141 |
+
n_heads: number of self attention heads per sequence
|
| 142 |
+
dropout: probability of dropout
|
| 143 |
+
"""
|
| 144 |
+
super().__init__()
|
| 145 |
+
assert (
|
| 146 |
+
d_model % n_heads == 0
|
| 147 |
+
) # We want to make sure that the dimensions are split evenly among the attention heads.
|
| 148 |
+
self.d_model = d_model
|
| 149 |
+
self.n_heads = n_heads
|
| 150 |
+
self.d_key = d_model // n_heads
|
| 151 |
+
|
| 152 |
+
self.Wq = nn.Linear(
|
| 153 |
+
in_features=d_model, out_features=d_model
|
| 154 |
+
) # Learnable weights for query
|
| 155 |
+
self.Wk = nn.Linear(
|
| 156 |
+
in_features=d_model, out_features=d_model
|
| 157 |
+
) # Learnable weights for key
|
| 158 |
+
self.Wv = nn.Linear(
|
| 159 |
+
in_features=d_model, out_features=d_model
|
| 160 |
+
) # Learnable weights for value
|
| 161 |
+
self.Wo = nn.Linear(
|
| 162 |
+
in_features=d_model, out_features=d_model
|
| 163 |
+
) # Learnable weights for output
|
| 164 |
+
|
| 165 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 166 |
+
|
| 167 |
+
def forward(self, query: Tensor, key: Tensor, value: Tensor, mask: Tensor = None):
|
| 168 |
+
"""
|
| 169 |
+
query: (batch_size, q_length, d_model)
|
| 170 |
+
key: (batch_size, k_length, d_model)
|
| 171 |
+
value: (batch_size, s_length, d_model)
|
| 172 |
+
"""
|
| 173 |
+
batch_size = key.size(0)
|
| 174 |
+
|
| 175 |
+
# Matrix multiplication for Q, K, and V tensors
|
| 176 |
+
Q = self.Wq(query)
|
| 177 |
+
K = self.Wk(key)
|
| 178 |
+
V = self.Wv(value)
|
| 179 |
+
|
| 180 |
+
# Split each tensor into heads
|
| 181 |
+
Q = Q.view(batch_size, -1, self.n_heads, self.d_key).permute(
|
| 182 |
+
0, 2, 1, 3
|
| 183 |
+
) # (batch_size, n_heads, q_length, d_key)
|
| 184 |
+
K = K.view(batch_size, -1, self.n_heads, self.d_key).permute(
|
| 185 |
+
0, 2, 1, 3
|
| 186 |
+
) # (batch_size, n_heads, k_length, d_key)
|
| 187 |
+
V = V.view(batch_size, -1, self.n_heads, self.d_key).permute(
|
| 188 |
+
0, 2, 1, 3
|
| 189 |
+
) # (batch_size, n_heads, v_length, d_key)
|
| 190 |
+
|
| 191 |
+
# Scaled dot product
|
| 192 |
+
# K^T becomees (batch_size, n_heads, d_key, k_length)
|
| 193 |
+
scaled_dot_product = torch.matmul(Q, K.permute(0, 1, 3, 2)) / math.sqrt(
|
| 194 |
+
self.d_key
|
| 195 |
+
) # (batch_size, n_heads, q_length, k_length)
|
| 196 |
+
|
| 197 |
+
if mask is not None:
|
| 198 |
+
scaled_dot_product = scaled_dot_product.masked_fill(
|
| 199 |
+
mask == 0, float("-inf")
|
| 200 |
+
) # Filling it with 0 would result in 1 after the mask because e^0 = 1. Intead we fill it with an incredibly large negative number
|
| 201 |
+
|
| 202 |
+
# Softmax function for attention probabilities
|
| 203 |
+
attention_probs = torch.softmax(scaled_dot_product, dim=-1)
|
| 204 |
+
|
| 205 |
+
# Multiply by V to get attention with respect to the values
|
| 206 |
+
A = torch.matmul(self.dropout(attention_probs), V)
|
| 207 |
+
|
| 208 |
+
# Reshape attention back to (batch_size, q_length, d_model)
|
| 209 |
+
A = (
|
| 210 |
+
A.permute(0, 2, 1, 3)
|
| 211 |
+
.contiguous()
|
| 212 |
+
.view(batch_size, -1, self.n_heads * self.d_key)
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
# Pass through the final linear layer
|
| 216 |
+
output = self.Wo(A)
|
| 217 |
+
|
| 218 |
+
return output, attention_probs
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
# Position-Wise Feed Forward Network (FFN)
|
| 222 |
+
class PositionwiseFeedForward(nn.Module):
|
| 223 |
+
def __init__(self, d_model: int, d_ffn: int, dropout: float = 0.1):
|
| 224 |
+
"""
|
| 225 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 226 |
+
d_ffn: dimensions of the feed-forward network
|
| 227 |
+
dropout: probability of dropout
|
| 228 |
+
"""
|
| 229 |
+
super().__init__()
|
| 230 |
+
|
| 231 |
+
self.ffn = nn.Sequential(
|
| 232 |
+
nn.Linear(in_features=d_model, out_features=d_ffn),
|
| 233 |
+
nn.ReLU(),
|
| 234 |
+
nn.Linear(in_features=d_ffn, out_features=d_model),
|
| 235 |
+
nn.Dropout(p=dropout),
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
def forward(self, x):
|
| 239 |
+
return self.ffn(x)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
# Encoder Layer
|
| 243 |
+
class EncoderLayer(nn.Module):
|
| 244 |
+
def __init__(self, d_model: int, n_heads: int, d_ffn: int, dropout: float = 0.1):
|
| 245 |
+
"""
|
| 246 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 247 |
+
n_heads: number of self attention heads per sequence
|
| 248 |
+
d_ffn: dimensions of the feed-forward network
|
| 249 |
+
dropout: probability of dropout
|
| 250 |
+
"""
|
| 251 |
+
super().__init__()
|
| 252 |
+
|
| 253 |
+
# Multi-Head Self-Attention sublayer
|
| 254 |
+
self.attention = MultiHeadAttention(
|
| 255 |
+
d_model=d_model, n_heads=n_heads, dropout=dropout
|
| 256 |
+
)
|
| 257 |
+
self.attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 258 |
+
|
| 259 |
+
# Position-wise Feed-forward Network
|
| 260 |
+
self.position_wise_ffn = PositionwiseFeedForward(
|
| 261 |
+
d_model=d_model, d_ffn=d_ffn, dropout=dropout
|
| 262 |
+
)
|
| 263 |
+
self.ffn_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 264 |
+
|
| 265 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 266 |
+
|
| 267 |
+
def forward(self, src: Tensor, src_mask: Tensor):
|
| 268 |
+
"""
|
| 269 |
+
src: embedded sequences (batch_size, seq_length, d_model)
|
| 270 |
+
src_mask: mask for the sequences (batch_size, 1, 1, seq_length)
|
| 271 |
+
"""
|
| 272 |
+
# Multi-Head Attention
|
| 273 |
+
|
| 274 |
+
# The source mask ensures the model ignores these padding positions by assigning them near-zero attention scores.
|
| 275 |
+
_src, attention_probs = self.attention(src, src, src, src_mask) # Q, K, V, mask
|
| 276 |
+
|
| 277 |
+
# Residual Addition and Layer Normalization
|
| 278 |
+
src = self.attention_layer_norm(
|
| 279 |
+
src + self.dropout(_src)
|
| 280 |
+
) # We do residual addition by adding back the src (the embeddings) to the output of Self-Attention
|
| 281 |
+
|
| 282 |
+
# Position-wise Feed-forward Network
|
| 283 |
+
_src = self.position_wise_ffn(src)
|
| 284 |
+
|
| 285 |
+
# Residual Addition and Layer Normalization
|
| 286 |
+
src = self.ffn_layer_norm(src + self.dropout(_src))
|
| 287 |
+
|
| 288 |
+
return src, attention_probs
|
| 289 |
+
|
| 290 |
+
|
| 291 |
+
# The Encoder
|
| 292 |
+
class Encoder(nn.Module):
|
| 293 |
+
def __init__(
|
| 294 |
+
self,
|
| 295 |
+
d_model: int,
|
| 296 |
+
n_layers: int,
|
| 297 |
+
n_heads: int,
|
| 298 |
+
d_ffn: int,
|
| 299 |
+
dropout: float = 0.1,
|
| 300 |
+
):
|
| 301 |
+
"""
|
| 302 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 303 |
+
n_layers: number of encoder layers in the encoder block
|
| 304 |
+
n_heads: number of self attention heads per sequence
|
| 305 |
+
d_ffn: dimensions of the feed-forward network
|
| 306 |
+
dropout: probability of dropout
|
| 307 |
+
"""
|
| 308 |
+
super().__init__()
|
| 309 |
+
|
| 310 |
+
# Create n_layers encoders
|
| 311 |
+
self.layers = nn.ModuleList(
|
| 312 |
+
[
|
| 313 |
+
EncoderLayer(
|
| 314 |
+
d_model=d_model, n_heads=n_heads, d_ffn=d_ffn, dropout=dropout
|
| 315 |
+
)
|
| 316 |
+
for layer in range(n_layers)
|
| 317 |
+
]
|
| 318 |
+
)
|
| 319 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 320 |
+
|
| 321 |
+
def forward(self, src: Tensor, src_mask: Tensor):
|
| 322 |
+
"""
|
| 323 |
+
src: embedded sequences (batch_size, seq_length, d_model)
|
| 324 |
+
src_mask: mask for the sequences (batch_size, 1, 1, seq_length)
|
| 325 |
+
"""
|
| 326 |
+
|
| 327 |
+
# Pass the sequences through each encoder layer
|
| 328 |
+
for layer in self.layers:
|
| 329 |
+
src, attention_probs = layer(src, src_mask)
|
| 330 |
+
|
| 331 |
+
self.attention_probs = attention_probs
|
| 332 |
+
|
| 333 |
+
src += torch.randn_like(src) * 0.001
|
| 334 |
+
|
| 335 |
+
return src
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
# Decoder Layer
|
| 339 |
+
class DecoderLayer(nn.Module):
|
| 340 |
+
def __init__(self, d_model: int, n_heads: int, d_ffn: int, dropout: float = 0.1):
|
| 341 |
+
"""
|
| 342 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 343 |
+
n_heads: number of self attention heads per sequence
|
| 344 |
+
d_ffn: dimensions of the feed-forward network
|
| 345 |
+
dropout: probability of dropout
|
| 346 |
+
"""
|
| 347 |
+
super().__init__()
|
| 348 |
+
|
| 349 |
+
# Masked Multi-Head Self-Attention sublayer
|
| 350 |
+
self.masked_attention = MultiHeadAttention(
|
| 351 |
+
d_model=d_model, n_heads=n_heads, dropout=dropout
|
| 352 |
+
)
|
| 353 |
+
self.masked_attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 354 |
+
|
| 355 |
+
# Multi-Head Self-Attention sublayer
|
| 356 |
+
self.attention = MultiHeadAttention(
|
| 357 |
+
d_model=d_model, n_heads=n_heads, dropout=dropout
|
| 358 |
+
)
|
| 359 |
+
self.attention_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 360 |
+
|
| 361 |
+
# Position-wise Feed-forward Network
|
| 362 |
+
self.position_wise_ffn = PositionwiseFeedForward(
|
| 363 |
+
d_model=d_model, d_ffn=d_ffn, dropout=dropout
|
| 364 |
+
)
|
| 365 |
+
self.ffn_layer_norm = nn.LayerNorm(d_model) # Layer normalization
|
| 366 |
+
|
| 367 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 368 |
+
|
| 369 |
+
def forward(self, trg: Tensor, src: Tensor, trg_mask: Tensor, src_mask: Tensor):
|
| 370 |
+
"""
|
| 371 |
+
trg: embedded sequences (batch_size, trg_seq_length, d_model)
|
| 372 |
+
src: embedded sequences (batch_size, src_seq_length, d_model)
|
| 373 |
+
trg_mask: mask for the sequences (batch_size, 1, trg_seq_length, trg_seq_length)
|
| 374 |
+
src_mask: mask for the sequences (batch_size, 1, 1, src_seq_length)
|
| 375 |
+
"""
|
| 376 |
+
|
| 377 |
+
# Masked Multi-Head Attention
|
| 378 |
+
|
| 379 |
+
# The target mask is used to prevent the model from seeing future tokens. This ensures that the prediction is made solely based on past and present tokens.
|
| 380 |
+
_trg, masked_attention_probs = self.masked_attention(
|
| 381 |
+
trg, trg, trg, trg_mask
|
| 382 |
+
) # Q, K, V, mask
|
| 383 |
+
# Residual Addition and Layer Normalization
|
| 384 |
+
trg = self.masked_attention_layer_norm(trg + self.dropout(_trg))
|
| 385 |
+
|
| 386 |
+
# Multi-Head Attention - This time, we also pass in the output of the encoder layers as src.
|
| 387 |
+
# This is important because this allows us to keep track of and learn relationships between the input and output tokens.
|
| 388 |
+
_trg, attention_probs = self.attention(trg, src, src, src_mask) # Q, K, V, mask
|
| 389 |
+
# Residual Addition and Layer Normalization
|
| 390 |
+
trg = self.attention_layer_norm(trg + self.dropout(_trg))
|
| 391 |
+
|
| 392 |
+
# Position-wise Feed-forward Network
|
| 393 |
+
_trg = self.position_wise_ffn(trg)
|
| 394 |
+
# Residual Addition and Layer Normalization
|
| 395 |
+
trg = self.ffn_layer_norm(trg + self.dropout(_trg))
|
| 396 |
+
|
| 397 |
+
return trg, attention_probs, masked_attention_probs
|
| 398 |
+
|
| 399 |
+
|
| 400 |
+
# The Decoder
|
| 401 |
+
class Decoder(nn.Module):
|
| 402 |
+
def __init__(
|
| 403 |
+
self,
|
| 404 |
+
vocab_size: int,
|
| 405 |
+
d_model: int,
|
| 406 |
+
n_layers: int,
|
| 407 |
+
n_heads: int,
|
| 408 |
+
d_ffn: int,
|
| 409 |
+
dropout: float = 0.1,
|
| 410 |
+
):
|
| 411 |
+
"""
|
| 412 |
+
vocab_size: size of the target vocabulary
|
| 413 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 414 |
+
n_layers: number of encoder layers in the encoder block
|
| 415 |
+
n_heads: number of self attention heads per sequence
|
| 416 |
+
d_ffn: dimensions of the feed-forward network
|
| 417 |
+
dropout: probability of dropout
|
| 418 |
+
"""
|
| 419 |
+
super().__init__()
|
| 420 |
+
|
| 421 |
+
# Create n_layers decoders
|
| 422 |
+
self.layers = nn.ModuleList(
|
| 423 |
+
[
|
| 424 |
+
DecoderLayer(
|
| 425 |
+
d_model=d_model, n_heads=n_heads, d_ffn=d_ffn, dropout=dropout
|
| 426 |
+
)
|
| 427 |
+
for layer in range(n_layers)
|
| 428 |
+
]
|
| 429 |
+
)
|
| 430 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 431 |
+
|
| 432 |
+
# Output layer
|
| 433 |
+
self.Wo = nn.Linear(in_features=d_model, out_features=vocab_size)
|
| 434 |
+
|
| 435 |
+
def forward(self, trg: Tensor, src: Tensor, trg_mask: Tensor, src_mask: Tensor):
|
| 436 |
+
"""
|
| 437 |
+
trg: embedded sequences (batch_size, trg_seq_length, d_model)
|
| 438 |
+
src: embedded sequences (batch_size, src_seq_length, d_model)
|
| 439 |
+
trg_mask: mask for the sequences (batch_size, 1, trg_seq_length, trg_seq_length)
|
| 440 |
+
src_mask: mask for the sequences (batch_size, 1, 1, src_seq_length)
|
| 441 |
+
"""
|
| 442 |
+
|
| 443 |
+
# Pass the sequences through each decoder layer
|
| 444 |
+
for layer in self.layers:
|
| 445 |
+
trg, attention_probs, masked_attention_probs = layer(
|
| 446 |
+
trg, src, trg_mask, src_mask
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
self.attention_probs = attention_probs
|
| 450 |
+
self.masked_attention_probs = masked_attention_probs
|
| 451 |
+
|
| 452 |
+
trg += torch.randn_like(trg) * 0.001
|
| 453 |
+
|
| 454 |
+
return self.Wo(trg)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
# The Transformer
|
| 458 |
+
class Transformer(nn.Module):
|
| 459 |
+
def __init__(
|
| 460 |
+
self,
|
| 461 |
+
encoder: Encoder,
|
| 462 |
+
decoder: Decoder,
|
| 463 |
+
src_embed: EmbeddingLayer,
|
| 464 |
+
trg_embed: EmbeddingLayer,
|
| 465 |
+
src_pad_idx: int,
|
| 466 |
+
trg_pad_idx: int,
|
| 467 |
+
device,
|
| 468 |
+
):
|
| 469 |
+
"""
|
| 470 |
+
encoder: encoder stack
|
| 471 |
+
decoder: decoder stack
|
| 472 |
+
src_embed: source embeddings
|
| 473 |
+
trg_embd: target embeddings
|
| 474 |
+
src_pad_idx: source padding index
|
| 475 |
+
trg_pad_idx: target padding index
|
| 476 |
+
device: device
|
| 477 |
+
"""
|
| 478 |
+
super().__init__()
|
| 479 |
+
|
| 480 |
+
self.encoder = encoder
|
| 481 |
+
self.decoder = decoder
|
| 482 |
+
self.src_embed = src_embed
|
| 483 |
+
self.trg_embed = trg_embed
|
| 484 |
+
self.device = device
|
| 485 |
+
self.src_pad_idx = src_pad_idx
|
| 486 |
+
self.trg_pad_idx = trg_pad_idx
|
| 487 |
+
|
| 488 |
+
def make_src_mask(self, src: Tensor):
|
| 489 |
+
# Assign 1 to tokens that need attended to and 0 to padding tokens, then add 2 dimensions
|
| 490 |
+
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
|
| 491 |
+
|
| 492 |
+
return src_mask
|
| 493 |
+
|
| 494 |
+
def make_trg_mask(self, trg: Tensor):
|
| 495 |
+
seq_length = trg.shape[1]
|
| 496 |
+
|
| 497 |
+
# Assign True to tokens that need attended to and False to padding tokens, then add 2 dimensions
|
| 498 |
+
trg_mask = (
|
| 499 |
+
(trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2)
|
| 500 |
+
) # (batch_size, 1, 1, seq_length)
|
| 501 |
+
|
| 502 |
+
# Generate subsequent mask
|
| 503 |
+
trg_sub_mask = torch.tril(
|
| 504 |
+
torch.ones((seq_length, seq_length), device=self.device)
|
| 505 |
+
).bool() # (batch_size, 1, seq_length, seq_length)
|
| 506 |
+
|
| 507 |
+
# Bottom triangle is True, top triangle is False
|
| 508 |
+
trg_mask = trg_mask & trg_sub_mask
|
| 509 |
+
|
| 510 |
+
return trg_mask
|
| 511 |
+
|
| 512 |
+
def forward(self, src: Tensor, trg: Tensor):
|
| 513 |
+
"""
|
| 514 |
+
trg: raw target sequences (batch_size, trg_seq_length)
|
| 515 |
+
src: raw src sequences (batch_size, src_seq_length)
|
| 516 |
+
"""
|
| 517 |
+
|
| 518 |
+
# Create source and target masks
|
| 519 |
+
src_mask = self.make_src_mask(src) # (batch_size, 1, 1, src_seq_length)
|
| 520 |
+
|
| 521 |
+
# The lower triangle of the mask is filled with 1s
|
| 522 |
+
trg_mask = self.make_trg_mask(
|
| 523 |
+
trg
|
| 524 |
+
) # (batch_size, 1, trg_seq_length, trg_seq_length)
|
| 525 |
+
|
| 526 |
+
# Encoder layers
|
| 527 |
+
src = self.encoder(
|
| 528 |
+
self.src_embed(src), src_mask
|
| 529 |
+
) # (batch_size, src_seq_length, d_model)
|
| 530 |
+
|
| 531 |
+
# Decoder layers
|
| 532 |
+
output = self.decoder(
|
| 533 |
+
self.trg_embed(trg), src, trg_mask, src_mask
|
| 534 |
+
) # Pass in both the target (for Masked Multi-Head Self-Attention) and source for (Cross-Attention)
|
| 535 |
+
|
| 536 |
+
return output
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def make_model(
|
| 540 |
+
device,
|
| 541 |
+
src_vocab,
|
| 542 |
+
trg_vocab,
|
| 543 |
+
n_layers: int = 3,
|
| 544 |
+
d_model: int = 512,
|
| 545 |
+
d_ffn: int = 2048,
|
| 546 |
+
n_heads: int = 8,
|
| 547 |
+
dropout: float = 0.1,
|
| 548 |
+
max_length: int = 5000,
|
| 549 |
+
):
|
| 550 |
+
"""
|
| 551 |
+
src_vocab: source vocabulary
|
| 552 |
+
trg_vocab: target vocabulary
|
| 553 |
+
n_layers: number of encoder layers in the encoder block
|
| 554 |
+
d_model: dimensions of the embeddings (number of values in each embedding vector)
|
| 555 |
+
d_ffn: dimensions of the feed-forward network
|
| 556 |
+
n_heads: number of self attention heads per sequence
|
| 557 |
+
dropout: probability of dropout
|
| 558 |
+
max_length: maximum sequence length for positional encodings
|
| 559 |
+
"""
|
| 560 |
+
|
| 561 |
+
encoder = Encoder(
|
| 562 |
+
d_model=d_model,
|
| 563 |
+
n_layers=n_layers,
|
| 564 |
+
n_heads=n_heads,
|
| 565 |
+
d_ffn=d_ffn,
|
| 566 |
+
dropout=dropout,
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
decoder = Decoder(
|
| 570 |
+
vocab_size=len(trg_vocab),
|
| 571 |
+
d_model=d_model,
|
| 572 |
+
n_layers=n_layers,
|
| 573 |
+
n_heads=n_heads,
|
| 574 |
+
d_ffn=d_ffn,
|
| 575 |
+
dropout=dropout,
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
src_embed = EmbeddingLayer(vocab_size=len(src_vocab), d_model=d_model)
|
| 579 |
+
trg_embed = EmbeddingLayer(vocab_size=len(trg_vocab), d_model=d_model)
|
| 580 |
+
|
| 581 |
+
pos_enc = PositionalEncoding(
|
| 582 |
+
d_model=d_model, dropout=dropout, max_length=max_length
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
model = Transformer(
|
| 586 |
+
encoder=encoder,
|
| 587 |
+
decoder=decoder,
|
| 588 |
+
src_embed=nn.Sequential(src_embed, pos_enc),
|
| 589 |
+
trg_embed=nn.Sequential(trg_embed, pos_enc),
|
| 590 |
+
src_pad_idx=src_vocab.get_stoi()["<pad>"],
|
| 591 |
+
trg_pad_idx=trg_vocab.get_stoi()["<pad>"],
|
| 592 |
+
device=device,
|
| 593 |
+
)
|
| 594 |
+
|
| 595 |
+
# Initialize parameters with Xaviar/Glorot
|
| 596 |
+
# This maintains a consistent variance of activations throughout the network
|
| 597 |
+
# Helps avoid issues like vanishing or exploding gradients.
|
| 598 |
+
for p in model.parameters():
|
| 599 |
+
if p.dim() > 1:
|
| 600 |
+
nn.init.xavier_uniform_(p)
|
| 601 |
+
|
| 602 |
+
return model
|
| 603 |
+
|
| 604 |
+
|
| 605 |
+
def translate_sentence(
|
| 606 |
+
sentence, model, vocab_src, vocab_trg, spacy_es, device, max_length=50
|
| 607 |
+
):
|
| 608 |
+
model.eval()
|
| 609 |
+
if isinstance(sentence, str):
|
| 610 |
+
src = (
|
| 611 |
+
["<bos>"] + [token.text.lower() for token in spacy_es(sentence)] + ["<eos>"]
|
| 612 |
+
)
|
| 613 |
+
else:
|
| 614 |
+
src = ["<bos>"] + sentence + ["<eos>"]
|
| 615 |
+
src_indexes = [vocab_src[token] for token in src]
|
| 616 |
+
src_tensor = torch.tensor(src_indexes).int().unsqueeze(0).to(device)
|
| 617 |
+
trg_indexes = [vocab_trg.stoi["<bos>"]]
|
| 618 |
+
for _ in range(max_length):
|
| 619 |
+
trg_tensor = torch.tensor(trg_indexes).int().unsqueeze(0).to(device)
|
| 620 |
+
with torch.no_grad():
|
| 621 |
+
logits = model(src_tensor, trg_tensor)
|
| 622 |
+
pred_token = logits.argmax(dim=2)[:, -1].item()
|
| 623 |
+
if pred_token == vocab_trg.stoi["<eos>"]:
|
| 624 |
+
break
|
| 625 |
+
trg_indexes.append(pred_token)
|
| 626 |
+
trg_tokens = vocab_trg.lookup_tokens(trg_indexes)
|
| 627 |
+
return " ".join(trg_tokens)
|
requirements.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
spacy
|
| 3 |
+
gradio
|
| 4 |
+
datasets
|
| 5 |
+
nltk
|
| 6 |
+
tqdm
|
| 7 |
+
matplotlib
|
| 8 |
+
numpy
|
translation_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5b13d937caa89b9320f6c0c57c0634c87f12ed8771868bad531dc8bf0bd60d5
|
| 3 |
+
size 646480754
|