Spaces:
Sleeping
Sleeping
| import os | |
| import sys | |
| os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" | |
| # Import libraries | |
| import whisper | |
| import gradio as gr | |
| import torch | |
| from transformers import BertTokenizer, BertForSequenceClassification, pipeline | |
| from app.questions import get_question | |
| # patch(niranjan) | |
| try: | |
| # original method | |
| original_method = gr.Blocks.get_api_info | |
| # Create a safer version of the method that catches the specific error | |
| def safe_get_api_info(self): | |
| try: | |
| return original_method(self) | |
| except TypeError as e: | |
| print(f"API info generation error suppressed: {str(e)}", file=sys.stderr) | |
| return {} # Return empty api | |
| gr.Blocks.get_api_info = safe_get_api_info | |
| print("Applied API info generation patch", file=sys.stderr) | |
| except Exception as e: | |
| print(f"Failed to apply patch: {str(e)}", file=sys.stderr) | |
| # Load models | |
| whisper_model = whisper.load_model("small") | |
| confidence_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/final_confidence') | |
| confidence_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/final_confidence') | |
| context_model = BertForSequenceClassification.from_pretrained('RiteshAkhade/context_model') | |
| context_tokenizer = BertTokenizer.from_pretrained('RiteshAkhade/context_model') | |
| emotion_pipe = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion", top_k=1) | |
| # Emotion map with labels and emojis | |
| interview_emotion_map = { | |
| "joy": ("Confident", "๐"), | |
| "fear": ("Nervous", "๐จ"), | |
| "sadness": ("Uncertain", "๐"), | |
| "anger": ("Frustrated", "๐ "), | |
| "surprise": ("Curious", "๐ฎ"), | |
| "neutral": ("Calm", "๐"), | |
| "disgust": ("Disengaged", "๐"), | |
| } | |
| # Static question sets | |
| technical_questions = [get_question(i) for i in range(6)] | |
| non_technical_questions = [ | |
| "Tell me about yourself.", | |
| "What are your strengths and weaknesses?", | |
| "Where do you see yourself in 5 years?", | |
| "How do you handle stress or pressure?", | |
| "Describe a time you faced a conflict and how you resolved it.", | |
| "What motivates you to do your best?" | |
| ] | |
| # Index trackers | |
| current_tech_index = 0 | |
| current_non_tech_index = 0 | |
| # Relevance prediction | |
| def predict_relevance(question, answer): | |
| if not answer.strip(): | |
| return "Irrelevant" | |
| inputs = context_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) | |
| context_model.eval() | |
| with torch.no_grad(): | |
| outputs = context_model(**inputs) | |
| probabilities = torch.softmax(outputs.logits, dim=-1) | |
| return "Relevant" if probabilities[0, 1] > 0.5 else "Irrelevant" | |
| # Confidence prediction | |
| def predict_confidence(question, answer, threshold=0.4): | |
| if not isinstance(answer, str) or not answer.strip(): | |
| return "Not Confident" | |
| inputs = confidence_tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) | |
| confidence_model.eval() | |
| with torch.no_grad(): | |
| outputs = confidence_model(**inputs) | |
| probabilities = torch.softmax(outputs.logits, dim=-1) | |
| return "Confident" if probabilities[0, 1].item() > threshold else "Not Confident" | |
| # Emotion detection | |
| def detect_emotion(answer): | |
| if not answer.strip(): | |
| return "No Answer", "" | |
| result = emotion_pipe(answer) | |
| label = result[0][0]["label"].lower() | |
| emotion_text, emoji = interview_emotion_map.get(label, ("Unknown", "โ")) | |
| return emotion_text, emoji | |
| # Question navigation (non-tech) | |
| def show_non_tech_question(): | |
| global current_non_tech_index | |
| return non_technical_questions[current_non_tech_index] | |
| def next_non_tech_question(): | |
| global current_non_tech_index | |
| current_non_tech_index = (current_non_tech_index + 1) % len(non_technical_questions) | |
| return non_technical_questions[current_non_tech_index], None, "", "" | |
| # Question navigation (tech) | |
| def show_tech_question(): | |
| global current_tech_index | |
| return technical_questions[current_tech_index] | |
| def next_tech_question(): | |
| global current_tech_index | |
| current_tech_index = (current_tech_index + 1) % len(technical_questions) | |
| return technical_questions[current_tech_index], None, "", "", "" | |
| # Transcribe + analyze (non-technical) | |
| def transcribe_and_analyze_non_tech(audio, question): | |
| try: | |
| audio = whisper.load_audio(audio) | |
| audio = whisper.pad_or_trim(audio) | |
| mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
| result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False)) | |
| transcribed_text = result.text | |
| emotion_text, emoji = detect_emotion(transcribed_text) | |
| return transcribed_text, f"{emotion_text} {emoji}" | |
| except Exception as e: | |
| return f"Error: {str(e)}", "โ" | |
| # Transcribe + analyze (technical) | |
| def transcribe_and_analyze_tech(audio, question): | |
| try: | |
| audio = whisper.load_audio(audio) | |
| audio = whisper.pad_or_trim(audio) | |
| mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
| result = whisper.decode(whisper_model, mel, whisper.DecodingOptions(fp16=False)) | |
| transcribed_text = result.text | |
| context_result = predict_relevance(question, transcribed_text) | |
| confidence_result = predict_confidence(question, transcribed_text) | |
| return transcribed_text, context_result, confidence_result | |
| except Exception as e: | |
| return f"Error: {str(e)}", "", "" | |
| # UI layout | |
| with gr.Blocks(css="textarea, .gr-box { font-size: 18px !important; }") as demo: | |
| gr.HTML("<h1 style='text-align: center; font-size: 32px;'>INTERVIEW PREPARATION MODEL</h1>") | |
| with gr.Tabs(): | |
| # NON-TECHNICAL TAB | |
| with gr.Tab("Non-Technical"): | |
| gr.Markdown("### Emotional Context Analysis (๐ง + ๐)") | |
| question_display_1 = gr.Textbox(label="Interview Question", value=show_non_tech_question(), interactive=False) | |
| audio_input_1 = gr.Audio(type="filepath", label="Record Your Answer") | |
| transcribed_text_1 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4) | |
| emotion_output = gr.Textbox(label="Detected Emotion", interactive=False) | |
| audio_input_1.change(fn=transcribe_and_analyze_non_tech, | |
| inputs=[audio_input_1, question_display_1], | |
| outputs=[transcribed_text_1, emotion_output]) | |
| next_button_1 = gr.Button("Next Question") | |
| next_button_1.click(fn=next_non_tech_question, | |
| outputs=[question_display_1, audio_input_1, transcribed_text_1, emotion_output]) | |
| # TECHNICAL TAB | |
| with gr.Tab("Technical"): | |
| gr.Markdown("### Technical Question Analysis (๐ + ๐ค)") | |
| question_display_2 = gr.Textbox(label="Interview Question", value=show_tech_question(), interactive=False) | |
| audio_input_2 = gr.Audio(type="filepath", label="Record Your Answer") | |
| transcribed_text_2 = gr.Textbox(label="Transcribed Answer", interactive=False, lines=4) | |
| context_analysis_result = gr.Textbox(label="Context Analysis", interactive=False) | |
| confidence_analysis_result = gr.Textbox(label="Confidence Analysis", interactive=False) | |
| audio_input_2.change(fn=transcribe_and_analyze_tech, | |
| inputs=[audio_input_2, question_display_2], | |
| outputs=[transcribed_text_2, context_analysis_result, confidence_analysis_result]) | |
| next_button_2 = gr.Button("Next Question") | |
| next_button_2.click(fn=next_tech_question, | |
| outputs=[question_display_2, audio_input_2, transcribed_text_2, | |
| context_analysis_result, confidence_analysis_result]) | |
| # Also patch the client utils function that's failing | |
| try: | |
| import gradio_client.utils | |
| # Original function reference | |
| original_json_schema = gradio_client.utils._json_schema_to_python_type | |
| # patched version | |
| def patched_json_schema(schema, defs=None): | |
| try: | |
| if isinstance(schema, bool): | |
| return "bool" | |
| return original_json_schema(schema, defs) | |
| except Exception as e: | |
| print(f"JSON schema conversion error suppressed: {str(e)}", file=sys.stderr) | |
| return "any" | |
| # Apply patch | |
| gradio_client.utils._json_schema_to_python_type = patched_json_schema | |
| print("Applied JSON schema conversion patch", file=sys.stderr) | |
| except Exception as e: | |
| print(f"Failed to apply client utils patch: {str(e)}", file=sys.stderr) | |
| if __name__ == "__main__": | |
| # Simple launch with error handling | |
| try: | |
| demo.launch(show_api=False) | |
| except Exception as e: | |
| print(f"Launch failed: {str(e)}", file=sys.stderr) | |
| try: | |
| demo.launch() | |
| except Exception as e: | |
| print(f"Minimal launch also failed: {str(e)}", file=sys.stderr) | |
| # Create a minimal error app as last resort | |
| with gr.Blocks() as error_app: | |
| gr.Markdown("# Error Starting App") | |
| gr.Markdown("The application encountered errors during startup. Please check the logs.") | |
| error_app.launch() |