Spaces:
Running
on
Zero
Running
on
Zero
upd
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ICEdit +0 -1
- app.py +1 -1
- icedit/diffusers/__init__.py +1014 -0
- icedit/diffusers/callbacks.py +209 -0
- icedit/diffusers/commands/__init__.py +27 -0
- icedit/diffusers/commands/diffusers_cli.py +43 -0
- icedit/diffusers/commands/env.py +180 -0
- icedit/diffusers/commands/fp16_safetensors.py +132 -0
- icedit/diffusers/configuration_utils.py +732 -0
- icedit/diffusers/dependency_versions_check.py +34 -0
- icedit/diffusers/dependency_versions_table.py +46 -0
- icedit/diffusers/experimental/__init__.py +1 -0
- icedit/diffusers/experimental/rl/__init__.py +1 -0
- icedit/diffusers/experimental/rl/value_guided_sampling.py +153 -0
- icedit/diffusers/image_processor.py +1314 -0
- icedit/diffusers/loaders/__init__.py +121 -0
- icedit/diffusers/loaders/ip_adapter.py +871 -0
- icedit/diffusers/loaders/lora_base.py +900 -0
- icedit/diffusers/loaders/lora_conversion_utils.py +1150 -0
- icedit/diffusers/loaders/lora_pipeline.py +0 -0
- icedit/diffusers/loaders/peft.py +750 -0
- icedit/diffusers/loaders/single_file.py +550 -0
- icedit/diffusers/loaders/single_file_model.py +385 -0
- icedit/diffusers/loaders/single_file_utils.py +0 -0
- icedit/diffusers/loaders/textual_inversion.py +580 -0
- icedit/diffusers/loaders/transformer_flux.py +181 -0
- icedit/diffusers/loaders/transformer_sd3.py +89 -0
- icedit/diffusers/loaders/unet.py +927 -0
- icedit/diffusers/loaders/unet_loader_utils.py +163 -0
- icedit/diffusers/loaders/utils.py +59 -0
- icedit/diffusers/models/__init__.py +172 -0
- icedit/diffusers/models/activations.py +178 -0
- icedit/diffusers/models/adapter.py +584 -0
- icedit/diffusers/models/attention.py +1252 -0
- icedit/diffusers/models/attention_flax.py +494 -0
- icedit/diffusers/models/attention_processor.py +0 -0
- icedit/diffusers/models/autoencoders/__init__.py +13 -0
- icedit/diffusers/models/autoencoders/autoencoder_asym_kl.py +184 -0
- icedit/diffusers/models/autoencoders/autoencoder_dc.py +620 -0
- icedit/diffusers/models/autoencoders/autoencoder_kl.py +571 -0
- icedit/diffusers/models/autoencoders/autoencoder_kl_allegro.py +1149 -0
- icedit/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py +1482 -0
- icedit/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py +1176 -0
- icedit/diffusers/models/autoencoders/autoencoder_kl_ltx.py +1338 -0
- icedit/diffusers/models/autoencoders/autoencoder_kl_mochi.py +1166 -0
- icedit/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py +394 -0
- icedit/diffusers/models/autoencoders/autoencoder_oobleck.py +464 -0
- icedit/diffusers/models/autoencoders/autoencoder_tiny.py +350 -0
- icedit/diffusers/models/autoencoders/consistency_decoder_vae.py +460 -0
- icedit/diffusers/models/autoencoders/vae.py +995 -0
ICEdit
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Subproject commit 6e4f95590e5b56ca1313dc7f515a4d6bed49244c
|
|
|
|
app.py
CHANGED
@@ -4,7 +4,7 @@ python scripts/gradio_demo.py
|
|
4 |
|
5 |
import sys
|
6 |
import os
|
7 |
-
workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "
|
8 |
|
9 |
if workspace_dir not in sys.path:
|
10 |
sys.path.insert(0, workspace_dir)
|
|
|
4 |
|
5 |
import sys
|
6 |
import os
|
7 |
+
workspace_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "icedit"))
|
8 |
|
9 |
if workspace_dir not in sys.path:
|
10 |
sys.path.insert(0, workspace_dir)
|
icedit/diffusers/__init__.py
ADDED
@@ -0,0 +1,1014 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__version__ = "0.32.2"
|
2 |
+
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
from .utils import (
|
6 |
+
DIFFUSERS_SLOW_IMPORT,
|
7 |
+
OptionalDependencyNotAvailable,
|
8 |
+
_LazyModule,
|
9 |
+
is_flax_available,
|
10 |
+
is_k_diffusion_available,
|
11 |
+
is_librosa_available,
|
12 |
+
is_note_seq_available,
|
13 |
+
is_onnx_available,
|
14 |
+
is_scipy_available,
|
15 |
+
is_sentencepiece_available,
|
16 |
+
is_torch_available,
|
17 |
+
is_torchsde_available,
|
18 |
+
is_transformers_available,
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
# Lazy Import based on
|
23 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/__init__.py
|
24 |
+
|
25 |
+
# When adding a new object to this init, please add it to `_import_structure`. The `_import_structure` is a dictionary submodule to list of object names,
|
26 |
+
# and is used to defer the actual importing for when the objects are requested.
|
27 |
+
# This way `import diffusers` provides the names in the namespace without actually importing anything (and especially none of the backends).
|
28 |
+
|
29 |
+
_import_structure = {
|
30 |
+
"configuration_utils": ["ConfigMixin"],
|
31 |
+
"loaders": ["FromOriginalModelMixin"],
|
32 |
+
"models": [],
|
33 |
+
"pipelines": [],
|
34 |
+
"quantizers.quantization_config": ["BitsAndBytesConfig", "GGUFQuantizationConfig", "TorchAoConfig"],
|
35 |
+
"schedulers": [],
|
36 |
+
"utils": [
|
37 |
+
"OptionalDependencyNotAvailable",
|
38 |
+
"is_flax_available",
|
39 |
+
"is_inflect_available",
|
40 |
+
"is_invisible_watermark_available",
|
41 |
+
"is_k_diffusion_available",
|
42 |
+
"is_k_diffusion_version",
|
43 |
+
"is_librosa_available",
|
44 |
+
"is_note_seq_available",
|
45 |
+
"is_onnx_available",
|
46 |
+
"is_scipy_available",
|
47 |
+
"is_torch_available",
|
48 |
+
"is_torchsde_available",
|
49 |
+
"is_transformers_available",
|
50 |
+
"is_transformers_version",
|
51 |
+
"is_unidecode_available",
|
52 |
+
"logging",
|
53 |
+
],
|
54 |
+
}
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_onnx_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
from .utils import dummy_onnx_objects # noqa F403
|
61 |
+
|
62 |
+
_import_structure["utils.dummy_onnx_objects"] = [
|
63 |
+
name for name in dir(dummy_onnx_objects) if not name.startswith("_")
|
64 |
+
]
|
65 |
+
|
66 |
+
else:
|
67 |
+
_import_structure["pipelines"].extend(["OnnxRuntimeModel"])
|
68 |
+
|
69 |
+
try:
|
70 |
+
if not is_torch_available():
|
71 |
+
raise OptionalDependencyNotAvailable()
|
72 |
+
except OptionalDependencyNotAvailable:
|
73 |
+
from .utils import dummy_pt_objects # noqa F403
|
74 |
+
|
75 |
+
_import_structure["utils.dummy_pt_objects"] = [name for name in dir(dummy_pt_objects) if not name.startswith("_")]
|
76 |
+
|
77 |
+
else:
|
78 |
+
_import_structure["models"].extend(
|
79 |
+
[
|
80 |
+
"AllegroTransformer3DModel",
|
81 |
+
"AsymmetricAutoencoderKL",
|
82 |
+
"AuraFlowTransformer2DModel",
|
83 |
+
"AutoencoderDC",
|
84 |
+
"AutoencoderKL",
|
85 |
+
"AutoencoderKLAllegro",
|
86 |
+
"AutoencoderKLCogVideoX",
|
87 |
+
"AutoencoderKLHunyuanVideo",
|
88 |
+
"AutoencoderKLLTXVideo",
|
89 |
+
"AutoencoderKLMochi",
|
90 |
+
"AutoencoderKLTemporalDecoder",
|
91 |
+
"AutoencoderOobleck",
|
92 |
+
"AutoencoderTiny",
|
93 |
+
"CogVideoXTransformer3DModel",
|
94 |
+
"CogView3PlusTransformer2DModel",
|
95 |
+
"ConsistencyDecoderVAE",
|
96 |
+
"ControlNetModel",
|
97 |
+
"ControlNetUnionModel",
|
98 |
+
"ControlNetXSAdapter",
|
99 |
+
"DiTTransformer2DModel",
|
100 |
+
"FluxControlNetModel",
|
101 |
+
"FluxMultiControlNetModel",
|
102 |
+
"FluxTransformer2DModel",
|
103 |
+
"HunyuanDiT2DControlNetModel",
|
104 |
+
"HunyuanDiT2DModel",
|
105 |
+
"HunyuanDiT2DMultiControlNetModel",
|
106 |
+
"HunyuanVideoTransformer3DModel",
|
107 |
+
"I2VGenXLUNet",
|
108 |
+
"Kandinsky3UNet",
|
109 |
+
"LatteTransformer3DModel",
|
110 |
+
"LTXVideoTransformer3DModel",
|
111 |
+
"LuminaNextDiT2DModel",
|
112 |
+
"MochiTransformer3DModel",
|
113 |
+
"ModelMixin",
|
114 |
+
"MotionAdapter",
|
115 |
+
"MultiAdapter",
|
116 |
+
"MultiControlNetModel",
|
117 |
+
"PixArtTransformer2DModel",
|
118 |
+
"PriorTransformer",
|
119 |
+
"SanaTransformer2DModel",
|
120 |
+
"SD3ControlNetModel",
|
121 |
+
"SD3MultiControlNetModel",
|
122 |
+
"SD3Transformer2DModel",
|
123 |
+
"SparseControlNetModel",
|
124 |
+
"StableAudioDiTModel",
|
125 |
+
"StableCascadeUNet",
|
126 |
+
"T2IAdapter",
|
127 |
+
"T5FilmDecoder",
|
128 |
+
"Transformer2DModel",
|
129 |
+
"UNet1DModel",
|
130 |
+
"UNet2DConditionModel",
|
131 |
+
"UNet2DModel",
|
132 |
+
"UNet3DConditionModel",
|
133 |
+
"UNetControlNetXSModel",
|
134 |
+
"UNetMotionModel",
|
135 |
+
"UNetSpatioTemporalConditionModel",
|
136 |
+
"UVit2DModel",
|
137 |
+
"VQModel",
|
138 |
+
]
|
139 |
+
)
|
140 |
+
_import_structure["optimization"] = [
|
141 |
+
"get_constant_schedule",
|
142 |
+
"get_constant_schedule_with_warmup",
|
143 |
+
"get_cosine_schedule_with_warmup",
|
144 |
+
"get_cosine_with_hard_restarts_schedule_with_warmup",
|
145 |
+
"get_linear_schedule_with_warmup",
|
146 |
+
"get_polynomial_decay_schedule_with_warmup",
|
147 |
+
"get_scheduler",
|
148 |
+
]
|
149 |
+
_import_structure["pipelines"].extend(
|
150 |
+
[
|
151 |
+
"AudioPipelineOutput",
|
152 |
+
"AutoPipelineForImage2Image",
|
153 |
+
"AutoPipelineForInpainting",
|
154 |
+
"AutoPipelineForText2Image",
|
155 |
+
"ConsistencyModelPipeline",
|
156 |
+
"DanceDiffusionPipeline",
|
157 |
+
"DDIMPipeline",
|
158 |
+
"DDPMPipeline",
|
159 |
+
"DiffusionPipeline",
|
160 |
+
"DiTPipeline",
|
161 |
+
"ImagePipelineOutput",
|
162 |
+
"KarrasVePipeline",
|
163 |
+
"LDMPipeline",
|
164 |
+
"LDMSuperResolutionPipeline",
|
165 |
+
"PNDMPipeline",
|
166 |
+
"RePaintPipeline",
|
167 |
+
"ScoreSdeVePipeline",
|
168 |
+
"StableDiffusionMixin",
|
169 |
+
]
|
170 |
+
)
|
171 |
+
_import_structure["quantizers"] = ["DiffusersQuantizer"]
|
172 |
+
_import_structure["schedulers"].extend(
|
173 |
+
[
|
174 |
+
"AmusedScheduler",
|
175 |
+
"CMStochasticIterativeScheduler",
|
176 |
+
"CogVideoXDDIMScheduler",
|
177 |
+
"CogVideoXDPMScheduler",
|
178 |
+
"DDIMInverseScheduler",
|
179 |
+
"DDIMParallelScheduler",
|
180 |
+
"DDIMScheduler",
|
181 |
+
"DDPMParallelScheduler",
|
182 |
+
"DDPMScheduler",
|
183 |
+
"DDPMWuerstchenScheduler",
|
184 |
+
"DEISMultistepScheduler",
|
185 |
+
"DPMSolverMultistepInverseScheduler",
|
186 |
+
"DPMSolverMultistepScheduler",
|
187 |
+
"DPMSolverSinglestepScheduler",
|
188 |
+
"EDMDPMSolverMultistepScheduler",
|
189 |
+
"EDMEulerScheduler",
|
190 |
+
"EulerAncestralDiscreteScheduler",
|
191 |
+
"EulerDiscreteScheduler",
|
192 |
+
"FlowMatchEulerDiscreteScheduler",
|
193 |
+
"FlowMatchHeunDiscreteScheduler",
|
194 |
+
"HeunDiscreteScheduler",
|
195 |
+
"IPNDMScheduler",
|
196 |
+
"KarrasVeScheduler",
|
197 |
+
"KDPM2AncestralDiscreteScheduler",
|
198 |
+
"KDPM2DiscreteScheduler",
|
199 |
+
"LCMScheduler",
|
200 |
+
"PNDMScheduler",
|
201 |
+
"RePaintScheduler",
|
202 |
+
"SASolverScheduler",
|
203 |
+
"SchedulerMixin",
|
204 |
+
"ScoreSdeVeScheduler",
|
205 |
+
"TCDScheduler",
|
206 |
+
"UnCLIPScheduler",
|
207 |
+
"UniPCMultistepScheduler",
|
208 |
+
"VQDiffusionScheduler",
|
209 |
+
]
|
210 |
+
)
|
211 |
+
_import_structure["training_utils"] = ["EMAModel"]
|
212 |
+
|
213 |
+
try:
|
214 |
+
if not (is_torch_available() and is_scipy_available()):
|
215 |
+
raise OptionalDependencyNotAvailable()
|
216 |
+
except OptionalDependencyNotAvailable:
|
217 |
+
from .utils import dummy_torch_and_scipy_objects # noqa F403
|
218 |
+
|
219 |
+
_import_structure["utils.dummy_torch_and_scipy_objects"] = [
|
220 |
+
name for name in dir(dummy_torch_and_scipy_objects) if not name.startswith("_")
|
221 |
+
]
|
222 |
+
|
223 |
+
else:
|
224 |
+
_import_structure["schedulers"].extend(["LMSDiscreteScheduler"])
|
225 |
+
|
226 |
+
try:
|
227 |
+
if not (is_torch_available() and is_torchsde_available()):
|
228 |
+
raise OptionalDependencyNotAvailable()
|
229 |
+
except OptionalDependencyNotAvailable:
|
230 |
+
from .utils import dummy_torch_and_torchsde_objects # noqa F403
|
231 |
+
|
232 |
+
_import_structure["utils.dummy_torch_and_torchsde_objects"] = [
|
233 |
+
name for name in dir(dummy_torch_and_torchsde_objects) if not name.startswith("_")
|
234 |
+
]
|
235 |
+
|
236 |
+
else:
|
237 |
+
_import_structure["schedulers"].extend(["CosineDPMSolverMultistepScheduler", "DPMSolverSDEScheduler"])
|
238 |
+
|
239 |
+
try:
|
240 |
+
if not (is_torch_available() and is_transformers_available()):
|
241 |
+
raise OptionalDependencyNotAvailable()
|
242 |
+
except OptionalDependencyNotAvailable:
|
243 |
+
from .utils import dummy_torch_and_transformers_objects # noqa F403
|
244 |
+
|
245 |
+
_import_structure["utils.dummy_torch_and_transformers_objects"] = [
|
246 |
+
name for name in dir(dummy_torch_and_transformers_objects) if not name.startswith("_")
|
247 |
+
]
|
248 |
+
|
249 |
+
else:
|
250 |
+
_import_structure["pipelines"].extend(
|
251 |
+
[
|
252 |
+
"AllegroPipeline",
|
253 |
+
"AltDiffusionImg2ImgPipeline",
|
254 |
+
"AltDiffusionPipeline",
|
255 |
+
"AmusedImg2ImgPipeline",
|
256 |
+
"AmusedInpaintPipeline",
|
257 |
+
"AmusedPipeline",
|
258 |
+
"AnimateDiffControlNetPipeline",
|
259 |
+
"AnimateDiffPAGPipeline",
|
260 |
+
"AnimateDiffPipeline",
|
261 |
+
"AnimateDiffSDXLPipeline",
|
262 |
+
"AnimateDiffSparseControlNetPipeline",
|
263 |
+
"AnimateDiffVideoToVideoControlNetPipeline",
|
264 |
+
"AnimateDiffVideoToVideoPipeline",
|
265 |
+
"AudioLDM2Pipeline",
|
266 |
+
"AudioLDM2ProjectionModel",
|
267 |
+
"AudioLDM2UNet2DConditionModel",
|
268 |
+
"AudioLDMPipeline",
|
269 |
+
"AuraFlowPipeline",
|
270 |
+
"BlipDiffusionControlNetPipeline",
|
271 |
+
"BlipDiffusionPipeline",
|
272 |
+
"CLIPImageProjection",
|
273 |
+
"CogVideoXFunControlPipeline",
|
274 |
+
"CogVideoXImageToVideoPipeline",
|
275 |
+
"CogVideoXPipeline",
|
276 |
+
"CogVideoXVideoToVideoPipeline",
|
277 |
+
"CogView3PlusPipeline",
|
278 |
+
"CycleDiffusionPipeline",
|
279 |
+
"FluxControlImg2ImgPipeline",
|
280 |
+
"FluxControlInpaintPipeline",
|
281 |
+
"FluxControlNetImg2ImgPipeline",
|
282 |
+
"FluxControlNetInpaintPipeline",
|
283 |
+
"FluxControlNetPipeline",
|
284 |
+
"FluxControlPipeline",
|
285 |
+
"FluxFillPipeline",
|
286 |
+
"FluxImg2ImgPipeline",
|
287 |
+
"FluxInpaintPipeline",
|
288 |
+
"FluxPipeline",
|
289 |
+
"FluxPriorReduxPipeline",
|
290 |
+
"HunyuanDiTControlNetPipeline",
|
291 |
+
"HunyuanDiTPAGPipeline",
|
292 |
+
"HunyuanDiTPipeline",
|
293 |
+
"HunyuanVideoPipeline",
|
294 |
+
"I2VGenXLPipeline",
|
295 |
+
"IFImg2ImgPipeline",
|
296 |
+
"IFImg2ImgSuperResolutionPipeline",
|
297 |
+
"IFInpaintingPipeline",
|
298 |
+
"IFInpaintingSuperResolutionPipeline",
|
299 |
+
"IFPipeline",
|
300 |
+
"IFSuperResolutionPipeline",
|
301 |
+
"ImageTextPipelineOutput",
|
302 |
+
"Kandinsky3Img2ImgPipeline",
|
303 |
+
"Kandinsky3Pipeline",
|
304 |
+
"KandinskyCombinedPipeline",
|
305 |
+
"KandinskyImg2ImgCombinedPipeline",
|
306 |
+
"KandinskyImg2ImgPipeline",
|
307 |
+
"KandinskyInpaintCombinedPipeline",
|
308 |
+
"KandinskyInpaintPipeline",
|
309 |
+
"KandinskyPipeline",
|
310 |
+
"KandinskyPriorPipeline",
|
311 |
+
"KandinskyV22CombinedPipeline",
|
312 |
+
"KandinskyV22ControlnetImg2ImgPipeline",
|
313 |
+
"KandinskyV22ControlnetPipeline",
|
314 |
+
"KandinskyV22Img2ImgCombinedPipeline",
|
315 |
+
"KandinskyV22Img2ImgPipeline",
|
316 |
+
"KandinskyV22InpaintCombinedPipeline",
|
317 |
+
"KandinskyV22InpaintPipeline",
|
318 |
+
"KandinskyV22Pipeline",
|
319 |
+
"KandinskyV22PriorEmb2EmbPipeline",
|
320 |
+
"KandinskyV22PriorPipeline",
|
321 |
+
"LatentConsistencyModelImg2ImgPipeline",
|
322 |
+
"LatentConsistencyModelPipeline",
|
323 |
+
"LattePipeline",
|
324 |
+
"LDMTextToImagePipeline",
|
325 |
+
"LEditsPPPipelineStableDiffusion",
|
326 |
+
"LEditsPPPipelineStableDiffusionXL",
|
327 |
+
"LTXImageToVideoPipeline",
|
328 |
+
"LTXPipeline",
|
329 |
+
"LuminaText2ImgPipeline",
|
330 |
+
"MarigoldDepthPipeline",
|
331 |
+
"MarigoldNormalsPipeline",
|
332 |
+
"MochiPipeline",
|
333 |
+
"MusicLDMPipeline",
|
334 |
+
"PaintByExamplePipeline",
|
335 |
+
"PIAPipeline",
|
336 |
+
"PixArtAlphaPipeline",
|
337 |
+
"PixArtSigmaPAGPipeline",
|
338 |
+
"PixArtSigmaPipeline",
|
339 |
+
"ReduxImageEncoder",
|
340 |
+
"SanaPAGPipeline",
|
341 |
+
"SanaPipeline",
|
342 |
+
"SemanticStableDiffusionPipeline",
|
343 |
+
"ShapEImg2ImgPipeline",
|
344 |
+
"ShapEPipeline",
|
345 |
+
"StableAudioPipeline",
|
346 |
+
"StableAudioProjectionModel",
|
347 |
+
"StableCascadeCombinedPipeline",
|
348 |
+
"StableCascadeDecoderPipeline",
|
349 |
+
"StableCascadePriorPipeline",
|
350 |
+
"StableDiffusion3ControlNetInpaintingPipeline",
|
351 |
+
"StableDiffusion3ControlNetPipeline",
|
352 |
+
"StableDiffusion3Img2ImgPipeline",
|
353 |
+
"StableDiffusion3InpaintPipeline",
|
354 |
+
"StableDiffusion3PAGImg2ImgPipeline",
|
355 |
+
"StableDiffusion3PAGImg2ImgPipeline",
|
356 |
+
"StableDiffusion3PAGPipeline",
|
357 |
+
"StableDiffusion3Pipeline",
|
358 |
+
"StableDiffusionAdapterPipeline",
|
359 |
+
"StableDiffusionAttendAndExcitePipeline",
|
360 |
+
"StableDiffusionControlNetImg2ImgPipeline",
|
361 |
+
"StableDiffusionControlNetInpaintPipeline",
|
362 |
+
"StableDiffusionControlNetPAGInpaintPipeline",
|
363 |
+
"StableDiffusionControlNetPAGPipeline",
|
364 |
+
"StableDiffusionControlNetPipeline",
|
365 |
+
"StableDiffusionControlNetXSPipeline",
|
366 |
+
"StableDiffusionDepth2ImgPipeline",
|
367 |
+
"StableDiffusionDiffEditPipeline",
|
368 |
+
"StableDiffusionGLIGENPipeline",
|
369 |
+
"StableDiffusionGLIGENTextImagePipeline",
|
370 |
+
"StableDiffusionImageVariationPipeline",
|
371 |
+
"StableDiffusionImg2ImgPipeline",
|
372 |
+
"StableDiffusionInpaintPipeline",
|
373 |
+
"StableDiffusionInpaintPipelineLegacy",
|
374 |
+
"StableDiffusionInstructPix2PixPipeline",
|
375 |
+
"StableDiffusionLatentUpscalePipeline",
|
376 |
+
"StableDiffusionLDM3DPipeline",
|
377 |
+
"StableDiffusionModelEditingPipeline",
|
378 |
+
"StableDiffusionPAGImg2ImgPipeline",
|
379 |
+
"StableDiffusionPAGInpaintPipeline",
|
380 |
+
"StableDiffusionPAGPipeline",
|
381 |
+
"StableDiffusionPanoramaPipeline",
|
382 |
+
"StableDiffusionParadigmsPipeline",
|
383 |
+
"StableDiffusionPipeline",
|
384 |
+
"StableDiffusionPipelineSafe",
|
385 |
+
"StableDiffusionPix2PixZeroPipeline",
|
386 |
+
"StableDiffusionSAGPipeline",
|
387 |
+
"StableDiffusionUpscalePipeline",
|
388 |
+
"StableDiffusionXLAdapterPipeline",
|
389 |
+
"StableDiffusionXLControlNetImg2ImgPipeline",
|
390 |
+
"StableDiffusionXLControlNetInpaintPipeline",
|
391 |
+
"StableDiffusionXLControlNetPAGImg2ImgPipeline",
|
392 |
+
"StableDiffusionXLControlNetPAGPipeline",
|
393 |
+
"StableDiffusionXLControlNetPipeline",
|
394 |
+
"StableDiffusionXLControlNetUnionImg2ImgPipeline",
|
395 |
+
"StableDiffusionXLControlNetUnionInpaintPipeline",
|
396 |
+
"StableDiffusionXLControlNetUnionPipeline",
|
397 |
+
"StableDiffusionXLControlNetXSPipeline",
|
398 |
+
"StableDiffusionXLImg2ImgPipeline",
|
399 |
+
"StableDiffusionXLInpaintPipeline",
|
400 |
+
"StableDiffusionXLInstructPix2PixPipeline",
|
401 |
+
"StableDiffusionXLPAGImg2ImgPipeline",
|
402 |
+
"StableDiffusionXLPAGInpaintPipeline",
|
403 |
+
"StableDiffusionXLPAGPipeline",
|
404 |
+
"StableDiffusionXLPipeline",
|
405 |
+
"StableUnCLIPImg2ImgPipeline",
|
406 |
+
"StableUnCLIPPipeline",
|
407 |
+
"StableVideoDiffusionPipeline",
|
408 |
+
"TextToVideoSDPipeline",
|
409 |
+
"TextToVideoZeroPipeline",
|
410 |
+
"TextToVideoZeroSDXLPipeline",
|
411 |
+
"UnCLIPImageVariationPipeline",
|
412 |
+
"UnCLIPPipeline",
|
413 |
+
"UniDiffuserModel",
|
414 |
+
"UniDiffuserPipeline",
|
415 |
+
"UniDiffuserTextDecoder",
|
416 |
+
"VersatileDiffusionDualGuidedPipeline",
|
417 |
+
"VersatileDiffusionImageVariationPipeline",
|
418 |
+
"VersatileDiffusionPipeline",
|
419 |
+
"VersatileDiffusionTextToImagePipeline",
|
420 |
+
"VideoToVideoSDPipeline",
|
421 |
+
"VQDiffusionPipeline",
|
422 |
+
"WuerstchenCombinedPipeline",
|
423 |
+
"WuerstchenDecoderPipeline",
|
424 |
+
"WuerstchenPriorPipeline",
|
425 |
+
]
|
426 |
+
)
|
427 |
+
|
428 |
+
try:
|
429 |
+
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
430 |
+
raise OptionalDependencyNotAvailable()
|
431 |
+
except OptionalDependencyNotAvailable:
|
432 |
+
from .utils import dummy_torch_and_transformers_and_k_diffusion_objects # noqa F403
|
433 |
+
|
434 |
+
_import_structure["utils.dummy_torch_and_transformers_and_k_diffusion_objects"] = [
|
435 |
+
name for name in dir(dummy_torch_and_transformers_and_k_diffusion_objects) if not name.startswith("_")
|
436 |
+
]
|
437 |
+
|
438 |
+
else:
|
439 |
+
_import_structure["pipelines"].extend(["StableDiffusionKDiffusionPipeline", "StableDiffusionXLKDiffusionPipeline"])
|
440 |
+
|
441 |
+
try:
|
442 |
+
if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()):
|
443 |
+
raise OptionalDependencyNotAvailable()
|
444 |
+
except OptionalDependencyNotAvailable:
|
445 |
+
from .utils import dummy_torch_and_transformers_and_sentencepiece_objects # noqa F403
|
446 |
+
|
447 |
+
_import_structure["utils.dummy_torch_and_transformers_and_sentencepiece_objects"] = [
|
448 |
+
name for name in dir(dummy_torch_and_transformers_and_sentencepiece_objects) if not name.startswith("_")
|
449 |
+
]
|
450 |
+
|
451 |
+
else:
|
452 |
+
_import_structure["pipelines"].extend(["KolorsImg2ImgPipeline", "KolorsPAGPipeline", "KolorsPipeline"])
|
453 |
+
|
454 |
+
try:
|
455 |
+
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
|
456 |
+
raise OptionalDependencyNotAvailable()
|
457 |
+
except OptionalDependencyNotAvailable:
|
458 |
+
from .utils import dummy_torch_and_transformers_and_onnx_objects # noqa F403
|
459 |
+
|
460 |
+
_import_structure["utils.dummy_torch_and_transformers_and_onnx_objects"] = [
|
461 |
+
name for name in dir(dummy_torch_and_transformers_and_onnx_objects) if not name.startswith("_")
|
462 |
+
]
|
463 |
+
|
464 |
+
else:
|
465 |
+
_import_structure["pipelines"].extend(
|
466 |
+
[
|
467 |
+
"OnnxStableDiffusionImg2ImgPipeline",
|
468 |
+
"OnnxStableDiffusionInpaintPipeline",
|
469 |
+
"OnnxStableDiffusionInpaintPipelineLegacy",
|
470 |
+
"OnnxStableDiffusionPipeline",
|
471 |
+
"OnnxStableDiffusionUpscalePipeline",
|
472 |
+
"StableDiffusionOnnxPipeline",
|
473 |
+
]
|
474 |
+
)
|
475 |
+
|
476 |
+
try:
|
477 |
+
if not (is_torch_available() and is_librosa_available()):
|
478 |
+
raise OptionalDependencyNotAvailable()
|
479 |
+
except OptionalDependencyNotAvailable:
|
480 |
+
from .utils import dummy_torch_and_librosa_objects # noqa F403
|
481 |
+
|
482 |
+
_import_structure["utils.dummy_torch_and_librosa_objects"] = [
|
483 |
+
name for name in dir(dummy_torch_and_librosa_objects) if not name.startswith("_")
|
484 |
+
]
|
485 |
+
|
486 |
+
else:
|
487 |
+
_import_structure["pipelines"].extend(["AudioDiffusionPipeline", "Mel"])
|
488 |
+
|
489 |
+
try:
|
490 |
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
491 |
+
raise OptionalDependencyNotAvailable()
|
492 |
+
except OptionalDependencyNotAvailable:
|
493 |
+
from .utils import dummy_transformers_and_torch_and_note_seq_objects # noqa F403
|
494 |
+
|
495 |
+
_import_structure["utils.dummy_transformers_and_torch_and_note_seq_objects"] = [
|
496 |
+
name for name in dir(dummy_transformers_and_torch_and_note_seq_objects) if not name.startswith("_")
|
497 |
+
]
|
498 |
+
|
499 |
+
|
500 |
+
else:
|
501 |
+
_import_structure["pipelines"].extend(["SpectrogramDiffusionPipeline"])
|
502 |
+
|
503 |
+
try:
|
504 |
+
if not is_flax_available():
|
505 |
+
raise OptionalDependencyNotAvailable()
|
506 |
+
except OptionalDependencyNotAvailable:
|
507 |
+
from .utils import dummy_flax_objects # noqa F403
|
508 |
+
|
509 |
+
_import_structure["utils.dummy_flax_objects"] = [
|
510 |
+
name for name in dir(dummy_flax_objects) if not name.startswith("_")
|
511 |
+
]
|
512 |
+
|
513 |
+
|
514 |
+
else:
|
515 |
+
_import_structure["models.controlnets.controlnet_flax"] = ["FlaxControlNetModel"]
|
516 |
+
_import_structure["models.modeling_flax_utils"] = ["FlaxModelMixin"]
|
517 |
+
_import_structure["models.unets.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
|
518 |
+
_import_structure["models.vae_flax"] = ["FlaxAutoencoderKL"]
|
519 |
+
_import_structure["pipelines"].extend(["FlaxDiffusionPipeline"])
|
520 |
+
_import_structure["schedulers"].extend(
|
521 |
+
[
|
522 |
+
"FlaxDDIMScheduler",
|
523 |
+
"FlaxDDPMScheduler",
|
524 |
+
"FlaxDPMSolverMultistepScheduler",
|
525 |
+
"FlaxEulerDiscreteScheduler",
|
526 |
+
"FlaxKarrasVeScheduler",
|
527 |
+
"FlaxLMSDiscreteScheduler",
|
528 |
+
"FlaxPNDMScheduler",
|
529 |
+
"FlaxSchedulerMixin",
|
530 |
+
"FlaxScoreSdeVeScheduler",
|
531 |
+
]
|
532 |
+
)
|
533 |
+
|
534 |
+
|
535 |
+
try:
|
536 |
+
if not (is_flax_available() and is_transformers_available()):
|
537 |
+
raise OptionalDependencyNotAvailable()
|
538 |
+
except OptionalDependencyNotAvailable:
|
539 |
+
from .utils import dummy_flax_and_transformers_objects # noqa F403
|
540 |
+
|
541 |
+
_import_structure["utils.dummy_flax_and_transformers_objects"] = [
|
542 |
+
name for name in dir(dummy_flax_and_transformers_objects) if not name.startswith("_")
|
543 |
+
]
|
544 |
+
|
545 |
+
|
546 |
+
else:
|
547 |
+
_import_structure["pipelines"].extend(
|
548 |
+
[
|
549 |
+
"FlaxStableDiffusionControlNetPipeline",
|
550 |
+
"FlaxStableDiffusionImg2ImgPipeline",
|
551 |
+
"FlaxStableDiffusionInpaintPipeline",
|
552 |
+
"FlaxStableDiffusionPipeline",
|
553 |
+
"FlaxStableDiffusionXLPipeline",
|
554 |
+
]
|
555 |
+
)
|
556 |
+
|
557 |
+
try:
|
558 |
+
if not (is_note_seq_available()):
|
559 |
+
raise OptionalDependencyNotAvailable()
|
560 |
+
except OptionalDependencyNotAvailable:
|
561 |
+
from .utils import dummy_note_seq_objects # noqa F403
|
562 |
+
|
563 |
+
_import_structure["utils.dummy_note_seq_objects"] = [
|
564 |
+
name for name in dir(dummy_note_seq_objects) if not name.startswith("_")
|
565 |
+
]
|
566 |
+
|
567 |
+
|
568 |
+
else:
|
569 |
+
_import_structure["pipelines"].extend(["MidiProcessor"])
|
570 |
+
|
571 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
572 |
+
from .configuration_utils import ConfigMixin
|
573 |
+
from .quantizers.quantization_config import BitsAndBytesConfig, GGUFQuantizationConfig, TorchAoConfig
|
574 |
+
|
575 |
+
try:
|
576 |
+
if not is_onnx_available():
|
577 |
+
raise OptionalDependencyNotAvailable()
|
578 |
+
except OptionalDependencyNotAvailable:
|
579 |
+
from .utils.dummy_onnx_objects import * # noqa F403
|
580 |
+
else:
|
581 |
+
from .pipelines import OnnxRuntimeModel
|
582 |
+
|
583 |
+
try:
|
584 |
+
if not is_torch_available():
|
585 |
+
raise OptionalDependencyNotAvailable()
|
586 |
+
except OptionalDependencyNotAvailable:
|
587 |
+
from .utils.dummy_pt_objects import * # noqa F403
|
588 |
+
else:
|
589 |
+
from .models import (
|
590 |
+
AllegroTransformer3DModel,
|
591 |
+
AsymmetricAutoencoderKL,
|
592 |
+
AuraFlowTransformer2DModel,
|
593 |
+
AutoencoderDC,
|
594 |
+
AutoencoderKL,
|
595 |
+
AutoencoderKLAllegro,
|
596 |
+
AutoencoderKLCogVideoX,
|
597 |
+
AutoencoderKLHunyuanVideo,
|
598 |
+
AutoencoderKLLTXVideo,
|
599 |
+
AutoencoderKLMochi,
|
600 |
+
AutoencoderKLTemporalDecoder,
|
601 |
+
AutoencoderOobleck,
|
602 |
+
AutoencoderTiny,
|
603 |
+
CogVideoXTransformer3DModel,
|
604 |
+
CogView3PlusTransformer2DModel,
|
605 |
+
ConsistencyDecoderVAE,
|
606 |
+
ControlNetModel,
|
607 |
+
ControlNetUnionModel,
|
608 |
+
ControlNetXSAdapter,
|
609 |
+
DiTTransformer2DModel,
|
610 |
+
FluxControlNetModel,
|
611 |
+
FluxMultiControlNetModel,
|
612 |
+
FluxTransformer2DModel,
|
613 |
+
HunyuanDiT2DControlNetModel,
|
614 |
+
HunyuanDiT2DModel,
|
615 |
+
HunyuanDiT2DMultiControlNetModel,
|
616 |
+
HunyuanVideoTransformer3DModel,
|
617 |
+
I2VGenXLUNet,
|
618 |
+
Kandinsky3UNet,
|
619 |
+
LatteTransformer3DModel,
|
620 |
+
LTXVideoTransformer3DModel,
|
621 |
+
LuminaNextDiT2DModel,
|
622 |
+
MochiTransformer3DModel,
|
623 |
+
ModelMixin,
|
624 |
+
MotionAdapter,
|
625 |
+
MultiAdapter,
|
626 |
+
MultiControlNetModel,
|
627 |
+
PixArtTransformer2DModel,
|
628 |
+
PriorTransformer,
|
629 |
+
SanaTransformer2DModel,
|
630 |
+
SD3ControlNetModel,
|
631 |
+
SD3MultiControlNetModel,
|
632 |
+
SD3Transformer2DModel,
|
633 |
+
SparseControlNetModel,
|
634 |
+
StableAudioDiTModel,
|
635 |
+
T2IAdapter,
|
636 |
+
T5FilmDecoder,
|
637 |
+
Transformer2DModel,
|
638 |
+
UNet1DModel,
|
639 |
+
UNet2DConditionModel,
|
640 |
+
UNet2DModel,
|
641 |
+
UNet3DConditionModel,
|
642 |
+
UNetControlNetXSModel,
|
643 |
+
UNetMotionModel,
|
644 |
+
UNetSpatioTemporalConditionModel,
|
645 |
+
UVit2DModel,
|
646 |
+
VQModel,
|
647 |
+
)
|
648 |
+
from .optimization import (
|
649 |
+
get_constant_schedule,
|
650 |
+
get_constant_schedule_with_warmup,
|
651 |
+
get_cosine_schedule_with_warmup,
|
652 |
+
get_cosine_with_hard_restarts_schedule_with_warmup,
|
653 |
+
get_linear_schedule_with_warmup,
|
654 |
+
get_polynomial_decay_schedule_with_warmup,
|
655 |
+
get_scheduler,
|
656 |
+
)
|
657 |
+
from .pipelines import (
|
658 |
+
AudioPipelineOutput,
|
659 |
+
AutoPipelineForImage2Image,
|
660 |
+
AutoPipelineForInpainting,
|
661 |
+
AutoPipelineForText2Image,
|
662 |
+
BlipDiffusionControlNetPipeline,
|
663 |
+
BlipDiffusionPipeline,
|
664 |
+
CLIPImageProjection,
|
665 |
+
ConsistencyModelPipeline,
|
666 |
+
DanceDiffusionPipeline,
|
667 |
+
DDIMPipeline,
|
668 |
+
DDPMPipeline,
|
669 |
+
DiffusionPipeline,
|
670 |
+
DiTPipeline,
|
671 |
+
ImagePipelineOutput,
|
672 |
+
KarrasVePipeline,
|
673 |
+
LDMPipeline,
|
674 |
+
LDMSuperResolutionPipeline,
|
675 |
+
PNDMPipeline,
|
676 |
+
RePaintPipeline,
|
677 |
+
ScoreSdeVePipeline,
|
678 |
+
StableDiffusionMixin,
|
679 |
+
)
|
680 |
+
from .quantizers import DiffusersQuantizer
|
681 |
+
from .schedulers import (
|
682 |
+
AmusedScheduler,
|
683 |
+
CMStochasticIterativeScheduler,
|
684 |
+
CogVideoXDDIMScheduler,
|
685 |
+
CogVideoXDPMScheduler,
|
686 |
+
DDIMInverseScheduler,
|
687 |
+
DDIMParallelScheduler,
|
688 |
+
DDIMScheduler,
|
689 |
+
DDPMParallelScheduler,
|
690 |
+
DDPMScheduler,
|
691 |
+
DDPMWuerstchenScheduler,
|
692 |
+
DEISMultistepScheduler,
|
693 |
+
DPMSolverMultistepInverseScheduler,
|
694 |
+
DPMSolverMultistepScheduler,
|
695 |
+
DPMSolverSinglestepScheduler,
|
696 |
+
EDMDPMSolverMultistepScheduler,
|
697 |
+
EDMEulerScheduler,
|
698 |
+
EulerAncestralDiscreteScheduler,
|
699 |
+
EulerDiscreteScheduler,
|
700 |
+
FlowMatchEulerDiscreteScheduler,
|
701 |
+
FlowMatchHeunDiscreteScheduler,
|
702 |
+
HeunDiscreteScheduler,
|
703 |
+
IPNDMScheduler,
|
704 |
+
KarrasVeScheduler,
|
705 |
+
KDPM2AncestralDiscreteScheduler,
|
706 |
+
KDPM2DiscreteScheduler,
|
707 |
+
LCMScheduler,
|
708 |
+
PNDMScheduler,
|
709 |
+
RePaintScheduler,
|
710 |
+
SASolverScheduler,
|
711 |
+
SchedulerMixin,
|
712 |
+
ScoreSdeVeScheduler,
|
713 |
+
TCDScheduler,
|
714 |
+
UnCLIPScheduler,
|
715 |
+
UniPCMultistepScheduler,
|
716 |
+
VQDiffusionScheduler,
|
717 |
+
)
|
718 |
+
from .training_utils import EMAModel
|
719 |
+
|
720 |
+
try:
|
721 |
+
if not (is_torch_available() and is_scipy_available()):
|
722 |
+
raise OptionalDependencyNotAvailable()
|
723 |
+
except OptionalDependencyNotAvailable:
|
724 |
+
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
|
725 |
+
else:
|
726 |
+
from .schedulers import LMSDiscreteScheduler
|
727 |
+
|
728 |
+
try:
|
729 |
+
if not (is_torch_available() and is_torchsde_available()):
|
730 |
+
raise OptionalDependencyNotAvailable()
|
731 |
+
except OptionalDependencyNotAvailable:
|
732 |
+
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
|
733 |
+
else:
|
734 |
+
from .schedulers import CosineDPMSolverMultistepScheduler, DPMSolverSDEScheduler
|
735 |
+
|
736 |
+
try:
|
737 |
+
if not (is_torch_available() and is_transformers_available()):
|
738 |
+
raise OptionalDependencyNotAvailable()
|
739 |
+
except OptionalDependencyNotAvailable:
|
740 |
+
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
|
741 |
+
else:
|
742 |
+
from .pipelines import (
|
743 |
+
AllegroPipeline,
|
744 |
+
AltDiffusionImg2ImgPipeline,
|
745 |
+
AltDiffusionPipeline,
|
746 |
+
AmusedImg2ImgPipeline,
|
747 |
+
AmusedInpaintPipeline,
|
748 |
+
AmusedPipeline,
|
749 |
+
AnimateDiffControlNetPipeline,
|
750 |
+
AnimateDiffPAGPipeline,
|
751 |
+
AnimateDiffPipeline,
|
752 |
+
AnimateDiffSDXLPipeline,
|
753 |
+
AnimateDiffSparseControlNetPipeline,
|
754 |
+
AnimateDiffVideoToVideoControlNetPipeline,
|
755 |
+
AnimateDiffVideoToVideoPipeline,
|
756 |
+
AudioLDM2Pipeline,
|
757 |
+
AudioLDM2ProjectionModel,
|
758 |
+
AudioLDM2UNet2DConditionModel,
|
759 |
+
AudioLDMPipeline,
|
760 |
+
AuraFlowPipeline,
|
761 |
+
CLIPImageProjection,
|
762 |
+
CogVideoXFunControlPipeline,
|
763 |
+
CogVideoXImageToVideoPipeline,
|
764 |
+
CogVideoXPipeline,
|
765 |
+
CogVideoXVideoToVideoPipeline,
|
766 |
+
CogView3PlusPipeline,
|
767 |
+
CycleDiffusionPipeline,
|
768 |
+
FluxControlImg2ImgPipeline,
|
769 |
+
FluxControlInpaintPipeline,
|
770 |
+
FluxControlNetImg2ImgPipeline,
|
771 |
+
FluxControlNetInpaintPipeline,
|
772 |
+
FluxControlNetPipeline,
|
773 |
+
FluxControlPipeline,
|
774 |
+
FluxFillPipeline,
|
775 |
+
FluxImg2ImgPipeline,
|
776 |
+
FluxInpaintPipeline,
|
777 |
+
FluxPipeline,
|
778 |
+
FluxPriorReduxPipeline,
|
779 |
+
HunyuanDiTControlNetPipeline,
|
780 |
+
HunyuanDiTPAGPipeline,
|
781 |
+
HunyuanDiTPipeline,
|
782 |
+
HunyuanVideoPipeline,
|
783 |
+
I2VGenXLPipeline,
|
784 |
+
IFImg2ImgPipeline,
|
785 |
+
IFImg2ImgSuperResolutionPipeline,
|
786 |
+
IFInpaintingPipeline,
|
787 |
+
IFInpaintingSuperResolutionPipeline,
|
788 |
+
IFPipeline,
|
789 |
+
IFSuperResolutionPipeline,
|
790 |
+
ImageTextPipelineOutput,
|
791 |
+
Kandinsky3Img2ImgPipeline,
|
792 |
+
Kandinsky3Pipeline,
|
793 |
+
KandinskyCombinedPipeline,
|
794 |
+
KandinskyImg2ImgCombinedPipeline,
|
795 |
+
KandinskyImg2ImgPipeline,
|
796 |
+
KandinskyInpaintCombinedPipeline,
|
797 |
+
KandinskyInpaintPipeline,
|
798 |
+
KandinskyPipeline,
|
799 |
+
KandinskyPriorPipeline,
|
800 |
+
KandinskyV22CombinedPipeline,
|
801 |
+
KandinskyV22ControlnetImg2ImgPipeline,
|
802 |
+
KandinskyV22ControlnetPipeline,
|
803 |
+
KandinskyV22Img2ImgCombinedPipeline,
|
804 |
+
KandinskyV22Img2ImgPipeline,
|
805 |
+
KandinskyV22InpaintCombinedPipeline,
|
806 |
+
KandinskyV22InpaintPipeline,
|
807 |
+
KandinskyV22Pipeline,
|
808 |
+
KandinskyV22PriorEmb2EmbPipeline,
|
809 |
+
KandinskyV22PriorPipeline,
|
810 |
+
LatentConsistencyModelImg2ImgPipeline,
|
811 |
+
LatentConsistencyModelPipeline,
|
812 |
+
LattePipeline,
|
813 |
+
LDMTextToImagePipeline,
|
814 |
+
LEditsPPPipelineStableDiffusion,
|
815 |
+
LEditsPPPipelineStableDiffusionXL,
|
816 |
+
LTXImageToVideoPipeline,
|
817 |
+
LTXPipeline,
|
818 |
+
LuminaText2ImgPipeline,
|
819 |
+
MarigoldDepthPipeline,
|
820 |
+
MarigoldNormalsPipeline,
|
821 |
+
MochiPipeline,
|
822 |
+
MusicLDMPipeline,
|
823 |
+
PaintByExamplePipeline,
|
824 |
+
PIAPipeline,
|
825 |
+
PixArtAlphaPipeline,
|
826 |
+
PixArtSigmaPAGPipeline,
|
827 |
+
PixArtSigmaPipeline,
|
828 |
+
ReduxImageEncoder,
|
829 |
+
SanaPAGPipeline,
|
830 |
+
SanaPipeline,
|
831 |
+
SemanticStableDiffusionPipeline,
|
832 |
+
ShapEImg2ImgPipeline,
|
833 |
+
ShapEPipeline,
|
834 |
+
StableAudioPipeline,
|
835 |
+
StableAudioProjectionModel,
|
836 |
+
StableCascadeCombinedPipeline,
|
837 |
+
StableCascadeDecoderPipeline,
|
838 |
+
StableCascadePriorPipeline,
|
839 |
+
StableDiffusion3ControlNetPipeline,
|
840 |
+
StableDiffusion3Img2ImgPipeline,
|
841 |
+
StableDiffusion3InpaintPipeline,
|
842 |
+
StableDiffusion3PAGImg2ImgPipeline,
|
843 |
+
StableDiffusion3PAGPipeline,
|
844 |
+
StableDiffusion3Pipeline,
|
845 |
+
StableDiffusionAdapterPipeline,
|
846 |
+
StableDiffusionAttendAndExcitePipeline,
|
847 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
848 |
+
StableDiffusionControlNetInpaintPipeline,
|
849 |
+
StableDiffusionControlNetPAGInpaintPipeline,
|
850 |
+
StableDiffusionControlNetPAGPipeline,
|
851 |
+
StableDiffusionControlNetPipeline,
|
852 |
+
StableDiffusionControlNetXSPipeline,
|
853 |
+
StableDiffusionDepth2ImgPipeline,
|
854 |
+
StableDiffusionDiffEditPipeline,
|
855 |
+
StableDiffusionGLIGENPipeline,
|
856 |
+
StableDiffusionGLIGENTextImagePipeline,
|
857 |
+
StableDiffusionImageVariationPipeline,
|
858 |
+
StableDiffusionImg2ImgPipeline,
|
859 |
+
StableDiffusionInpaintPipeline,
|
860 |
+
StableDiffusionInpaintPipelineLegacy,
|
861 |
+
StableDiffusionInstructPix2PixPipeline,
|
862 |
+
StableDiffusionLatentUpscalePipeline,
|
863 |
+
StableDiffusionLDM3DPipeline,
|
864 |
+
StableDiffusionModelEditingPipeline,
|
865 |
+
StableDiffusionPAGImg2ImgPipeline,
|
866 |
+
StableDiffusionPAGInpaintPipeline,
|
867 |
+
StableDiffusionPAGPipeline,
|
868 |
+
StableDiffusionPanoramaPipeline,
|
869 |
+
StableDiffusionParadigmsPipeline,
|
870 |
+
StableDiffusionPipeline,
|
871 |
+
StableDiffusionPipelineSafe,
|
872 |
+
StableDiffusionPix2PixZeroPipeline,
|
873 |
+
StableDiffusionSAGPipeline,
|
874 |
+
StableDiffusionUpscalePipeline,
|
875 |
+
StableDiffusionXLAdapterPipeline,
|
876 |
+
StableDiffusionXLControlNetImg2ImgPipeline,
|
877 |
+
StableDiffusionXLControlNetInpaintPipeline,
|
878 |
+
StableDiffusionXLControlNetPAGImg2ImgPipeline,
|
879 |
+
StableDiffusionXLControlNetPAGPipeline,
|
880 |
+
StableDiffusionXLControlNetPipeline,
|
881 |
+
StableDiffusionXLControlNetUnionImg2ImgPipeline,
|
882 |
+
StableDiffusionXLControlNetUnionInpaintPipeline,
|
883 |
+
StableDiffusionXLControlNetUnionPipeline,
|
884 |
+
StableDiffusionXLControlNetXSPipeline,
|
885 |
+
StableDiffusionXLImg2ImgPipeline,
|
886 |
+
StableDiffusionXLInpaintPipeline,
|
887 |
+
StableDiffusionXLInstructPix2PixPipeline,
|
888 |
+
StableDiffusionXLPAGImg2ImgPipeline,
|
889 |
+
StableDiffusionXLPAGInpaintPipeline,
|
890 |
+
StableDiffusionXLPAGPipeline,
|
891 |
+
StableDiffusionXLPipeline,
|
892 |
+
StableUnCLIPImg2ImgPipeline,
|
893 |
+
StableUnCLIPPipeline,
|
894 |
+
StableVideoDiffusionPipeline,
|
895 |
+
TextToVideoSDPipeline,
|
896 |
+
TextToVideoZeroPipeline,
|
897 |
+
TextToVideoZeroSDXLPipeline,
|
898 |
+
UnCLIPImageVariationPipeline,
|
899 |
+
UnCLIPPipeline,
|
900 |
+
UniDiffuserModel,
|
901 |
+
UniDiffuserPipeline,
|
902 |
+
UniDiffuserTextDecoder,
|
903 |
+
VersatileDiffusionDualGuidedPipeline,
|
904 |
+
VersatileDiffusionImageVariationPipeline,
|
905 |
+
VersatileDiffusionPipeline,
|
906 |
+
VersatileDiffusionTextToImagePipeline,
|
907 |
+
VideoToVideoSDPipeline,
|
908 |
+
VQDiffusionPipeline,
|
909 |
+
WuerstchenCombinedPipeline,
|
910 |
+
WuerstchenDecoderPipeline,
|
911 |
+
WuerstchenPriorPipeline,
|
912 |
+
)
|
913 |
+
|
914 |
+
try:
|
915 |
+
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
|
916 |
+
raise OptionalDependencyNotAvailable()
|
917 |
+
except OptionalDependencyNotAvailable:
|
918 |
+
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
|
919 |
+
else:
|
920 |
+
from .pipelines import StableDiffusionKDiffusionPipeline, StableDiffusionXLKDiffusionPipeline
|
921 |
+
|
922 |
+
try:
|
923 |
+
if not (is_torch_available() and is_transformers_available() and is_sentencepiece_available()):
|
924 |
+
raise OptionalDependencyNotAvailable()
|
925 |
+
except OptionalDependencyNotAvailable:
|
926 |
+
from .utils.dummy_torch_and_transformers_and_sentencepiece_objects import * # noqa F403
|
927 |
+
else:
|
928 |
+
from .pipelines import KolorsImg2ImgPipeline, KolorsPAGPipeline, KolorsPipeline
|
929 |
+
try:
|
930 |
+
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
|
931 |
+
raise OptionalDependencyNotAvailable()
|
932 |
+
except OptionalDependencyNotAvailable:
|
933 |
+
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
|
934 |
+
else:
|
935 |
+
from .pipelines import (
|
936 |
+
OnnxStableDiffusionImg2ImgPipeline,
|
937 |
+
OnnxStableDiffusionInpaintPipeline,
|
938 |
+
OnnxStableDiffusionInpaintPipelineLegacy,
|
939 |
+
OnnxStableDiffusionPipeline,
|
940 |
+
OnnxStableDiffusionUpscalePipeline,
|
941 |
+
StableDiffusionOnnxPipeline,
|
942 |
+
)
|
943 |
+
|
944 |
+
try:
|
945 |
+
if not (is_torch_available() and is_librosa_available()):
|
946 |
+
raise OptionalDependencyNotAvailable()
|
947 |
+
except OptionalDependencyNotAvailable:
|
948 |
+
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
|
949 |
+
else:
|
950 |
+
from .pipelines import AudioDiffusionPipeline, Mel
|
951 |
+
|
952 |
+
try:
|
953 |
+
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
|
954 |
+
raise OptionalDependencyNotAvailable()
|
955 |
+
except OptionalDependencyNotAvailable:
|
956 |
+
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
|
957 |
+
else:
|
958 |
+
from .pipelines import SpectrogramDiffusionPipeline
|
959 |
+
|
960 |
+
try:
|
961 |
+
if not is_flax_available():
|
962 |
+
raise OptionalDependencyNotAvailable()
|
963 |
+
except OptionalDependencyNotAvailable:
|
964 |
+
from .utils.dummy_flax_objects import * # noqa F403
|
965 |
+
else:
|
966 |
+
from .models.controlnets.controlnet_flax import FlaxControlNetModel
|
967 |
+
from .models.modeling_flax_utils import FlaxModelMixin
|
968 |
+
from .models.unets.unet_2d_condition_flax import FlaxUNet2DConditionModel
|
969 |
+
from .models.vae_flax import FlaxAutoencoderKL
|
970 |
+
from .pipelines import FlaxDiffusionPipeline
|
971 |
+
from .schedulers import (
|
972 |
+
FlaxDDIMScheduler,
|
973 |
+
FlaxDDPMScheduler,
|
974 |
+
FlaxDPMSolverMultistepScheduler,
|
975 |
+
FlaxEulerDiscreteScheduler,
|
976 |
+
FlaxKarrasVeScheduler,
|
977 |
+
FlaxLMSDiscreteScheduler,
|
978 |
+
FlaxPNDMScheduler,
|
979 |
+
FlaxSchedulerMixin,
|
980 |
+
FlaxScoreSdeVeScheduler,
|
981 |
+
)
|
982 |
+
|
983 |
+
try:
|
984 |
+
if not (is_flax_available() and is_transformers_available()):
|
985 |
+
raise OptionalDependencyNotAvailable()
|
986 |
+
except OptionalDependencyNotAvailable:
|
987 |
+
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
|
988 |
+
else:
|
989 |
+
from .pipelines import (
|
990 |
+
FlaxStableDiffusionControlNetPipeline,
|
991 |
+
FlaxStableDiffusionImg2ImgPipeline,
|
992 |
+
FlaxStableDiffusionInpaintPipeline,
|
993 |
+
FlaxStableDiffusionPipeline,
|
994 |
+
FlaxStableDiffusionXLPipeline,
|
995 |
+
)
|
996 |
+
|
997 |
+
try:
|
998 |
+
if not (is_note_seq_available()):
|
999 |
+
raise OptionalDependencyNotAvailable()
|
1000 |
+
except OptionalDependencyNotAvailable:
|
1001 |
+
from .utils.dummy_note_seq_objects import * # noqa F403
|
1002 |
+
else:
|
1003 |
+
from .pipelines import MidiProcessor
|
1004 |
+
|
1005 |
+
else:
|
1006 |
+
import sys
|
1007 |
+
|
1008 |
+
sys.modules[__name__] = _LazyModule(
|
1009 |
+
__name__,
|
1010 |
+
globals()["__file__"],
|
1011 |
+
_import_structure,
|
1012 |
+
module_spec=__spec__,
|
1013 |
+
extra_objects={"__version__": __version__},
|
1014 |
+
)
|
icedit/diffusers/callbacks.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, List
|
2 |
+
|
3 |
+
from .configuration_utils import ConfigMixin, register_to_config
|
4 |
+
from .utils import CONFIG_NAME
|
5 |
+
|
6 |
+
|
7 |
+
class PipelineCallback(ConfigMixin):
|
8 |
+
"""
|
9 |
+
Base class for all the official callbacks used in a pipeline. This class provides a structure for implementing
|
10 |
+
custom callbacks and ensures that all callbacks have a consistent interface.
|
11 |
+
|
12 |
+
Please implement the following:
|
13 |
+
`tensor_inputs`: This should return a list of tensor inputs specific to your callback. You will only be able to
|
14 |
+
include
|
15 |
+
variables listed in the `._callback_tensor_inputs` attribute of your pipeline class.
|
16 |
+
`callback_fn`: This method defines the core functionality of your callback.
|
17 |
+
"""
|
18 |
+
|
19 |
+
config_name = CONFIG_NAME
|
20 |
+
|
21 |
+
@register_to_config
|
22 |
+
def __init__(self, cutoff_step_ratio=1.0, cutoff_step_index=None):
|
23 |
+
super().__init__()
|
24 |
+
|
25 |
+
if (cutoff_step_ratio is None and cutoff_step_index is None) or (
|
26 |
+
cutoff_step_ratio is not None and cutoff_step_index is not None
|
27 |
+
):
|
28 |
+
raise ValueError("Either cutoff_step_ratio or cutoff_step_index should be provided, not both or none.")
|
29 |
+
|
30 |
+
if cutoff_step_ratio is not None and (
|
31 |
+
not isinstance(cutoff_step_ratio, float) or not (0.0 <= cutoff_step_ratio <= 1.0)
|
32 |
+
):
|
33 |
+
raise ValueError("cutoff_step_ratio must be a float between 0.0 and 1.0.")
|
34 |
+
|
35 |
+
@property
|
36 |
+
def tensor_inputs(self) -> List[str]:
|
37 |
+
raise NotImplementedError(f"You need to set the attribute `tensor_inputs` for {self.__class__}")
|
38 |
+
|
39 |
+
def callback_fn(self, pipeline, step_index, timesteps, callback_kwargs) -> Dict[str, Any]:
|
40 |
+
raise NotImplementedError(f"You need to implement the method `callback_fn` for {self.__class__}")
|
41 |
+
|
42 |
+
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
43 |
+
return self.callback_fn(pipeline, step_index, timestep, callback_kwargs)
|
44 |
+
|
45 |
+
|
46 |
+
class MultiPipelineCallbacks:
|
47 |
+
"""
|
48 |
+
This class is designed to handle multiple pipeline callbacks. It accepts a list of PipelineCallback objects and
|
49 |
+
provides a unified interface for calling all of them.
|
50 |
+
"""
|
51 |
+
|
52 |
+
def __init__(self, callbacks: List[PipelineCallback]):
|
53 |
+
self.callbacks = callbacks
|
54 |
+
|
55 |
+
@property
|
56 |
+
def tensor_inputs(self) -> List[str]:
|
57 |
+
return [input for callback in self.callbacks for input in callback.tensor_inputs]
|
58 |
+
|
59 |
+
def __call__(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
60 |
+
"""
|
61 |
+
Calls all the callbacks in order with the given arguments and returns the final callback_kwargs.
|
62 |
+
"""
|
63 |
+
for callback in self.callbacks:
|
64 |
+
callback_kwargs = callback(pipeline, step_index, timestep, callback_kwargs)
|
65 |
+
|
66 |
+
return callback_kwargs
|
67 |
+
|
68 |
+
|
69 |
+
class SDCFGCutoffCallback(PipelineCallback):
|
70 |
+
"""
|
71 |
+
Callback function for Stable Diffusion Pipelines. After certain number of steps (set by `cutoff_step_ratio` or
|
72 |
+
`cutoff_step_index`), this callback will disable the CFG.
|
73 |
+
|
74 |
+
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
|
75 |
+
"""
|
76 |
+
|
77 |
+
tensor_inputs = ["prompt_embeds"]
|
78 |
+
|
79 |
+
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
80 |
+
cutoff_step_ratio = self.config.cutoff_step_ratio
|
81 |
+
cutoff_step_index = self.config.cutoff_step_index
|
82 |
+
|
83 |
+
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
|
84 |
+
cutoff_step = (
|
85 |
+
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
|
86 |
+
)
|
87 |
+
|
88 |
+
if step_index == cutoff_step:
|
89 |
+
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
|
90 |
+
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
|
91 |
+
|
92 |
+
pipeline._guidance_scale = 0.0
|
93 |
+
|
94 |
+
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
|
95 |
+
return callback_kwargs
|
96 |
+
|
97 |
+
|
98 |
+
class SDXLCFGCutoffCallback(PipelineCallback):
|
99 |
+
"""
|
100 |
+
Callback function for the base Stable Diffusion XL Pipelines. After certain number of steps (set by
|
101 |
+
`cutoff_step_ratio` or `cutoff_step_index`), this callback will disable the CFG.
|
102 |
+
|
103 |
+
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
|
104 |
+
"""
|
105 |
+
|
106 |
+
tensor_inputs = [
|
107 |
+
"prompt_embeds",
|
108 |
+
"add_text_embeds",
|
109 |
+
"add_time_ids",
|
110 |
+
]
|
111 |
+
|
112 |
+
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
113 |
+
cutoff_step_ratio = self.config.cutoff_step_ratio
|
114 |
+
cutoff_step_index = self.config.cutoff_step_index
|
115 |
+
|
116 |
+
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
|
117 |
+
cutoff_step = (
|
118 |
+
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
|
119 |
+
)
|
120 |
+
|
121 |
+
if step_index == cutoff_step:
|
122 |
+
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
|
123 |
+
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
|
124 |
+
|
125 |
+
add_text_embeds = callback_kwargs[self.tensor_inputs[1]]
|
126 |
+
add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens
|
127 |
+
|
128 |
+
add_time_ids = callback_kwargs[self.tensor_inputs[2]]
|
129 |
+
add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector
|
130 |
+
|
131 |
+
pipeline._guidance_scale = 0.0
|
132 |
+
|
133 |
+
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
|
134 |
+
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
|
135 |
+
callback_kwargs[self.tensor_inputs[2]] = add_time_ids
|
136 |
+
|
137 |
+
return callback_kwargs
|
138 |
+
|
139 |
+
|
140 |
+
class SDXLControlnetCFGCutoffCallback(PipelineCallback):
|
141 |
+
"""
|
142 |
+
Callback function for the Controlnet Stable Diffusion XL Pipelines. After certain number of steps (set by
|
143 |
+
`cutoff_step_ratio` or `cutoff_step_index`), this callback will disable the CFG.
|
144 |
+
|
145 |
+
Note: This callback mutates the pipeline by changing the `_guidance_scale` attribute to 0.0 after the cutoff step.
|
146 |
+
"""
|
147 |
+
|
148 |
+
tensor_inputs = [
|
149 |
+
"prompt_embeds",
|
150 |
+
"add_text_embeds",
|
151 |
+
"add_time_ids",
|
152 |
+
"image",
|
153 |
+
]
|
154 |
+
|
155 |
+
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
156 |
+
cutoff_step_ratio = self.config.cutoff_step_ratio
|
157 |
+
cutoff_step_index = self.config.cutoff_step_index
|
158 |
+
|
159 |
+
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
|
160 |
+
cutoff_step = (
|
161 |
+
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
|
162 |
+
)
|
163 |
+
|
164 |
+
if step_index == cutoff_step:
|
165 |
+
prompt_embeds = callback_kwargs[self.tensor_inputs[0]]
|
166 |
+
prompt_embeds = prompt_embeds[-1:] # "-1" denotes the embeddings for conditional text tokens.
|
167 |
+
|
168 |
+
add_text_embeds = callback_kwargs[self.tensor_inputs[1]]
|
169 |
+
add_text_embeds = add_text_embeds[-1:] # "-1" denotes the embeddings for conditional pooled text tokens
|
170 |
+
|
171 |
+
add_time_ids = callback_kwargs[self.tensor_inputs[2]]
|
172 |
+
add_time_ids = add_time_ids[-1:] # "-1" denotes the embeddings for conditional added time vector
|
173 |
+
|
174 |
+
# For Controlnet
|
175 |
+
image = callback_kwargs[self.tensor_inputs[3]]
|
176 |
+
image = image[-1:]
|
177 |
+
|
178 |
+
pipeline._guidance_scale = 0.0
|
179 |
+
|
180 |
+
callback_kwargs[self.tensor_inputs[0]] = prompt_embeds
|
181 |
+
callback_kwargs[self.tensor_inputs[1]] = add_text_embeds
|
182 |
+
callback_kwargs[self.tensor_inputs[2]] = add_time_ids
|
183 |
+
callback_kwargs[self.tensor_inputs[3]] = image
|
184 |
+
|
185 |
+
return callback_kwargs
|
186 |
+
|
187 |
+
|
188 |
+
class IPAdapterScaleCutoffCallback(PipelineCallback):
|
189 |
+
"""
|
190 |
+
Callback function for any pipeline that inherits `IPAdapterMixin`. After certain number of steps (set by
|
191 |
+
`cutoff_step_ratio` or `cutoff_step_index`), this callback will set the IP Adapter scale to `0.0`.
|
192 |
+
|
193 |
+
Note: This callback mutates the IP Adapter attention processors by setting the scale to 0.0 after the cutoff step.
|
194 |
+
"""
|
195 |
+
|
196 |
+
tensor_inputs = []
|
197 |
+
|
198 |
+
def callback_fn(self, pipeline, step_index, timestep, callback_kwargs) -> Dict[str, Any]:
|
199 |
+
cutoff_step_ratio = self.config.cutoff_step_ratio
|
200 |
+
cutoff_step_index = self.config.cutoff_step_index
|
201 |
+
|
202 |
+
# Use cutoff_step_index if it's not None, otherwise use cutoff_step_ratio
|
203 |
+
cutoff_step = (
|
204 |
+
cutoff_step_index if cutoff_step_index is not None else int(pipeline.num_timesteps * cutoff_step_ratio)
|
205 |
+
)
|
206 |
+
|
207 |
+
if step_index == cutoff_step:
|
208 |
+
pipeline.set_ip_adapter_scale(0.0)
|
209 |
+
return callback_kwargs
|
icedit/diffusers/commands/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from abc import ABC, abstractmethod
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
|
19 |
+
class BaseDiffusersCLICommand(ABC):
|
20 |
+
@staticmethod
|
21 |
+
@abstractmethod
|
22 |
+
def register_subcommand(parser: ArgumentParser):
|
23 |
+
raise NotImplementedError()
|
24 |
+
|
25 |
+
@abstractmethod
|
26 |
+
def run(self):
|
27 |
+
raise NotImplementedError()
|
icedit/diffusers/commands/diffusers_cli.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
|
18 |
+
from .env import EnvironmentCommand
|
19 |
+
from .fp16_safetensors import FP16SafetensorsCommand
|
20 |
+
|
21 |
+
|
22 |
+
def main():
|
23 |
+
parser = ArgumentParser("Diffusers CLI tool", usage="diffusers-cli <command> [<args>]")
|
24 |
+
commands_parser = parser.add_subparsers(help="diffusers-cli command helpers")
|
25 |
+
|
26 |
+
# Register commands
|
27 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
28 |
+
FP16SafetensorsCommand.register_subcommand(commands_parser)
|
29 |
+
|
30 |
+
# Let's go
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
if not hasattr(args, "func"):
|
34 |
+
parser.print_help()
|
35 |
+
exit(1)
|
36 |
+
|
37 |
+
# Run
|
38 |
+
service = args.func(args)
|
39 |
+
service.run()
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == "__main__":
|
43 |
+
main()
|
icedit/diffusers/commands/env.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import platform
|
16 |
+
import subprocess
|
17 |
+
from argparse import ArgumentParser
|
18 |
+
|
19 |
+
import huggingface_hub
|
20 |
+
|
21 |
+
from .. import __version__ as version
|
22 |
+
from ..utils import (
|
23 |
+
is_accelerate_available,
|
24 |
+
is_bitsandbytes_available,
|
25 |
+
is_flax_available,
|
26 |
+
is_google_colab,
|
27 |
+
is_peft_available,
|
28 |
+
is_safetensors_available,
|
29 |
+
is_torch_available,
|
30 |
+
is_transformers_available,
|
31 |
+
is_xformers_available,
|
32 |
+
)
|
33 |
+
from . import BaseDiffusersCLICommand
|
34 |
+
|
35 |
+
|
36 |
+
def info_command_factory(_):
|
37 |
+
return EnvironmentCommand()
|
38 |
+
|
39 |
+
|
40 |
+
class EnvironmentCommand(BaseDiffusersCLICommand):
|
41 |
+
@staticmethod
|
42 |
+
def register_subcommand(parser: ArgumentParser) -> None:
|
43 |
+
download_parser = parser.add_parser("env")
|
44 |
+
download_parser.set_defaults(func=info_command_factory)
|
45 |
+
|
46 |
+
def run(self) -> dict:
|
47 |
+
hub_version = huggingface_hub.__version__
|
48 |
+
|
49 |
+
safetensors_version = "not installed"
|
50 |
+
if is_safetensors_available():
|
51 |
+
import safetensors
|
52 |
+
|
53 |
+
safetensors_version = safetensors.__version__
|
54 |
+
|
55 |
+
pt_version = "not installed"
|
56 |
+
pt_cuda_available = "NA"
|
57 |
+
if is_torch_available():
|
58 |
+
import torch
|
59 |
+
|
60 |
+
pt_version = torch.__version__
|
61 |
+
pt_cuda_available = torch.cuda.is_available()
|
62 |
+
|
63 |
+
flax_version = "not installed"
|
64 |
+
jax_version = "not installed"
|
65 |
+
jaxlib_version = "not installed"
|
66 |
+
jax_backend = "NA"
|
67 |
+
if is_flax_available():
|
68 |
+
import flax
|
69 |
+
import jax
|
70 |
+
import jaxlib
|
71 |
+
|
72 |
+
flax_version = flax.__version__
|
73 |
+
jax_version = jax.__version__
|
74 |
+
jaxlib_version = jaxlib.__version__
|
75 |
+
jax_backend = jax.lib.xla_bridge.get_backend().platform
|
76 |
+
|
77 |
+
transformers_version = "not installed"
|
78 |
+
if is_transformers_available():
|
79 |
+
import transformers
|
80 |
+
|
81 |
+
transformers_version = transformers.__version__
|
82 |
+
|
83 |
+
accelerate_version = "not installed"
|
84 |
+
if is_accelerate_available():
|
85 |
+
import accelerate
|
86 |
+
|
87 |
+
accelerate_version = accelerate.__version__
|
88 |
+
|
89 |
+
peft_version = "not installed"
|
90 |
+
if is_peft_available():
|
91 |
+
import peft
|
92 |
+
|
93 |
+
peft_version = peft.__version__
|
94 |
+
|
95 |
+
bitsandbytes_version = "not installed"
|
96 |
+
if is_bitsandbytes_available():
|
97 |
+
import bitsandbytes
|
98 |
+
|
99 |
+
bitsandbytes_version = bitsandbytes.__version__
|
100 |
+
|
101 |
+
xformers_version = "not installed"
|
102 |
+
if is_xformers_available():
|
103 |
+
import xformers
|
104 |
+
|
105 |
+
xformers_version = xformers.__version__
|
106 |
+
|
107 |
+
platform_info = platform.platform()
|
108 |
+
|
109 |
+
is_google_colab_str = "Yes" if is_google_colab() else "No"
|
110 |
+
|
111 |
+
accelerator = "NA"
|
112 |
+
if platform.system() in {"Linux", "Windows"}:
|
113 |
+
try:
|
114 |
+
sp = subprocess.Popen(
|
115 |
+
["nvidia-smi", "--query-gpu=gpu_name,memory.total", "--format=csv,noheader"],
|
116 |
+
stdout=subprocess.PIPE,
|
117 |
+
stderr=subprocess.PIPE,
|
118 |
+
)
|
119 |
+
out_str, _ = sp.communicate()
|
120 |
+
out_str = out_str.decode("utf-8")
|
121 |
+
|
122 |
+
if len(out_str) > 0:
|
123 |
+
accelerator = out_str.strip()
|
124 |
+
except FileNotFoundError:
|
125 |
+
pass
|
126 |
+
elif platform.system() == "Darwin": # Mac OS
|
127 |
+
try:
|
128 |
+
sp = subprocess.Popen(
|
129 |
+
["system_profiler", "SPDisplaysDataType"],
|
130 |
+
stdout=subprocess.PIPE,
|
131 |
+
stderr=subprocess.PIPE,
|
132 |
+
)
|
133 |
+
out_str, _ = sp.communicate()
|
134 |
+
out_str = out_str.decode("utf-8")
|
135 |
+
|
136 |
+
start = out_str.find("Chipset Model:")
|
137 |
+
if start != -1:
|
138 |
+
start += len("Chipset Model:")
|
139 |
+
end = out_str.find("\n", start)
|
140 |
+
accelerator = out_str[start:end].strip()
|
141 |
+
|
142 |
+
start = out_str.find("VRAM (Total):")
|
143 |
+
if start != -1:
|
144 |
+
start += len("VRAM (Total):")
|
145 |
+
end = out_str.find("\n", start)
|
146 |
+
accelerator += " VRAM: " + out_str[start:end].strip()
|
147 |
+
except FileNotFoundError:
|
148 |
+
pass
|
149 |
+
else:
|
150 |
+
print("It seems you are running an unusual OS. Could you fill in the accelerator manually?")
|
151 |
+
|
152 |
+
info = {
|
153 |
+
"🤗 Diffusers version": version,
|
154 |
+
"Platform": platform_info,
|
155 |
+
"Running on Google Colab?": is_google_colab_str,
|
156 |
+
"Python version": platform.python_version(),
|
157 |
+
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
|
158 |
+
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
|
159 |
+
"Jax version": jax_version,
|
160 |
+
"JaxLib version": jaxlib_version,
|
161 |
+
"Huggingface_hub version": hub_version,
|
162 |
+
"Transformers version": transformers_version,
|
163 |
+
"Accelerate version": accelerate_version,
|
164 |
+
"PEFT version": peft_version,
|
165 |
+
"Bitsandbytes version": bitsandbytes_version,
|
166 |
+
"Safetensors version": safetensors_version,
|
167 |
+
"xFormers version": xformers_version,
|
168 |
+
"Accelerator": accelerator,
|
169 |
+
"Using GPU in script?": "<fill in>",
|
170 |
+
"Using distributed or parallel set-up in script?": "<fill in>",
|
171 |
+
}
|
172 |
+
|
173 |
+
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n")
|
174 |
+
print(self.format_dict(info))
|
175 |
+
|
176 |
+
return info
|
177 |
+
|
178 |
+
@staticmethod
|
179 |
+
def format_dict(d: dict) -> str:
|
180 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
icedit/diffusers/commands/fp16_safetensors.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""
|
16 |
+
Usage example:
|
17 |
+
diffusers-cli fp16_safetensors --ckpt_id=openai/shap-e --fp16 --use_safetensors
|
18 |
+
"""
|
19 |
+
|
20 |
+
import glob
|
21 |
+
import json
|
22 |
+
import warnings
|
23 |
+
from argparse import ArgumentParser, Namespace
|
24 |
+
from importlib import import_module
|
25 |
+
|
26 |
+
import huggingface_hub
|
27 |
+
import torch
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from packaging import version
|
30 |
+
|
31 |
+
from ..utils import logging
|
32 |
+
from . import BaseDiffusersCLICommand
|
33 |
+
|
34 |
+
|
35 |
+
def conversion_command_factory(args: Namespace):
|
36 |
+
if args.use_auth_token:
|
37 |
+
warnings.warn(
|
38 |
+
"The `--use_auth_token` flag is deprecated and will be removed in a future version. Authentication is now"
|
39 |
+
" handled automatically if user is logged in."
|
40 |
+
)
|
41 |
+
return FP16SafetensorsCommand(args.ckpt_id, args.fp16, args.use_safetensors)
|
42 |
+
|
43 |
+
|
44 |
+
class FP16SafetensorsCommand(BaseDiffusersCLICommand):
|
45 |
+
@staticmethod
|
46 |
+
def register_subcommand(parser: ArgumentParser):
|
47 |
+
conversion_parser = parser.add_parser("fp16_safetensors")
|
48 |
+
conversion_parser.add_argument(
|
49 |
+
"--ckpt_id",
|
50 |
+
type=str,
|
51 |
+
help="Repo id of the checkpoints on which to run the conversion. Example: 'openai/shap-e'.",
|
52 |
+
)
|
53 |
+
conversion_parser.add_argument(
|
54 |
+
"--fp16", action="store_true", help="If serializing the variables in FP16 precision."
|
55 |
+
)
|
56 |
+
conversion_parser.add_argument(
|
57 |
+
"--use_safetensors", action="store_true", help="If serializing in the safetensors format."
|
58 |
+
)
|
59 |
+
conversion_parser.add_argument(
|
60 |
+
"--use_auth_token",
|
61 |
+
action="store_true",
|
62 |
+
help="When working with checkpoints having private visibility. When used `huggingface-cli login` needs to be run beforehand.",
|
63 |
+
)
|
64 |
+
conversion_parser.set_defaults(func=conversion_command_factory)
|
65 |
+
|
66 |
+
def __init__(self, ckpt_id: str, fp16: bool, use_safetensors: bool):
|
67 |
+
self.logger = logging.get_logger("diffusers-cli/fp16_safetensors")
|
68 |
+
self.ckpt_id = ckpt_id
|
69 |
+
self.local_ckpt_dir = f"/tmp/{ckpt_id}"
|
70 |
+
self.fp16 = fp16
|
71 |
+
|
72 |
+
self.use_safetensors = use_safetensors
|
73 |
+
|
74 |
+
if not self.use_safetensors and not self.fp16:
|
75 |
+
raise NotImplementedError(
|
76 |
+
"When `use_safetensors` and `fp16` both are False, then this command is of no use."
|
77 |
+
)
|
78 |
+
|
79 |
+
def run(self):
|
80 |
+
if version.parse(huggingface_hub.__version__) < version.parse("0.9.0"):
|
81 |
+
raise ImportError(
|
82 |
+
"The huggingface_hub version must be >= 0.9.0 to use this command. Please update your huggingface_hub"
|
83 |
+
" installation."
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
from huggingface_hub import create_commit
|
87 |
+
from huggingface_hub._commit_api import CommitOperationAdd
|
88 |
+
|
89 |
+
model_index = hf_hub_download(repo_id=self.ckpt_id, filename="model_index.json")
|
90 |
+
with open(model_index, "r") as f:
|
91 |
+
pipeline_class_name = json.load(f)["_class_name"]
|
92 |
+
pipeline_class = getattr(import_module("diffusers"), pipeline_class_name)
|
93 |
+
self.logger.info(f"Pipeline class imported: {pipeline_class_name}.")
|
94 |
+
|
95 |
+
# Load the appropriate pipeline. We could have use `DiffusionPipeline`
|
96 |
+
# here, but just to avoid any rough edge cases.
|
97 |
+
pipeline = pipeline_class.from_pretrained(
|
98 |
+
self.ckpt_id, torch_dtype=torch.float16 if self.fp16 else torch.float32
|
99 |
+
)
|
100 |
+
pipeline.save_pretrained(
|
101 |
+
self.local_ckpt_dir,
|
102 |
+
safe_serialization=True if self.use_safetensors else False,
|
103 |
+
variant="fp16" if self.fp16 else None,
|
104 |
+
)
|
105 |
+
self.logger.info(f"Pipeline locally saved to {self.local_ckpt_dir}.")
|
106 |
+
|
107 |
+
# Fetch all the paths.
|
108 |
+
if self.fp16:
|
109 |
+
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.fp16.*")
|
110 |
+
elif self.use_safetensors:
|
111 |
+
modified_paths = glob.glob(f"{self.local_ckpt_dir}/*/*.safetensors")
|
112 |
+
|
113 |
+
# Prepare for the PR.
|
114 |
+
commit_message = f"Serialize variables with FP16: {self.fp16} and safetensors: {self.use_safetensors}."
|
115 |
+
operations = []
|
116 |
+
for path in modified_paths:
|
117 |
+
operations.append(CommitOperationAdd(path_in_repo="/".join(path.split("/")[4:]), path_or_fileobj=path))
|
118 |
+
|
119 |
+
# Open the PR.
|
120 |
+
commit_description = (
|
121 |
+
"Variables converted by the [`diffusers`' `fp16_safetensors`"
|
122 |
+
" CLI](https://github.com/huggingface/diffusers/blob/main/src/diffusers/commands/fp16_safetensors.py)."
|
123 |
+
)
|
124 |
+
hub_pr_url = create_commit(
|
125 |
+
repo_id=self.ckpt_id,
|
126 |
+
operations=operations,
|
127 |
+
commit_message=commit_message,
|
128 |
+
commit_description=commit_description,
|
129 |
+
repo_type="model",
|
130 |
+
create_pr=True,
|
131 |
+
).pr_url
|
132 |
+
self.logger.info(f"PR created here: {hub_pr_url}.")
|
icedit/diffusers/configuration_utils.py
ADDED
@@ -0,0 +1,732 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
"""ConfigMixin base class and utilities."""
|
17 |
+
|
18 |
+
import dataclasses
|
19 |
+
import functools
|
20 |
+
import importlib
|
21 |
+
import inspect
|
22 |
+
import json
|
23 |
+
import os
|
24 |
+
import re
|
25 |
+
from collections import OrderedDict
|
26 |
+
from pathlib import Path
|
27 |
+
from typing import Any, Dict, Tuple, Union
|
28 |
+
|
29 |
+
import numpy as np
|
30 |
+
from huggingface_hub import create_repo, hf_hub_download
|
31 |
+
from huggingface_hub.utils import (
|
32 |
+
EntryNotFoundError,
|
33 |
+
RepositoryNotFoundError,
|
34 |
+
RevisionNotFoundError,
|
35 |
+
validate_hf_hub_args,
|
36 |
+
)
|
37 |
+
from requests import HTTPError
|
38 |
+
|
39 |
+
from . import __version__
|
40 |
+
from .utils import (
|
41 |
+
HUGGINGFACE_CO_RESOLVE_ENDPOINT,
|
42 |
+
DummyObject,
|
43 |
+
deprecate,
|
44 |
+
extract_commit_hash,
|
45 |
+
http_user_agent,
|
46 |
+
logging,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_re_configuration_file = re.compile(r"config\.(.*)\.json")
|
53 |
+
|
54 |
+
|
55 |
+
class FrozenDict(OrderedDict):
|
56 |
+
def __init__(self, *args, **kwargs):
|
57 |
+
super().__init__(*args, **kwargs)
|
58 |
+
|
59 |
+
for key, value in self.items():
|
60 |
+
setattr(self, key, value)
|
61 |
+
|
62 |
+
self.__frozen = True
|
63 |
+
|
64 |
+
def __delitem__(self, *args, **kwargs):
|
65 |
+
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
|
66 |
+
|
67 |
+
def setdefault(self, *args, **kwargs):
|
68 |
+
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
|
69 |
+
|
70 |
+
def pop(self, *args, **kwargs):
|
71 |
+
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
72 |
+
|
73 |
+
def update(self, *args, **kwargs):
|
74 |
+
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
|
75 |
+
|
76 |
+
def __setattr__(self, name, value):
|
77 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
78 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
79 |
+
super().__setattr__(name, value)
|
80 |
+
|
81 |
+
def __setitem__(self, name, value):
|
82 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
83 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
84 |
+
super().__setitem__(name, value)
|
85 |
+
|
86 |
+
|
87 |
+
class ConfigMixin:
|
88 |
+
r"""
|
89 |
+
Base class for all configuration classes. All configuration parameters are stored under `self.config`. Also
|
90 |
+
provides the [`~ConfigMixin.from_config`] and [`~ConfigMixin.save_config`] methods for loading, downloading, and
|
91 |
+
saving classes that inherit from [`ConfigMixin`].
|
92 |
+
|
93 |
+
Class attributes:
|
94 |
+
- **config_name** (`str`) -- A filename under which the config should stored when calling
|
95 |
+
[`~ConfigMixin.save_config`] (should be overridden by parent class).
|
96 |
+
- **ignore_for_config** (`List[str]`) -- A list of attributes that should not be saved in the config (should be
|
97 |
+
overridden by subclass).
|
98 |
+
- **has_compatibles** (`bool`) -- Whether the class has compatible classes (should be overridden by subclass).
|
99 |
+
- **_deprecated_kwargs** (`List[str]`) -- Keyword arguments that are deprecated. Note that the `init` function
|
100 |
+
should only have a `kwargs` argument if at least one argument is deprecated (should be overridden by
|
101 |
+
subclass).
|
102 |
+
"""
|
103 |
+
|
104 |
+
config_name = None
|
105 |
+
ignore_for_config = []
|
106 |
+
has_compatibles = False
|
107 |
+
|
108 |
+
_deprecated_kwargs = []
|
109 |
+
|
110 |
+
def register_to_config(self, **kwargs):
|
111 |
+
if self.config_name is None:
|
112 |
+
raise NotImplementedError(f"Make sure that {self.__class__} has defined a class name `config_name`")
|
113 |
+
# Special case for `kwargs` used in deprecation warning added to schedulers
|
114 |
+
# TODO: remove this when we remove the deprecation warning, and the `kwargs` argument,
|
115 |
+
# or solve in a more general way.
|
116 |
+
kwargs.pop("kwargs", None)
|
117 |
+
|
118 |
+
if not hasattr(self, "_internal_dict"):
|
119 |
+
internal_dict = kwargs
|
120 |
+
else:
|
121 |
+
previous_dict = dict(self._internal_dict)
|
122 |
+
internal_dict = {**self._internal_dict, **kwargs}
|
123 |
+
logger.debug(f"Updating config from {previous_dict} to {internal_dict}")
|
124 |
+
|
125 |
+
self._internal_dict = FrozenDict(internal_dict)
|
126 |
+
|
127 |
+
def __getattr__(self, name: str) -> Any:
|
128 |
+
"""The only reason we overwrite `getattr` here is to gracefully deprecate accessing
|
129 |
+
config attributes directly. See https://github.com/huggingface/diffusers/pull/3129
|
130 |
+
|
131 |
+
This function is mostly copied from PyTorch's __getattr__ overwrite:
|
132 |
+
https://pytorch.org/docs/stable/_modules/torch/nn/modules/module.html#Module
|
133 |
+
"""
|
134 |
+
|
135 |
+
is_in_config = "_internal_dict" in self.__dict__ and hasattr(self.__dict__["_internal_dict"], name)
|
136 |
+
is_attribute = name in self.__dict__
|
137 |
+
|
138 |
+
if is_in_config and not is_attribute:
|
139 |
+
deprecation_message = f"Accessing config attribute `{name}` directly via '{type(self).__name__}' object attribute is deprecated. Please access '{name}' over '{type(self).__name__}'s config object instead, e.g. 'scheduler.config.{name}'."
|
140 |
+
deprecate("direct config name access", "1.0.0", deprecation_message, standard_warn=False)
|
141 |
+
return self._internal_dict[name]
|
142 |
+
|
143 |
+
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")
|
144 |
+
|
145 |
+
def save_config(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs):
|
146 |
+
"""
|
147 |
+
Save a configuration object to the directory specified in `save_directory` so that it can be reloaded using the
|
148 |
+
[`~ConfigMixin.from_config`] class method.
|
149 |
+
|
150 |
+
Args:
|
151 |
+
save_directory (`str` or `os.PathLike`):
|
152 |
+
Directory where the configuration JSON file is saved (will be created if it does not exist).
|
153 |
+
push_to_hub (`bool`, *optional*, defaults to `False`):
|
154 |
+
Whether or not to push your model to the Hugging Face Hub after saving it. You can specify the
|
155 |
+
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
|
156 |
+
namespace).
|
157 |
+
kwargs (`Dict[str, Any]`, *optional*):
|
158 |
+
Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
|
159 |
+
"""
|
160 |
+
if os.path.isfile(save_directory):
|
161 |
+
raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")
|
162 |
+
|
163 |
+
os.makedirs(save_directory, exist_ok=True)
|
164 |
+
|
165 |
+
# If we save using the predefined names, we can load using `from_config`
|
166 |
+
output_config_file = os.path.join(save_directory, self.config_name)
|
167 |
+
|
168 |
+
self.to_json_file(output_config_file)
|
169 |
+
logger.info(f"Configuration saved in {output_config_file}")
|
170 |
+
|
171 |
+
if push_to_hub:
|
172 |
+
commit_message = kwargs.pop("commit_message", None)
|
173 |
+
private = kwargs.pop("private", None)
|
174 |
+
create_pr = kwargs.pop("create_pr", False)
|
175 |
+
token = kwargs.pop("token", None)
|
176 |
+
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
|
177 |
+
repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id
|
178 |
+
|
179 |
+
self._upload_folder(
|
180 |
+
save_directory,
|
181 |
+
repo_id,
|
182 |
+
token=token,
|
183 |
+
commit_message=commit_message,
|
184 |
+
create_pr=create_pr,
|
185 |
+
)
|
186 |
+
|
187 |
+
@classmethod
|
188 |
+
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
|
189 |
+
r"""
|
190 |
+
Instantiate a Python class from a config dictionary.
|
191 |
+
|
192 |
+
Parameters:
|
193 |
+
config (`Dict[str, Any]`):
|
194 |
+
A config dictionary from which the Python class is instantiated. Make sure to only load configuration
|
195 |
+
files of compatible classes.
|
196 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False`):
|
197 |
+
Whether kwargs that are not consumed by the Python class should be returned or not.
|
198 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
199 |
+
Can be used to update the configuration object (after it is loaded) and initiate the Python class.
|
200 |
+
`**kwargs` are passed directly to the underlying scheduler/model's `__init__` method and eventually
|
201 |
+
overwrite the same named arguments in `config`.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
[`ModelMixin`] or [`SchedulerMixin`]:
|
205 |
+
A model or scheduler object instantiated from a config dictionary.
|
206 |
+
|
207 |
+
Examples:
|
208 |
+
|
209 |
+
```python
|
210 |
+
>>> from diffusers import DDPMScheduler, DDIMScheduler, PNDMScheduler
|
211 |
+
|
212 |
+
>>> # Download scheduler from huggingface.co and cache.
|
213 |
+
>>> scheduler = DDPMScheduler.from_pretrained("google/ddpm-cifar10-32")
|
214 |
+
|
215 |
+
>>> # Instantiate DDIM scheduler class with same config as DDPM
|
216 |
+
>>> scheduler = DDIMScheduler.from_config(scheduler.config)
|
217 |
+
|
218 |
+
>>> # Instantiate PNDM scheduler class with same config as DDPM
|
219 |
+
>>> scheduler = PNDMScheduler.from_config(scheduler.config)
|
220 |
+
```
|
221 |
+
"""
|
222 |
+
# <===== TO BE REMOVED WITH DEPRECATION
|
223 |
+
# TODO(Patrick) - make sure to remove the following lines when config=="model_path" is deprecated
|
224 |
+
if "pretrained_model_name_or_path" in kwargs:
|
225 |
+
config = kwargs.pop("pretrained_model_name_or_path")
|
226 |
+
|
227 |
+
if config is None:
|
228 |
+
raise ValueError("Please make sure to provide a config as the first positional argument.")
|
229 |
+
# ======>
|
230 |
+
|
231 |
+
if not isinstance(config, dict):
|
232 |
+
deprecation_message = "It is deprecated to pass a pretrained model name or path to `from_config`."
|
233 |
+
if "Scheduler" in cls.__name__:
|
234 |
+
deprecation_message += (
|
235 |
+
f"If you were trying to load a scheduler, please use {cls}.from_pretrained(...) instead."
|
236 |
+
" Otherwise, please make sure to pass a configuration dictionary instead. This functionality will"
|
237 |
+
" be removed in v1.0.0."
|
238 |
+
)
|
239 |
+
elif "Model" in cls.__name__:
|
240 |
+
deprecation_message += (
|
241 |
+
f"If you were trying to load a model, please use {cls}.load_config(...) followed by"
|
242 |
+
f" {cls}.from_config(...) instead. Otherwise, please make sure to pass a configuration dictionary"
|
243 |
+
" instead. This functionality will be removed in v1.0.0."
|
244 |
+
)
|
245 |
+
deprecate("config-passed-as-path", "1.0.0", deprecation_message, standard_warn=False)
|
246 |
+
config, kwargs = cls.load_config(pretrained_model_name_or_path=config, return_unused_kwargs=True, **kwargs)
|
247 |
+
|
248 |
+
init_dict, unused_kwargs, hidden_dict = cls.extract_init_dict(config, **kwargs)
|
249 |
+
|
250 |
+
# Allow dtype to be specified on initialization
|
251 |
+
if "dtype" in unused_kwargs:
|
252 |
+
init_dict["dtype"] = unused_kwargs.pop("dtype")
|
253 |
+
|
254 |
+
# add possible deprecated kwargs
|
255 |
+
for deprecated_kwarg in cls._deprecated_kwargs:
|
256 |
+
if deprecated_kwarg in unused_kwargs:
|
257 |
+
init_dict[deprecated_kwarg] = unused_kwargs.pop(deprecated_kwarg)
|
258 |
+
|
259 |
+
# Return model and optionally state and/or unused_kwargs
|
260 |
+
model = cls(**init_dict)
|
261 |
+
|
262 |
+
# make sure to also save config parameters that might be used for compatible classes
|
263 |
+
# update _class_name
|
264 |
+
if "_class_name" in hidden_dict:
|
265 |
+
hidden_dict["_class_name"] = cls.__name__
|
266 |
+
|
267 |
+
model.register_to_config(**hidden_dict)
|
268 |
+
|
269 |
+
# add hidden kwargs of compatible classes to unused_kwargs
|
270 |
+
unused_kwargs = {**unused_kwargs, **hidden_dict}
|
271 |
+
|
272 |
+
if return_unused_kwargs:
|
273 |
+
return (model, unused_kwargs)
|
274 |
+
else:
|
275 |
+
return model
|
276 |
+
|
277 |
+
@classmethod
|
278 |
+
def get_config_dict(cls, *args, **kwargs):
|
279 |
+
deprecation_message = (
|
280 |
+
f" The function get_config_dict is deprecated. Please use {cls}.load_config instead. This function will be"
|
281 |
+
" removed in version v1.0.0"
|
282 |
+
)
|
283 |
+
deprecate("get_config_dict", "1.0.0", deprecation_message, standard_warn=False)
|
284 |
+
return cls.load_config(*args, **kwargs)
|
285 |
+
|
286 |
+
@classmethod
|
287 |
+
@validate_hf_hub_args
|
288 |
+
def load_config(
|
289 |
+
cls,
|
290 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
291 |
+
return_unused_kwargs=False,
|
292 |
+
return_commit_hash=False,
|
293 |
+
**kwargs,
|
294 |
+
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
|
295 |
+
r"""
|
296 |
+
Load a model or scheduler configuration.
|
297 |
+
|
298 |
+
Parameters:
|
299 |
+
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
|
300 |
+
Can be either:
|
301 |
+
|
302 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
303 |
+
the Hub.
|
304 |
+
- A path to a *directory* (for example `./my_model_directory`) containing model weights saved with
|
305 |
+
[`~ConfigMixin.save_config`].
|
306 |
+
|
307 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
308 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
309 |
+
is not used.
|
310 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
311 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
312 |
+
cached versions if they exist.
|
313 |
+
proxies (`Dict[str, str]`, *optional*):
|
314 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
315 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
316 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
317 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
318 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
319 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
320 |
+
won't be downloaded from the Hub.
|
321 |
+
token (`str` or *bool*, *optional*):
|
322 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
323 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
324 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
325 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
326 |
+
allowed by Git.
|
327 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
328 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
329 |
+
return_unused_kwargs (`bool`, *optional*, defaults to `False):
|
330 |
+
Whether unused keyword arguments of the config are returned.
|
331 |
+
return_commit_hash (`bool`, *optional*, defaults to `False):
|
332 |
+
Whether the `commit_hash` of the loaded configuration are returned.
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
`dict`:
|
336 |
+
A dictionary of all the parameters stored in a JSON configuration file.
|
337 |
+
|
338 |
+
"""
|
339 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
340 |
+
local_dir = kwargs.pop("local_dir", None)
|
341 |
+
local_dir_use_symlinks = kwargs.pop("local_dir_use_symlinks", "auto")
|
342 |
+
force_download = kwargs.pop("force_download", False)
|
343 |
+
proxies = kwargs.pop("proxies", None)
|
344 |
+
token = kwargs.pop("token", None)
|
345 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
346 |
+
revision = kwargs.pop("revision", None)
|
347 |
+
_ = kwargs.pop("mirror", None)
|
348 |
+
subfolder = kwargs.pop("subfolder", None)
|
349 |
+
user_agent = kwargs.pop("user_agent", {})
|
350 |
+
|
351 |
+
user_agent = {**user_agent, "file_type": "config"}
|
352 |
+
user_agent = http_user_agent(user_agent)
|
353 |
+
|
354 |
+
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
|
355 |
+
|
356 |
+
if cls.config_name is None:
|
357 |
+
raise ValueError(
|
358 |
+
"`self.config_name` is not defined. Note that one should not load a config from "
|
359 |
+
"`ConfigMixin`. Please make sure to define `config_name` in a class inheriting from `ConfigMixin`"
|
360 |
+
)
|
361 |
+
|
362 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
363 |
+
config_file = pretrained_model_name_or_path
|
364 |
+
elif os.path.isdir(pretrained_model_name_or_path):
|
365 |
+
if subfolder is not None and os.path.isfile(
|
366 |
+
os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
367 |
+
):
|
368 |
+
config_file = os.path.join(pretrained_model_name_or_path, subfolder, cls.config_name)
|
369 |
+
elif os.path.isfile(os.path.join(pretrained_model_name_or_path, cls.config_name)):
|
370 |
+
# Load from a PyTorch checkpoint
|
371 |
+
config_file = os.path.join(pretrained_model_name_or_path, cls.config_name)
|
372 |
+
else:
|
373 |
+
raise EnvironmentError(
|
374 |
+
f"Error no file named {cls.config_name} found in directory {pretrained_model_name_or_path}."
|
375 |
+
)
|
376 |
+
else:
|
377 |
+
try:
|
378 |
+
# Load from URL or cache if already cached
|
379 |
+
config_file = hf_hub_download(
|
380 |
+
pretrained_model_name_or_path,
|
381 |
+
filename=cls.config_name,
|
382 |
+
cache_dir=cache_dir,
|
383 |
+
force_download=force_download,
|
384 |
+
proxies=proxies,
|
385 |
+
local_files_only=local_files_only,
|
386 |
+
token=token,
|
387 |
+
user_agent=user_agent,
|
388 |
+
subfolder=subfolder,
|
389 |
+
revision=revision,
|
390 |
+
local_dir=local_dir,
|
391 |
+
local_dir_use_symlinks=local_dir_use_symlinks,
|
392 |
+
)
|
393 |
+
except RepositoryNotFoundError:
|
394 |
+
raise EnvironmentError(
|
395 |
+
f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier"
|
396 |
+
" listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a"
|
397 |
+
" token having permission to this repo with `token` or log in with `huggingface-cli login`."
|
398 |
+
)
|
399 |
+
except RevisionNotFoundError:
|
400 |
+
raise EnvironmentError(
|
401 |
+
f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for"
|
402 |
+
" this model name. Check the model page at"
|
403 |
+
f" 'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
|
404 |
+
)
|
405 |
+
except EntryNotFoundError:
|
406 |
+
raise EnvironmentError(
|
407 |
+
f"{pretrained_model_name_or_path} does not appear to have a file named {cls.config_name}."
|
408 |
+
)
|
409 |
+
except HTTPError as err:
|
410 |
+
raise EnvironmentError(
|
411 |
+
"There was a specific connection error when trying to load"
|
412 |
+
f" {pretrained_model_name_or_path}:\n{err}"
|
413 |
+
)
|
414 |
+
except ValueError:
|
415 |
+
raise EnvironmentError(
|
416 |
+
f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
|
417 |
+
f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
|
418 |
+
f" directory containing a {cls.config_name} file.\nCheckout your internet connection or see how to"
|
419 |
+
" run the library in offline mode at"
|
420 |
+
" 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
|
421 |
+
)
|
422 |
+
except EnvironmentError:
|
423 |
+
raise EnvironmentError(
|
424 |
+
f"Can't load config for '{pretrained_model_name_or_path}'. If you were trying to load it from "
|
425 |
+
"'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
|
426 |
+
f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
|
427 |
+
f"containing a {cls.config_name} file"
|
428 |
+
)
|
429 |
+
|
430 |
+
try:
|
431 |
+
# Load config dict
|
432 |
+
config_dict = cls._dict_from_json_file(config_file)
|
433 |
+
|
434 |
+
commit_hash = extract_commit_hash(config_file)
|
435 |
+
except (json.JSONDecodeError, UnicodeDecodeError):
|
436 |
+
raise EnvironmentError(f"It looks like the config file at '{config_file}' is not a valid JSON file.")
|
437 |
+
|
438 |
+
if not (return_unused_kwargs or return_commit_hash):
|
439 |
+
return config_dict
|
440 |
+
|
441 |
+
outputs = (config_dict,)
|
442 |
+
|
443 |
+
if return_unused_kwargs:
|
444 |
+
outputs += (kwargs,)
|
445 |
+
|
446 |
+
if return_commit_hash:
|
447 |
+
outputs += (commit_hash,)
|
448 |
+
|
449 |
+
return outputs
|
450 |
+
|
451 |
+
@staticmethod
|
452 |
+
def _get_init_keys(input_class):
|
453 |
+
return set(dict(inspect.signature(input_class.__init__).parameters).keys())
|
454 |
+
|
455 |
+
@classmethod
|
456 |
+
def extract_init_dict(cls, config_dict, **kwargs):
|
457 |
+
# Skip keys that were not present in the original config, so default __init__ values were used
|
458 |
+
used_defaults = config_dict.get("_use_default_values", [])
|
459 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in used_defaults and k != "_use_default_values"}
|
460 |
+
|
461 |
+
# 0. Copy origin config dict
|
462 |
+
original_dict = dict(config_dict.items())
|
463 |
+
|
464 |
+
# 1. Retrieve expected config attributes from __init__ signature
|
465 |
+
expected_keys = cls._get_init_keys(cls)
|
466 |
+
expected_keys.remove("self")
|
467 |
+
# remove general kwargs if present in dict
|
468 |
+
if "kwargs" in expected_keys:
|
469 |
+
expected_keys.remove("kwargs")
|
470 |
+
# remove flax internal keys
|
471 |
+
if hasattr(cls, "_flax_internal_args"):
|
472 |
+
for arg in cls._flax_internal_args:
|
473 |
+
expected_keys.remove(arg)
|
474 |
+
|
475 |
+
# 2. Remove attributes that cannot be expected from expected config attributes
|
476 |
+
# remove keys to be ignored
|
477 |
+
if len(cls.ignore_for_config) > 0:
|
478 |
+
expected_keys = expected_keys - set(cls.ignore_for_config)
|
479 |
+
|
480 |
+
# load diffusers library to import compatible and original scheduler
|
481 |
+
diffusers_library = importlib.import_module(__name__.split(".")[0])
|
482 |
+
|
483 |
+
if cls.has_compatibles:
|
484 |
+
compatible_classes = [c for c in cls._get_compatibles() if not isinstance(c, DummyObject)]
|
485 |
+
else:
|
486 |
+
compatible_classes = []
|
487 |
+
|
488 |
+
expected_keys_comp_cls = set()
|
489 |
+
for c in compatible_classes:
|
490 |
+
expected_keys_c = cls._get_init_keys(c)
|
491 |
+
expected_keys_comp_cls = expected_keys_comp_cls.union(expected_keys_c)
|
492 |
+
expected_keys_comp_cls = expected_keys_comp_cls - cls._get_init_keys(cls)
|
493 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in expected_keys_comp_cls}
|
494 |
+
|
495 |
+
# remove attributes from orig class that cannot be expected
|
496 |
+
orig_cls_name = config_dict.pop("_class_name", cls.__name__)
|
497 |
+
if (
|
498 |
+
isinstance(orig_cls_name, str)
|
499 |
+
and orig_cls_name != cls.__name__
|
500 |
+
and hasattr(diffusers_library, orig_cls_name)
|
501 |
+
):
|
502 |
+
orig_cls = getattr(diffusers_library, orig_cls_name)
|
503 |
+
unexpected_keys_from_orig = cls._get_init_keys(orig_cls) - expected_keys
|
504 |
+
config_dict = {k: v for k, v in config_dict.items() if k not in unexpected_keys_from_orig}
|
505 |
+
elif not isinstance(orig_cls_name, str) and not isinstance(orig_cls_name, (list, tuple)):
|
506 |
+
raise ValueError(
|
507 |
+
"Make sure that the `_class_name` is of type string or list of string (for custom pipelines)."
|
508 |
+
)
|
509 |
+
|
510 |
+
# remove private attributes
|
511 |
+
config_dict = {k: v for k, v in config_dict.items() if not k.startswith("_")}
|
512 |
+
|
513 |
+
# remove quantization_config
|
514 |
+
config_dict = {k: v for k, v in config_dict.items() if k != "quantization_config"}
|
515 |
+
|
516 |
+
# 3. Create keyword arguments that will be passed to __init__ from expected keyword arguments
|
517 |
+
init_dict = {}
|
518 |
+
for key in expected_keys:
|
519 |
+
# if config param is passed to kwarg and is present in config dict
|
520 |
+
# it should overwrite existing config dict key
|
521 |
+
if key in kwargs and key in config_dict:
|
522 |
+
config_dict[key] = kwargs.pop(key)
|
523 |
+
|
524 |
+
if key in kwargs:
|
525 |
+
# overwrite key
|
526 |
+
init_dict[key] = kwargs.pop(key)
|
527 |
+
elif key in config_dict:
|
528 |
+
# use value from config dict
|
529 |
+
init_dict[key] = config_dict.pop(key)
|
530 |
+
|
531 |
+
# 4. Give nice warning if unexpected values have been passed
|
532 |
+
if len(config_dict) > 0:
|
533 |
+
logger.warning(
|
534 |
+
f"The config attributes {config_dict} were passed to {cls.__name__}, "
|
535 |
+
"but are not expected and will be ignored. Please verify your "
|
536 |
+
f"{cls.config_name} configuration file."
|
537 |
+
)
|
538 |
+
|
539 |
+
# 5. Give nice info if config attributes are initialized to default because they have not been passed
|
540 |
+
passed_keys = set(init_dict.keys())
|
541 |
+
if len(expected_keys - passed_keys) > 0:
|
542 |
+
logger.info(
|
543 |
+
f"{expected_keys - passed_keys} was not found in config. Values will be initialized to default values."
|
544 |
+
)
|
545 |
+
|
546 |
+
# 6. Define unused keyword arguments
|
547 |
+
unused_kwargs = {**config_dict, **kwargs}
|
548 |
+
|
549 |
+
# 7. Define "hidden" config parameters that were saved for compatible classes
|
550 |
+
hidden_config_dict = {k: v for k, v in original_dict.items() if k not in init_dict}
|
551 |
+
|
552 |
+
return init_dict, unused_kwargs, hidden_config_dict
|
553 |
+
|
554 |
+
@classmethod
|
555 |
+
def _dict_from_json_file(cls, json_file: Union[str, os.PathLike]):
|
556 |
+
with open(json_file, "r", encoding="utf-8") as reader:
|
557 |
+
text = reader.read()
|
558 |
+
return json.loads(text)
|
559 |
+
|
560 |
+
def __repr__(self):
|
561 |
+
return f"{self.__class__.__name__} {self.to_json_string()}"
|
562 |
+
|
563 |
+
@property
|
564 |
+
def config(self) -> Dict[str, Any]:
|
565 |
+
"""
|
566 |
+
Returns the config of the class as a frozen dictionary
|
567 |
+
|
568 |
+
Returns:
|
569 |
+
`Dict[str, Any]`: Config of the class.
|
570 |
+
"""
|
571 |
+
return self._internal_dict
|
572 |
+
|
573 |
+
def to_json_string(self) -> str:
|
574 |
+
"""
|
575 |
+
Serializes the configuration instance to a JSON string.
|
576 |
+
|
577 |
+
Returns:
|
578 |
+
`str`:
|
579 |
+
String containing all the attributes that make up the configuration instance in JSON format.
|
580 |
+
"""
|
581 |
+
config_dict = self._internal_dict if hasattr(self, "_internal_dict") else {}
|
582 |
+
config_dict["_class_name"] = self.__class__.__name__
|
583 |
+
config_dict["_diffusers_version"] = __version__
|
584 |
+
|
585 |
+
def to_json_saveable(value):
|
586 |
+
if isinstance(value, np.ndarray):
|
587 |
+
value = value.tolist()
|
588 |
+
elif isinstance(value, Path):
|
589 |
+
value = value.as_posix()
|
590 |
+
return value
|
591 |
+
|
592 |
+
if "quantization_config" in config_dict:
|
593 |
+
config_dict["quantization_config"] = (
|
594 |
+
config_dict.quantization_config.to_dict()
|
595 |
+
if not isinstance(config_dict.quantization_config, dict)
|
596 |
+
else config_dict.quantization_config
|
597 |
+
)
|
598 |
+
|
599 |
+
config_dict = {k: to_json_saveable(v) for k, v in config_dict.items()}
|
600 |
+
# Don't save "_ignore_files" or "_use_default_values"
|
601 |
+
config_dict.pop("_ignore_files", None)
|
602 |
+
config_dict.pop("_use_default_values", None)
|
603 |
+
# pop the `_pre_quantization_dtype` as torch.dtypes are not serializable.
|
604 |
+
_ = config_dict.pop("_pre_quantization_dtype", None)
|
605 |
+
|
606 |
+
return json.dumps(config_dict, indent=2, sort_keys=True) + "\n"
|
607 |
+
|
608 |
+
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
|
609 |
+
"""
|
610 |
+
Save the configuration instance's parameters to a JSON file.
|
611 |
+
|
612 |
+
Args:
|
613 |
+
json_file_path (`str` or `os.PathLike`):
|
614 |
+
Path to the JSON file to save a configuration instance's parameters.
|
615 |
+
"""
|
616 |
+
with open(json_file_path, "w", encoding="utf-8") as writer:
|
617 |
+
writer.write(self.to_json_string())
|
618 |
+
|
619 |
+
|
620 |
+
def register_to_config(init):
|
621 |
+
r"""
|
622 |
+
Decorator to apply on the init of classes inheriting from [`ConfigMixin`] so that all the arguments are
|
623 |
+
automatically sent to `self.register_for_config`. To ignore a specific argument accepted by the init but that
|
624 |
+
shouldn't be registered in the config, use the `ignore_for_config` class variable
|
625 |
+
|
626 |
+
Warning: Once decorated, all private arguments (beginning with an underscore) are trashed and not sent to the init!
|
627 |
+
"""
|
628 |
+
|
629 |
+
@functools.wraps(init)
|
630 |
+
def inner_init(self, *args, **kwargs):
|
631 |
+
# Ignore private kwargs in the init.
|
632 |
+
init_kwargs = {k: v for k, v in kwargs.items() if not k.startswith("_")}
|
633 |
+
config_init_kwargs = {k: v for k, v in kwargs.items() if k.startswith("_")}
|
634 |
+
if not isinstance(self, ConfigMixin):
|
635 |
+
raise RuntimeError(
|
636 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
637 |
+
"not inherit from `ConfigMixin`."
|
638 |
+
)
|
639 |
+
|
640 |
+
ignore = getattr(self, "ignore_for_config", [])
|
641 |
+
# Get positional arguments aligned with kwargs
|
642 |
+
new_kwargs = {}
|
643 |
+
signature = inspect.signature(init)
|
644 |
+
parameters = {
|
645 |
+
name: p.default for i, (name, p) in enumerate(signature.parameters.items()) if i > 0 and name not in ignore
|
646 |
+
}
|
647 |
+
for arg, name in zip(args, parameters.keys()):
|
648 |
+
new_kwargs[name] = arg
|
649 |
+
|
650 |
+
# Then add all kwargs
|
651 |
+
new_kwargs.update(
|
652 |
+
{
|
653 |
+
k: init_kwargs.get(k, default)
|
654 |
+
for k, default in parameters.items()
|
655 |
+
if k not in ignore and k not in new_kwargs
|
656 |
+
}
|
657 |
+
)
|
658 |
+
|
659 |
+
# Take note of the parameters that were not present in the loaded config
|
660 |
+
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
|
661 |
+
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
|
662 |
+
|
663 |
+
new_kwargs = {**config_init_kwargs, **new_kwargs}
|
664 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
665 |
+
init(self, *args, **init_kwargs)
|
666 |
+
|
667 |
+
return inner_init
|
668 |
+
|
669 |
+
|
670 |
+
def flax_register_to_config(cls):
|
671 |
+
original_init = cls.__init__
|
672 |
+
|
673 |
+
@functools.wraps(original_init)
|
674 |
+
def init(self, *args, **kwargs):
|
675 |
+
if not isinstance(self, ConfigMixin):
|
676 |
+
raise RuntimeError(
|
677 |
+
f"`@register_for_config` was applied to {self.__class__.__name__} init method, but this class does "
|
678 |
+
"not inherit from `ConfigMixin`."
|
679 |
+
)
|
680 |
+
|
681 |
+
# Ignore private kwargs in the init. Retrieve all passed attributes
|
682 |
+
init_kwargs = dict(kwargs.items())
|
683 |
+
|
684 |
+
# Retrieve default values
|
685 |
+
fields = dataclasses.fields(self)
|
686 |
+
default_kwargs = {}
|
687 |
+
for field in fields:
|
688 |
+
# ignore flax specific attributes
|
689 |
+
if field.name in self._flax_internal_args:
|
690 |
+
continue
|
691 |
+
if type(field.default) == dataclasses._MISSING_TYPE:
|
692 |
+
default_kwargs[field.name] = None
|
693 |
+
else:
|
694 |
+
default_kwargs[field.name] = getattr(self, field.name)
|
695 |
+
|
696 |
+
# Make sure init_kwargs override default kwargs
|
697 |
+
new_kwargs = {**default_kwargs, **init_kwargs}
|
698 |
+
# dtype should be part of `init_kwargs`, but not `new_kwargs`
|
699 |
+
if "dtype" in new_kwargs:
|
700 |
+
new_kwargs.pop("dtype")
|
701 |
+
|
702 |
+
# Get positional arguments aligned with kwargs
|
703 |
+
for i, arg in enumerate(args):
|
704 |
+
name = fields[i].name
|
705 |
+
new_kwargs[name] = arg
|
706 |
+
|
707 |
+
# Take note of the parameters that were not present in the loaded config
|
708 |
+
if len(set(new_kwargs.keys()) - set(init_kwargs)) > 0:
|
709 |
+
new_kwargs["_use_default_values"] = list(set(new_kwargs.keys()) - set(init_kwargs))
|
710 |
+
|
711 |
+
getattr(self, "register_to_config")(**new_kwargs)
|
712 |
+
original_init(self, *args, **kwargs)
|
713 |
+
|
714 |
+
cls.__init__ = init
|
715 |
+
return cls
|
716 |
+
|
717 |
+
|
718 |
+
class LegacyConfigMixin(ConfigMixin):
|
719 |
+
r"""
|
720 |
+
A subclass of `ConfigMixin` to resolve class mapping from legacy classes (like `Transformer2DModel`) to more
|
721 |
+
pipeline-specific classes (like `DiTTransformer2DModel`).
|
722 |
+
"""
|
723 |
+
|
724 |
+
@classmethod
|
725 |
+
def from_config(cls, config: Union[FrozenDict, Dict[str, Any]] = None, return_unused_kwargs=False, **kwargs):
|
726 |
+
# To prevent dependency import problem.
|
727 |
+
from .models.model_loading_utils import _fetch_remapped_cls_from_config
|
728 |
+
|
729 |
+
# resolve remapping
|
730 |
+
remapped_class = _fetch_remapped_cls_from_config(config, cls)
|
731 |
+
|
732 |
+
return remapped_class.from_config(config, return_unused_kwargs, **kwargs)
|
icedit/diffusers/dependency_versions_check.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from .dependency_versions_table import deps
|
16 |
+
from .utils.versions import require_version, require_version_core
|
17 |
+
|
18 |
+
|
19 |
+
# define which module versions we always want to check at run time
|
20 |
+
# (usually the ones defined in `install_requires` in setup.py)
|
21 |
+
#
|
22 |
+
# order specific notes:
|
23 |
+
# - tqdm must be checked before tokenizers
|
24 |
+
|
25 |
+
pkgs_to_check_at_runtime = "python requests filelock numpy".split()
|
26 |
+
for pkg in pkgs_to_check_at_runtime:
|
27 |
+
if pkg in deps:
|
28 |
+
require_version_core(deps[pkg])
|
29 |
+
else:
|
30 |
+
raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py")
|
31 |
+
|
32 |
+
|
33 |
+
def dep_version_check(pkg, hint=None):
|
34 |
+
require_version(deps[pkg], hint)
|
icedit/diffusers/dependency_versions_table.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# THIS FILE HAS BEEN AUTOGENERATED. To update:
|
2 |
+
# 1. modify the `_deps` dict in setup.py
|
3 |
+
# 2. run `make deps_table_update`
|
4 |
+
deps = {
|
5 |
+
"Pillow": "Pillow",
|
6 |
+
"accelerate": "accelerate>=0.31.0",
|
7 |
+
"compel": "compel==0.1.8",
|
8 |
+
"datasets": "datasets",
|
9 |
+
"filelock": "filelock",
|
10 |
+
"flax": "flax>=0.4.1",
|
11 |
+
"hf-doc-builder": "hf-doc-builder>=0.3.0",
|
12 |
+
"huggingface-hub": "huggingface-hub>=0.23.2",
|
13 |
+
"requests-mock": "requests-mock==1.10.0",
|
14 |
+
"importlib_metadata": "importlib_metadata",
|
15 |
+
"invisible-watermark": "invisible-watermark>=0.2.0",
|
16 |
+
"isort": "isort>=5.5.4",
|
17 |
+
"jax": "jax>=0.4.1",
|
18 |
+
"jaxlib": "jaxlib>=0.4.1",
|
19 |
+
"Jinja2": "Jinja2",
|
20 |
+
"k-diffusion": "k-diffusion>=0.0.12",
|
21 |
+
"torchsde": "torchsde",
|
22 |
+
"note_seq": "note_seq",
|
23 |
+
"librosa": "librosa",
|
24 |
+
"numpy": "numpy",
|
25 |
+
"parameterized": "parameterized",
|
26 |
+
"peft": "peft>=0.6.0",
|
27 |
+
"protobuf": "protobuf>=3.20.3,<4",
|
28 |
+
"pytest": "pytest",
|
29 |
+
"pytest-timeout": "pytest-timeout",
|
30 |
+
"pytest-xdist": "pytest-xdist",
|
31 |
+
"python": "python>=3.8.0",
|
32 |
+
"ruff": "ruff==0.1.5",
|
33 |
+
"safetensors": "safetensors>=0.3.1",
|
34 |
+
"sentencepiece": "sentencepiece>=0.1.91,!=0.1.92",
|
35 |
+
"GitPython": "GitPython<3.1.19",
|
36 |
+
"scipy": "scipy",
|
37 |
+
"onnx": "onnx",
|
38 |
+
"regex": "regex!=2019.12.17",
|
39 |
+
"requests": "requests",
|
40 |
+
"tensorboard": "tensorboard",
|
41 |
+
"torch": "torch>=1.4",
|
42 |
+
"torchvision": "torchvision",
|
43 |
+
"transformers": "transformers>=4.41.2",
|
44 |
+
"urllib3": "urllib3<=2.0.0",
|
45 |
+
"black": "black",
|
46 |
+
}
|
icedit/diffusers/experimental/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .rl import ValueGuidedRLPipeline
|
icedit/diffusers/experimental/rl/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .value_guided_sampling import ValueGuidedRLPipeline
|
icedit/diffusers/experimental/rl/value_guided_sampling.py
ADDED
@@ -0,0 +1,153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
import tqdm
|
18 |
+
|
19 |
+
from ...models.unets.unet_1d import UNet1DModel
|
20 |
+
from ...pipelines import DiffusionPipeline
|
21 |
+
from ...utils.dummy_pt_objects import DDPMScheduler
|
22 |
+
from ...utils.torch_utils import randn_tensor
|
23 |
+
|
24 |
+
|
25 |
+
class ValueGuidedRLPipeline(DiffusionPipeline):
|
26 |
+
r"""
|
27 |
+
Pipeline for value-guided sampling from a diffusion model trained to predict sequences of states.
|
28 |
+
|
29 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
30 |
+
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
31 |
+
|
32 |
+
Parameters:
|
33 |
+
value_function ([`UNet1DModel`]):
|
34 |
+
A specialized UNet for fine-tuning trajectories base on reward.
|
35 |
+
unet ([`UNet1DModel`]):
|
36 |
+
UNet architecture to denoise the encoded trajectories.
|
37 |
+
scheduler ([`SchedulerMixin`]):
|
38 |
+
A scheduler to be used in combination with `unet` to denoise the encoded trajectories. Default for this
|
39 |
+
application is [`DDPMScheduler`].
|
40 |
+
env ():
|
41 |
+
An environment following the OpenAI gym API to act in. For now only Hopper has pretrained models.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
value_function: UNet1DModel,
|
47 |
+
unet: UNet1DModel,
|
48 |
+
scheduler: DDPMScheduler,
|
49 |
+
env,
|
50 |
+
):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
self.register_modules(value_function=value_function, unet=unet, scheduler=scheduler, env=env)
|
54 |
+
|
55 |
+
self.data = env.get_dataset()
|
56 |
+
self.means = {}
|
57 |
+
for key in self.data.keys():
|
58 |
+
try:
|
59 |
+
self.means[key] = self.data[key].mean()
|
60 |
+
except: # noqa: E722
|
61 |
+
pass
|
62 |
+
self.stds = {}
|
63 |
+
for key in self.data.keys():
|
64 |
+
try:
|
65 |
+
self.stds[key] = self.data[key].std()
|
66 |
+
except: # noqa: E722
|
67 |
+
pass
|
68 |
+
self.state_dim = env.observation_space.shape[0]
|
69 |
+
self.action_dim = env.action_space.shape[0]
|
70 |
+
|
71 |
+
def normalize(self, x_in, key):
|
72 |
+
return (x_in - self.means[key]) / self.stds[key]
|
73 |
+
|
74 |
+
def de_normalize(self, x_in, key):
|
75 |
+
return x_in * self.stds[key] + self.means[key]
|
76 |
+
|
77 |
+
def to_torch(self, x_in):
|
78 |
+
if isinstance(x_in, dict):
|
79 |
+
return {k: self.to_torch(v) for k, v in x_in.items()}
|
80 |
+
elif torch.is_tensor(x_in):
|
81 |
+
return x_in.to(self.unet.device)
|
82 |
+
return torch.tensor(x_in, device=self.unet.device)
|
83 |
+
|
84 |
+
def reset_x0(self, x_in, cond, act_dim):
|
85 |
+
for key, val in cond.items():
|
86 |
+
x_in[:, key, act_dim:] = val.clone()
|
87 |
+
return x_in
|
88 |
+
|
89 |
+
def run_diffusion(self, x, conditions, n_guide_steps, scale):
|
90 |
+
batch_size = x.shape[0]
|
91 |
+
y = None
|
92 |
+
for i in tqdm.tqdm(self.scheduler.timesteps):
|
93 |
+
# create batch of timesteps to pass into model
|
94 |
+
timesteps = torch.full((batch_size,), i, device=self.unet.device, dtype=torch.long)
|
95 |
+
for _ in range(n_guide_steps):
|
96 |
+
with torch.enable_grad():
|
97 |
+
x.requires_grad_()
|
98 |
+
|
99 |
+
# permute to match dimension for pre-trained models
|
100 |
+
y = self.value_function(x.permute(0, 2, 1), timesteps).sample
|
101 |
+
grad = torch.autograd.grad([y.sum()], [x])[0]
|
102 |
+
|
103 |
+
posterior_variance = self.scheduler._get_variance(i)
|
104 |
+
model_std = torch.exp(0.5 * posterior_variance)
|
105 |
+
grad = model_std * grad
|
106 |
+
|
107 |
+
grad[timesteps < 2] = 0
|
108 |
+
x = x.detach()
|
109 |
+
x = x + scale * grad
|
110 |
+
x = self.reset_x0(x, conditions, self.action_dim)
|
111 |
+
|
112 |
+
prev_x = self.unet(x.permute(0, 2, 1), timesteps).sample.permute(0, 2, 1)
|
113 |
+
|
114 |
+
# TODO: verify deprecation of this kwarg
|
115 |
+
x = self.scheduler.step(prev_x, i, x)["prev_sample"]
|
116 |
+
|
117 |
+
# apply conditions to the trajectory (set the initial state)
|
118 |
+
x = self.reset_x0(x, conditions, self.action_dim)
|
119 |
+
x = self.to_torch(x)
|
120 |
+
return x, y
|
121 |
+
|
122 |
+
def __call__(self, obs, batch_size=64, planning_horizon=32, n_guide_steps=2, scale=0.1):
|
123 |
+
# normalize the observations and create batch dimension
|
124 |
+
obs = self.normalize(obs, "observations")
|
125 |
+
obs = obs[None].repeat(batch_size, axis=0)
|
126 |
+
|
127 |
+
conditions = {0: self.to_torch(obs)}
|
128 |
+
shape = (batch_size, planning_horizon, self.state_dim + self.action_dim)
|
129 |
+
|
130 |
+
# generate initial noise and apply our conditions (to make the trajectories start at current state)
|
131 |
+
x1 = randn_tensor(shape, device=self.unet.device)
|
132 |
+
x = self.reset_x0(x1, conditions, self.action_dim)
|
133 |
+
x = self.to_torch(x)
|
134 |
+
|
135 |
+
# run the diffusion process
|
136 |
+
x, y = self.run_diffusion(x, conditions, n_guide_steps, scale)
|
137 |
+
|
138 |
+
# sort output trajectories by value
|
139 |
+
sorted_idx = y.argsort(0, descending=True).squeeze()
|
140 |
+
sorted_values = x[sorted_idx]
|
141 |
+
actions = sorted_values[:, :, : self.action_dim]
|
142 |
+
actions = actions.detach().cpu().numpy()
|
143 |
+
denorm_actions = self.de_normalize(actions, key="actions")
|
144 |
+
|
145 |
+
# select the action with the highest value
|
146 |
+
if y is not None:
|
147 |
+
selected_index = 0
|
148 |
+
else:
|
149 |
+
# if we didn't run value guiding, select a random action
|
150 |
+
selected_index = np.random.randint(0, batch_size)
|
151 |
+
|
152 |
+
denorm_actions = denorm_actions[selected_index, 0]
|
153 |
+
return denorm_actions
|
icedit/diffusers/image_processor.py
ADDED
@@ -0,0 +1,1314 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import math
|
16 |
+
import warnings
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
import PIL.Image
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from PIL import Image, ImageFilter, ImageOps
|
24 |
+
|
25 |
+
from .configuration_utils import ConfigMixin, register_to_config
|
26 |
+
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
|
27 |
+
|
28 |
+
|
29 |
+
PipelineImageInput = Union[
|
30 |
+
PIL.Image.Image,
|
31 |
+
np.ndarray,
|
32 |
+
torch.Tensor,
|
33 |
+
List[PIL.Image.Image],
|
34 |
+
List[np.ndarray],
|
35 |
+
List[torch.Tensor],
|
36 |
+
]
|
37 |
+
|
38 |
+
PipelineDepthInput = PipelineImageInput
|
39 |
+
|
40 |
+
|
41 |
+
def is_valid_image(image) -> bool:
|
42 |
+
r"""
|
43 |
+
Checks if the input is a valid image.
|
44 |
+
|
45 |
+
A valid image can be:
|
46 |
+
- A `PIL.Image.Image`.
|
47 |
+
- A 2D or 3D `np.ndarray` or `torch.Tensor` (grayscale or color image).
|
48 |
+
|
49 |
+
Args:
|
50 |
+
image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`):
|
51 |
+
The image to validate. It can be a PIL image, a NumPy array, or a torch tensor.
|
52 |
+
|
53 |
+
Returns:
|
54 |
+
`bool`:
|
55 |
+
`True` if the input is a valid image, `False` otherwise.
|
56 |
+
"""
|
57 |
+
return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)
|
58 |
+
|
59 |
+
|
60 |
+
def is_valid_image_imagelist(images):
|
61 |
+
r"""
|
62 |
+
Checks if the input is a valid image or list of images.
|
63 |
+
|
64 |
+
The input can be one of the following formats:
|
65 |
+
- A 4D tensor or numpy array (batch of images).
|
66 |
+
- A valid single image: `PIL.Image.Image`, 2D `np.ndarray` or `torch.Tensor` (grayscale image), 3D `np.ndarray` or
|
67 |
+
`torch.Tensor`.
|
68 |
+
- A list of valid images.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
images (`Union[np.ndarray, torch.Tensor, PIL.Image.Image, List]`):
|
72 |
+
The image(s) to check. Can be a batch of images (4D tensor/array), a single image, or a list of valid
|
73 |
+
images.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
`bool`:
|
77 |
+
`True` if the input is valid, `False` otherwise.
|
78 |
+
"""
|
79 |
+
if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4:
|
80 |
+
return True
|
81 |
+
elif is_valid_image(images):
|
82 |
+
return True
|
83 |
+
elif isinstance(images, list):
|
84 |
+
return all(is_valid_image(image) for image in images)
|
85 |
+
return False
|
86 |
+
|
87 |
+
|
88 |
+
class VaeImageProcessor(ConfigMixin):
|
89 |
+
"""
|
90 |
+
Image processor for VAE.
|
91 |
+
|
92 |
+
Args:
|
93 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
94 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
|
95 |
+
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
|
96 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
97 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
98 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
99 |
+
Resampling filter to use when resizing the image.
|
100 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
101 |
+
Whether to normalize the image to [-1,1].
|
102 |
+
do_binarize (`bool`, *optional*, defaults to `False`):
|
103 |
+
Whether to binarize the image to 0/1.
|
104 |
+
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
|
105 |
+
Whether to convert the images to RGB format.
|
106 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
|
107 |
+
Whether to convert the images to grayscale format.
|
108 |
+
"""
|
109 |
+
|
110 |
+
config_name = CONFIG_NAME
|
111 |
+
|
112 |
+
@register_to_config
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
do_resize: bool = True,
|
116 |
+
vae_scale_factor: int = 8,
|
117 |
+
vae_latent_channels: int = 4,
|
118 |
+
resample: str = "lanczos",
|
119 |
+
do_normalize: bool = True,
|
120 |
+
do_binarize: bool = False,
|
121 |
+
do_convert_rgb: bool = False,
|
122 |
+
do_convert_grayscale: bool = False,
|
123 |
+
):
|
124 |
+
super().__init__()
|
125 |
+
if do_convert_rgb and do_convert_grayscale:
|
126 |
+
raise ValueError(
|
127 |
+
"`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
|
128 |
+
" if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
|
129 |
+
" if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
|
130 |
+
)
|
131 |
+
|
132 |
+
@staticmethod
|
133 |
+
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
134 |
+
r"""
|
135 |
+
Convert a numpy image or a batch of images to a PIL image.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
images (`np.ndarray`):
|
139 |
+
The image array to convert to PIL format.
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
`List[PIL.Image.Image]`:
|
143 |
+
A list of PIL images.
|
144 |
+
"""
|
145 |
+
if images.ndim == 3:
|
146 |
+
images = images[None, ...]
|
147 |
+
images = (images * 255).round().astype("uint8")
|
148 |
+
if images.shape[-1] == 1:
|
149 |
+
# special case for grayscale (single channel) images
|
150 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
151 |
+
else:
|
152 |
+
pil_images = [Image.fromarray(image) for image in images]
|
153 |
+
|
154 |
+
return pil_images
|
155 |
+
|
156 |
+
@staticmethod
|
157 |
+
def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
158 |
+
r"""
|
159 |
+
Convert a PIL image or a list of PIL images to NumPy arrays.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
images (`PIL.Image.Image` or `List[PIL.Image.Image]`):
|
163 |
+
The PIL image or list of images to convert to NumPy format.
|
164 |
+
|
165 |
+
Returns:
|
166 |
+
`np.ndarray`:
|
167 |
+
A NumPy array representation of the images.
|
168 |
+
"""
|
169 |
+
if not isinstance(images, list):
|
170 |
+
images = [images]
|
171 |
+
images = [np.array(image).astype(np.float32) / 255.0 for image in images]
|
172 |
+
images = np.stack(images, axis=0)
|
173 |
+
|
174 |
+
return images
|
175 |
+
|
176 |
+
@staticmethod
|
177 |
+
def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
|
178 |
+
r"""
|
179 |
+
Convert a NumPy image to a PyTorch tensor.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
images (`np.ndarray`):
|
183 |
+
The NumPy image array to convert to PyTorch format.
|
184 |
+
|
185 |
+
Returns:
|
186 |
+
`torch.Tensor`:
|
187 |
+
A PyTorch tensor representation of the images.
|
188 |
+
"""
|
189 |
+
if images.ndim == 3:
|
190 |
+
images = images[..., None]
|
191 |
+
|
192 |
+
images = torch.from_numpy(images.transpose(0, 3, 1, 2))
|
193 |
+
return images
|
194 |
+
|
195 |
+
@staticmethod
|
196 |
+
def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
|
197 |
+
r"""
|
198 |
+
Convert a PyTorch tensor to a NumPy image.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
images (`torch.Tensor`):
|
202 |
+
The PyTorch tensor to convert to NumPy format.
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
`np.ndarray`:
|
206 |
+
A NumPy array representation of the images.
|
207 |
+
"""
|
208 |
+
images = images.cpu().permute(0, 2, 3, 1).float().numpy()
|
209 |
+
return images
|
210 |
+
|
211 |
+
@staticmethod
|
212 |
+
def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
213 |
+
r"""
|
214 |
+
Normalize an image array to [-1,1].
|
215 |
+
|
216 |
+
Args:
|
217 |
+
images (`np.ndarray` or `torch.Tensor`):
|
218 |
+
The image array to normalize.
|
219 |
+
|
220 |
+
Returns:
|
221 |
+
`np.ndarray` or `torch.Tensor`:
|
222 |
+
The normalized image array.
|
223 |
+
"""
|
224 |
+
return 2.0 * images - 1.0
|
225 |
+
|
226 |
+
@staticmethod
|
227 |
+
def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
228 |
+
r"""
|
229 |
+
Denormalize an image array to [0,1].
|
230 |
+
|
231 |
+
Args:
|
232 |
+
images (`np.ndarray` or `torch.Tensor`):
|
233 |
+
The image array to denormalize.
|
234 |
+
|
235 |
+
Returns:
|
236 |
+
`np.ndarray` or `torch.Tensor`:
|
237 |
+
The denormalized image array.
|
238 |
+
"""
|
239 |
+
return (images * 0.5 + 0.5).clamp(0, 1)
|
240 |
+
|
241 |
+
@staticmethod
|
242 |
+
def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
|
243 |
+
r"""
|
244 |
+
Converts a PIL image to RGB format.
|
245 |
+
|
246 |
+
Args:
|
247 |
+
image (`PIL.Image.Image`):
|
248 |
+
The PIL image to convert to RGB.
|
249 |
+
|
250 |
+
Returns:
|
251 |
+
`PIL.Image.Image`:
|
252 |
+
The RGB-converted PIL image.
|
253 |
+
"""
|
254 |
+
image = image.convert("RGB")
|
255 |
+
|
256 |
+
return image
|
257 |
+
|
258 |
+
@staticmethod
|
259 |
+
def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
|
260 |
+
r"""
|
261 |
+
Converts a given PIL image to grayscale.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
image (`PIL.Image.Image`):
|
265 |
+
The input image to convert.
|
266 |
+
|
267 |
+
Returns:
|
268 |
+
`PIL.Image.Image`:
|
269 |
+
The image converted to grayscale.
|
270 |
+
"""
|
271 |
+
image = image.convert("L")
|
272 |
+
|
273 |
+
return image
|
274 |
+
|
275 |
+
@staticmethod
|
276 |
+
def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
|
277 |
+
r"""
|
278 |
+
Applies Gaussian blur to an image.
|
279 |
+
|
280 |
+
Args:
|
281 |
+
image (`PIL.Image.Image`):
|
282 |
+
The PIL image to convert to grayscale.
|
283 |
+
|
284 |
+
Returns:
|
285 |
+
`PIL.Image.Image`:
|
286 |
+
The grayscale-converted PIL image.
|
287 |
+
"""
|
288 |
+
image = image.filter(ImageFilter.GaussianBlur(blur_factor))
|
289 |
+
|
290 |
+
return image
|
291 |
+
|
292 |
+
@staticmethod
|
293 |
+
def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
|
294 |
+
r"""
|
295 |
+
Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
|
296 |
+
ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
|
297 |
+
processing are 512x512, the region will be expanded to 128x128.
|
298 |
+
|
299 |
+
Args:
|
300 |
+
mask_image (PIL.Image.Image): Mask image.
|
301 |
+
width (int): Width of the image to be processed.
|
302 |
+
height (int): Height of the image to be processed.
|
303 |
+
pad (int, optional): Padding to be added to the crop region. Defaults to 0.
|
304 |
+
|
305 |
+
Returns:
|
306 |
+
tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
|
307 |
+
matches the original aspect ratio.
|
308 |
+
"""
|
309 |
+
|
310 |
+
mask_image = mask_image.convert("L")
|
311 |
+
mask = np.array(mask_image)
|
312 |
+
|
313 |
+
# 1. find a rectangular region that contains all masked ares in an image
|
314 |
+
h, w = mask.shape
|
315 |
+
crop_left = 0
|
316 |
+
for i in range(w):
|
317 |
+
if not (mask[:, i] == 0).all():
|
318 |
+
break
|
319 |
+
crop_left += 1
|
320 |
+
|
321 |
+
crop_right = 0
|
322 |
+
for i in reversed(range(w)):
|
323 |
+
if not (mask[:, i] == 0).all():
|
324 |
+
break
|
325 |
+
crop_right += 1
|
326 |
+
|
327 |
+
crop_top = 0
|
328 |
+
for i in range(h):
|
329 |
+
if not (mask[i] == 0).all():
|
330 |
+
break
|
331 |
+
crop_top += 1
|
332 |
+
|
333 |
+
crop_bottom = 0
|
334 |
+
for i in reversed(range(h)):
|
335 |
+
if not (mask[i] == 0).all():
|
336 |
+
break
|
337 |
+
crop_bottom += 1
|
338 |
+
|
339 |
+
# 2. add padding to the crop region
|
340 |
+
x1, y1, x2, y2 = (
|
341 |
+
int(max(crop_left - pad, 0)),
|
342 |
+
int(max(crop_top - pad, 0)),
|
343 |
+
int(min(w - crop_right + pad, w)),
|
344 |
+
int(min(h - crop_bottom + pad, h)),
|
345 |
+
)
|
346 |
+
|
347 |
+
# 3. expands crop region to match the aspect ratio of the image to be processed
|
348 |
+
ratio_crop_region = (x2 - x1) / (y2 - y1)
|
349 |
+
ratio_processing = width / height
|
350 |
+
|
351 |
+
if ratio_crop_region > ratio_processing:
|
352 |
+
desired_height = (x2 - x1) / ratio_processing
|
353 |
+
desired_height_diff = int(desired_height - (y2 - y1))
|
354 |
+
y1 -= desired_height_diff // 2
|
355 |
+
y2 += desired_height_diff - desired_height_diff // 2
|
356 |
+
if y2 >= mask_image.height:
|
357 |
+
diff = y2 - mask_image.height
|
358 |
+
y2 -= diff
|
359 |
+
y1 -= diff
|
360 |
+
if y1 < 0:
|
361 |
+
y2 -= y1
|
362 |
+
y1 -= y1
|
363 |
+
if y2 >= mask_image.height:
|
364 |
+
y2 = mask_image.height
|
365 |
+
else:
|
366 |
+
desired_width = (y2 - y1) * ratio_processing
|
367 |
+
desired_width_diff = int(desired_width - (x2 - x1))
|
368 |
+
x1 -= desired_width_diff // 2
|
369 |
+
x2 += desired_width_diff - desired_width_diff // 2
|
370 |
+
if x2 >= mask_image.width:
|
371 |
+
diff = x2 - mask_image.width
|
372 |
+
x2 -= diff
|
373 |
+
x1 -= diff
|
374 |
+
if x1 < 0:
|
375 |
+
x2 -= x1
|
376 |
+
x1 -= x1
|
377 |
+
if x2 >= mask_image.width:
|
378 |
+
x2 = mask_image.width
|
379 |
+
|
380 |
+
return x1, y1, x2, y2
|
381 |
+
|
382 |
+
def _resize_and_fill(
|
383 |
+
self,
|
384 |
+
image: PIL.Image.Image,
|
385 |
+
width: int,
|
386 |
+
height: int,
|
387 |
+
) -> PIL.Image.Image:
|
388 |
+
r"""
|
389 |
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
390 |
+
the image within the dimensions, filling empty with data from image.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
image (`PIL.Image.Image`):
|
394 |
+
The image to resize and fill.
|
395 |
+
width (`int`):
|
396 |
+
The width to resize the image to.
|
397 |
+
height (`int`):
|
398 |
+
The height to resize the image to.
|
399 |
+
|
400 |
+
Returns:
|
401 |
+
`PIL.Image.Image`:
|
402 |
+
The resized and filled image.
|
403 |
+
"""
|
404 |
+
|
405 |
+
ratio = width / height
|
406 |
+
src_ratio = image.width / image.height
|
407 |
+
|
408 |
+
src_w = width if ratio < src_ratio else image.width * height // image.height
|
409 |
+
src_h = height if ratio >= src_ratio else image.height * width // image.width
|
410 |
+
|
411 |
+
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
412 |
+
res = Image.new("RGB", (width, height))
|
413 |
+
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
414 |
+
|
415 |
+
if ratio < src_ratio:
|
416 |
+
fill_height = height // 2 - src_h // 2
|
417 |
+
if fill_height > 0:
|
418 |
+
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
|
419 |
+
res.paste(
|
420 |
+
resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
|
421 |
+
box=(0, fill_height + src_h),
|
422 |
+
)
|
423 |
+
elif ratio > src_ratio:
|
424 |
+
fill_width = width // 2 - src_w // 2
|
425 |
+
if fill_width > 0:
|
426 |
+
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
|
427 |
+
res.paste(
|
428 |
+
resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
|
429 |
+
box=(fill_width + src_w, 0),
|
430 |
+
)
|
431 |
+
|
432 |
+
return res
|
433 |
+
|
434 |
+
def _resize_and_crop(
|
435 |
+
self,
|
436 |
+
image: PIL.Image.Image,
|
437 |
+
width: int,
|
438 |
+
height: int,
|
439 |
+
) -> PIL.Image.Image:
|
440 |
+
r"""
|
441 |
+
Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
442 |
+
the image within the dimensions, cropping the excess.
|
443 |
+
|
444 |
+
Args:
|
445 |
+
image (`PIL.Image.Image`):
|
446 |
+
The image to resize and crop.
|
447 |
+
width (`int`):
|
448 |
+
The width to resize the image to.
|
449 |
+
height (`int`):
|
450 |
+
The height to resize the image to.
|
451 |
+
|
452 |
+
Returns:
|
453 |
+
`PIL.Image.Image`:
|
454 |
+
The resized and cropped image.
|
455 |
+
"""
|
456 |
+
ratio = width / height
|
457 |
+
src_ratio = image.width / image.height
|
458 |
+
|
459 |
+
src_w = width if ratio > src_ratio else image.width * height // image.height
|
460 |
+
src_h = height if ratio <= src_ratio else image.height * width // image.width
|
461 |
+
|
462 |
+
resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
|
463 |
+
res = Image.new("RGB", (width, height))
|
464 |
+
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
|
465 |
+
return res
|
466 |
+
|
467 |
+
def resize(
|
468 |
+
self,
|
469 |
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
470 |
+
height: int,
|
471 |
+
width: int,
|
472 |
+
resize_mode: str = "default", # "default", "fill", "crop"
|
473 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
474 |
+
"""
|
475 |
+
Resize image.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
|
479 |
+
The image input, can be a PIL image, numpy array or pytorch tensor.
|
480 |
+
height (`int`):
|
481 |
+
The height to resize to.
|
482 |
+
width (`int`):
|
483 |
+
The width to resize to.
|
484 |
+
resize_mode (`str`, *optional*, defaults to `default`):
|
485 |
+
The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
|
486 |
+
within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
|
487 |
+
will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
|
488 |
+
then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
|
489 |
+
the image to fit within the specified width and height, maintaining the aspect ratio, and then center
|
490 |
+
the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
|
491 |
+
supported for PIL image input.
|
492 |
+
|
493 |
+
Returns:
|
494 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
495 |
+
The resized image.
|
496 |
+
"""
|
497 |
+
if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
|
498 |
+
raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
|
499 |
+
if isinstance(image, PIL.Image.Image):
|
500 |
+
if resize_mode == "default":
|
501 |
+
image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
|
502 |
+
elif resize_mode == "fill":
|
503 |
+
image = self._resize_and_fill(image, width, height)
|
504 |
+
elif resize_mode == "crop":
|
505 |
+
image = self._resize_and_crop(image, width, height)
|
506 |
+
else:
|
507 |
+
raise ValueError(f"resize_mode {resize_mode} is not supported")
|
508 |
+
|
509 |
+
elif isinstance(image, torch.Tensor):
|
510 |
+
image = torch.nn.functional.interpolate(
|
511 |
+
image,
|
512 |
+
size=(height, width),
|
513 |
+
)
|
514 |
+
elif isinstance(image, np.ndarray):
|
515 |
+
image = self.numpy_to_pt(image)
|
516 |
+
image = torch.nn.functional.interpolate(
|
517 |
+
image,
|
518 |
+
size=(height, width),
|
519 |
+
)
|
520 |
+
image = self.pt_to_numpy(image)
|
521 |
+
return image
|
522 |
+
|
523 |
+
def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
524 |
+
"""
|
525 |
+
Create a mask.
|
526 |
+
|
527 |
+
Args:
|
528 |
+
image (`PIL.Image.Image`):
|
529 |
+
The image input, should be a PIL image.
|
530 |
+
|
531 |
+
Returns:
|
532 |
+
`PIL.Image.Image`:
|
533 |
+
The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
|
534 |
+
"""
|
535 |
+
image[image < 0.5] = 0
|
536 |
+
image[image >= 0.5] = 1
|
537 |
+
|
538 |
+
return image
|
539 |
+
|
540 |
+
def _denormalize_conditionally(
|
541 |
+
self, images: torch.Tensor, do_denormalize: Optional[List[bool]] = None
|
542 |
+
) -> torch.Tensor:
|
543 |
+
r"""
|
544 |
+
Denormalize a batch of images based on a condition list.
|
545 |
+
|
546 |
+
Args:
|
547 |
+
images (`torch.Tensor`):
|
548 |
+
The input image tensor.
|
549 |
+
do_denormalize (`Optional[List[bool]`, *optional*, defaults to `None`):
|
550 |
+
A list of booleans indicating whether to denormalize each image in the batch. If `None`, will use the
|
551 |
+
value of `do_normalize` in the `VaeImageProcessor` config.
|
552 |
+
"""
|
553 |
+
if do_denormalize is None:
|
554 |
+
return self.denormalize(images) if self.config.do_normalize else images
|
555 |
+
|
556 |
+
return torch.stack(
|
557 |
+
[self.denormalize(images[i]) if do_denormalize[i] else images[i] for i in range(images.shape[0])]
|
558 |
+
)
|
559 |
+
|
560 |
+
def get_default_height_width(
|
561 |
+
self,
|
562 |
+
image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
|
563 |
+
height: Optional[int] = None,
|
564 |
+
width: Optional[int] = None,
|
565 |
+
) -> Tuple[int, int]:
|
566 |
+
r"""
|
567 |
+
Returns the height and width of the image, downscaled to the next integer multiple of `vae_scale_factor`.
|
568 |
+
|
569 |
+
Args:
|
570 |
+
image (`Union[PIL.Image.Image, np.ndarray, torch.Tensor]`):
|
571 |
+
The image input, which can be a PIL image, NumPy array, or PyTorch tensor. If it is a NumPy array, it
|
572 |
+
should have shape `[batch, height, width]` or `[batch, height, width, channels]`. If it is a PyTorch
|
573 |
+
tensor, it should have shape `[batch, channels, height, width]`.
|
574 |
+
height (`Optional[int]`, *optional*, defaults to `None`):
|
575 |
+
The height of the preprocessed image. If `None`, the height of the `image` input will be used.
|
576 |
+
width (`Optional[int]`, *optional*, defaults to `None`):
|
577 |
+
The width of the preprocessed image. If `None`, the width of the `image` input will be used.
|
578 |
+
|
579 |
+
Returns:
|
580 |
+
`Tuple[int, int]`:
|
581 |
+
A tuple containing the height and width, both resized to the nearest integer multiple of
|
582 |
+
`vae_scale_factor`.
|
583 |
+
"""
|
584 |
+
|
585 |
+
if height is None:
|
586 |
+
if isinstance(image, PIL.Image.Image):
|
587 |
+
height = image.height
|
588 |
+
elif isinstance(image, torch.Tensor):
|
589 |
+
height = image.shape[2]
|
590 |
+
else:
|
591 |
+
height = image.shape[1]
|
592 |
+
|
593 |
+
if width is None:
|
594 |
+
if isinstance(image, PIL.Image.Image):
|
595 |
+
width = image.width
|
596 |
+
elif isinstance(image, torch.Tensor):
|
597 |
+
width = image.shape[3]
|
598 |
+
else:
|
599 |
+
width = image.shape[2]
|
600 |
+
|
601 |
+
width, height = (
|
602 |
+
x - x % self.config.vae_scale_factor for x in (width, height)
|
603 |
+
) # resize to integer multiple of vae_scale_factor
|
604 |
+
|
605 |
+
return height, width
|
606 |
+
|
607 |
+
def preprocess(
|
608 |
+
self,
|
609 |
+
image: PipelineImageInput,
|
610 |
+
height: Optional[int] = None,
|
611 |
+
width: Optional[int] = None,
|
612 |
+
resize_mode: str = "default", # "default", "fill", "crop"
|
613 |
+
crops_coords: Optional[Tuple[int, int, int, int]] = None,
|
614 |
+
) -> torch.Tensor:
|
615 |
+
"""
|
616 |
+
Preprocess the image input.
|
617 |
+
|
618 |
+
Args:
|
619 |
+
image (`PipelineImageInput`):
|
620 |
+
The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
|
621 |
+
supported formats.
|
622 |
+
height (`int`, *optional*):
|
623 |
+
The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
|
624 |
+
height.
|
625 |
+
width (`int`, *optional*):
|
626 |
+
The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
|
627 |
+
resize_mode (`str`, *optional*, defaults to `default`):
|
628 |
+
The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
|
629 |
+
the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
|
630 |
+
resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
|
631 |
+
center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
|
632 |
+
image to fit within the specified width and height, maintaining the aspect ratio, and then center the
|
633 |
+
image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
|
634 |
+
supported for PIL image input.
|
635 |
+
crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
|
636 |
+
The crop coordinates for each image in the batch. If `None`, will not crop the image.
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
`torch.Tensor`:
|
640 |
+
The preprocessed image.
|
641 |
+
"""
|
642 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
643 |
+
|
644 |
+
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
645 |
+
if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
|
646 |
+
if isinstance(image, torch.Tensor):
|
647 |
+
# if image is a pytorch tensor could have 2 possible shapes:
|
648 |
+
# 1. batch x height x width: we should insert the channel dimension at position 1
|
649 |
+
# 2. channel x height x width: we should insert batch dimension at position 0,
|
650 |
+
# however, since both channel and batch dimension has same size 1, it is same to insert at position 1
|
651 |
+
# for simplicity, we insert a dimension of size 1 at position 1 for both cases
|
652 |
+
image = image.unsqueeze(1)
|
653 |
+
else:
|
654 |
+
# if it is a numpy array, it could have 2 possible shapes:
|
655 |
+
# 1. batch x height x width: insert channel dimension on last position
|
656 |
+
# 2. height x width x channel: insert batch dimension on first position
|
657 |
+
if image.shape[-1] == 1:
|
658 |
+
image = np.expand_dims(image, axis=0)
|
659 |
+
else:
|
660 |
+
image = np.expand_dims(image, axis=-1)
|
661 |
+
|
662 |
+
if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4:
|
663 |
+
warnings.warn(
|
664 |
+
"Passing `image` as a list of 4d np.ndarray is deprecated."
|
665 |
+
"Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray",
|
666 |
+
FutureWarning,
|
667 |
+
)
|
668 |
+
image = np.concatenate(image, axis=0)
|
669 |
+
if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4:
|
670 |
+
warnings.warn(
|
671 |
+
"Passing `image` as a list of 4d torch.Tensor is deprecated."
|
672 |
+
"Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor",
|
673 |
+
FutureWarning,
|
674 |
+
)
|
675 |
+
image = torch.cat(image, axis=0)
|
676 |
+
|
677 |
+
if not is_valid_image_imagelist(image):
|
678 |
+
raise ValueError(
|
679 |
+
f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}"
|
680 |
+
)
|
681 |
+
if not isinstance(image, list):
|
682 |
+
image = [image]
|
683 |
+
|
684 |
+
if isinstance(image[0], PIL.Image.Image):
|
685 |
+
if crops_coords is not None:
|
686 |
+
image = [i.crop(crops_coords) for i in image]
|
687 |
+
if self.config.do_resize:
|
688 |
+
height, width = self.get_default_height_width(image[0], height, width)
|
689 |
+
image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
|
690 |
+
if self.config.do_convert_rgb:
|
691 |
+
image = [self.convert_to_rgb(i) for i in image]
|
692 |
+
elif self.config.do_convert_grayscale:
|
693 |
+
image = [self.convert_to_grayscale(i) for i in image]
|
694 |
+
image = self.pil_to_numpy(image) # to np
|
695 |
+
image = self.numpy_to_pt(image) # to pt
|
696 |
+
|
697 |
+
elif isinstance(image[0], np.ndarray):
|
698 |
+
image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
|
699 |
+
|
700 |
+
image = self.numpy_to_pt(image)
|
701 |
+
|
702 |
+
height, width = self.get_default_height_width(image, height, width)
|
703 |
+
if self.config.do_resize:
|
704 |
+
image = self.resize(image, height, width)
|
705 |
+
|
706 |
+
elif isinstance(image[0], torch.Tensor):
|
707 |
+
image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
|
708 |
+
|
709 |
+
if self.config.do_convert_grayscale and image.ndim == 3:
|
710 |
+
image = image.unsqueeze(1)
|
711 |
+
|
712 |
+
channel = image.shape[1]
|
713 |
+
# don't need any preprocess if the image is latents
|
714 |
+
if channel == self.config.vae_latent_channels:
|
715 |
+
return image
|
716 |
+
|
717 |
+
height, width = self.get_default_height_width(image, height, width)
|
718 |
+
if self.config.do_resize:
|
719 |
+
image = self.resize(image, height, width)
|
720 |
+
|
721 |
+
# expected range [0,1], normalize to [-1,1]
|
722 |
+
do_normalize = self.config.do_normalize
|
723 |
+
if do_normalize and image.min() < 0:
|
724 |
+
warnings.warn(
|
725 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
726 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
|
727 |
+
FutureWarning,
|
728 |
+
)
|
729 |
+
do_normalize = False
|
730 |
+
if do_normalize:
|
731 |
+
image = self.normalize(image)
|
732 |
+
|
733 |
+
if self.config.do_binarize:
|
734 |
+
image = self.binarize(image)
|
735 |
+
|
736 |
+
return image
|
737 |
+
|
738 |
+
def postprocess(
|
739 |
+
self,
|
740 |
+
image: torch.Tensor,
|
741 |
+
output_type: str = "pil",
|
742 |
+
do_denormalize: Optional[List[bool]] = None,
|
743 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
744 |
+
"""
|
745 |
+
Postprocess the image output from tensor to `output_type`.
|
746 |
+
|
747 |
+
Args:
|
748 |
+
image (`torch.Tensor`):
|
749 |
+
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
750 |
+
output_type (`str`, *optional*, defaults to `pil`):
|
751 |
+
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
752 |
+
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
|
753 |
+
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
|
754 |
+
`VaeImageProcessor` config.
|
755 |
+
|
756 |
+
Returns:
|
757 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
758 |
+
The postprocessed image.
|
759 |
+
"""
|
760 |
+
if not isinstance(image, torch.Tensor):
|
761 |
+
raise ValueError(
|
762 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
763 |
+
)
|
764 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
765 |
+
deprecation_message = (
|
766 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
767 |
+
"`pil`, `np`, `pt`, `latent`"
|
768 |
+
)
|
769 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
770 |
+
output_type = "np"
|
771 |
+
|
772 |
+
if output_type == "latent":
|
773 |
+
return image
|
774 |
+
|
775 |
+
image = self._denormalize_conditionally(image, do_denormalize)
|
776 |
+
|
777 |
+
if output_type == "pt":
|
778 |
+
return image
|
779 |
+
|
780 |
+
image = self.pt_to_numpy(image)
|
781 |
+
|
782 |
+
if output_type == "np":
|
783 |
+
return image
|
784 |
+
|
785 |
+
if output_type == "pil":
|
786 |
+
return self.numpy_to_pil(image)
|
787 |
+
|
788 |
+
def apply_overlay(
|
789 |
+
self,
|
790 |
+
mask: PIL.Image.Image,
|
791 |
+
init_image: PIL.Image.Image,
|
792 |
+
image: PIL.Image.Image,
|
793 |
+
crop_coords: Optional[Tuple[int, int, int, int]] = None,
|
794 |
+
) -> PIL.Image.Image:
|
795 |
+
r"""
|
796 |
+
Applies an overlay of the mask and the inpainted image on the original image.
|
797 |
+
|
798 |
+
Args:
|
799 |
+
mask (`PIL.Image.Image`):
|
800 |
+
The mask image that highlights regions to overlay.
|
801 |
+
init_image (`PIL.Image.Image`):
|
802 |
+
The original image to which the overlay is applied.
|
803 |
+
image (`PIL.Image.Image`):
|
804 |
+
The image to overlay onto the original.
|
805 |
+
crop_coords (`Tuple[int, int, int, int]`, *optional*):
|
806 |
+
Coordinates to crop the image. If provided, the image will be cropped accordingly.
|
807 |
+
|
808 |
+
Returns:
|
809 |
+
`PIL.Image.Image`:
|
810 |
+
The final image with the overlay applied.
|
811 |
+
"""
|
812 |
+
|
813 |
+
width, height = init_image.width, init_image.height
|
814 |
+
|
815 |
+
init_image_masked = PIL.Image.new("RGBa", (width, height))
|
816 |
+
init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
|
817 |
+
|
818 |
+
init_image_masked = init_image_masked.convert("RGBA")
|
819 |
+
|
820 |
+
if crop_coords is not None:
|
821 |
+
x, y, x2, y2 = crop_coords
|
822 |
+
w = x2 - x
|
823 |
+
h = y2 - y
|
824 |
+
base_image = PIL.Image.new("RGBA", (width, height))
|
825 |
+
image = self.resize(image, height=h, width=w, resize_mode="crop")
|
826 |
+
base_image.paste(image, (x, y))
|
827 |
+
image = base_image.convert("RGB")
|
828 |
+
|
829 |
+
image = image.convert("RGBA")
|
830 |
+
image.alpha_composite(init_image_masked)
|
831 |
+
image = image.convert("RGB")
|
832 |
+
|
833 |
+
return image
|
834 |
+
|
835 |
+
|
836 |
+
class VaeImageProcessorLDM3D(VaeImageProcessor):
|
837 |
+
"""
|
838 |
+
Image processor for VAE LDM3D.
|
839 |
+
|
840 |
+
Args:
|
841 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
842 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
843 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
844 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
845 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
846 |
+
Resampling filter to use when resizing the image.
|
847 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
848 |
+
Whether to normalize the image to [-1,1].
|
849 |
+
"""
|
850 |
+
|
851 |
+
config_name = CONFIG_NAME
|
852 |
+
|
853 |
+
@register_to_config
|
854 |
+
def __init__(
|
855 |
+
self,
|
856 |
+
do_resize: bool = True,
|
857 |
+
vae_scale_factor: int = 8,
|
858 |
+
resample: str = "lanczos",
|
859 |
+
do_normalize: bool = True,
|
860 |
+
):
|
861 |
+
super().__init__()
|
862 |
+
|
863 |
+
@staticmethod
|
864 |
+
def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
|
865 |
+
r"""
|
866 |
+
Convert a NumPy image or a batch of images to a list of PIL images.
|
867 |
+
|
868 |
+
Args:
|
869 |
+
images (`np.ndarray`):
|
870 |
+
The input NumPy array of images, which can be a single image or a batch.
|
871 |
+
|
872 |
+
Returns:
|
873 |
+
`List[PIL.Image.Image]`:
|
874 |
+
A list of PIL images converted from the input NumPy array.
|
875 |
+
"""
|
876 |
+
if images.ndim == 3:
|
877 |
+
images = images[None, ...]
|
878 |
+
images = (images * 255).round().astype("uint8")
|
879 |
+
if images.shape[-1] == 1:
|
880 |
+
# special case for grayscale (single channel) images
|
881 |
+
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
|
882 |
+
else:
|
883 |
+
pil_images = [Image.fromarray(image[:, :, :3]) for image in images]
|
884 |
+
|
885 |
+
return pil_images
|
886 |
+
|
887 |
+
@staticmethod
|
888 |
+
def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
|
889 |
+
r"""
|
890 |
+
Convert a PIL image or a list of PIL images to NumPy arrays.
|
891 |
+
|
892 |
+
Args:
|
893 |
+
images (`Union[List[PIL.Image.Image], PIL.Image.Image]`):
|
894 |
+
The input image or list of images to be converted.
|
895 |
+
|
896 |
+
Returns:
|
897 |
+
`np.ndarray`:
|
898 |
+
A NumPy array of the converted images.
|
899 |
+
"""
|
900 |
+
if not isinstance(images, list):
|
901 |
+
images = [images]
|
902 |
+
|
903 |
+
images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
|
904 |
+
images = np.stack(images, axis=0)
|
905 |
+
return images
|
906 |
+
|
907 |
+
@staticmethod
|
908 |
+
def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
|
909 |
+
r"""
|
910 |
+
Convert an RGB-like depth image to a depth map.
|
911 |
+
|
912 |
+
Args:
|
913 |
+
image (`Union[np.ndarray, torch.Tensor]`):
|
914 |
+
The RGB-like depth image to convert.
|
915 |
+
|
916 |
+
Returns:
|
917 |
+
`Union[np.ndarray, torch.Tensor]`:
|
918 |
+
The corresponding depth map.
|
919 |
+
"""
|
920 |
+
return image[:, :, 1] * 2**8 + image[:, :, 2]
|
921 |
+
|
922 |
+
def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
|
923 |
+
r"""
|
924 |
+
Convert a NumPy depth image or a batch of images to a list of PIL images.
|
925 |
+
|
926 |
+
Args:
|
927 |
+
images (`np.ndarray`):
|
928 |
+
The input NumPy array of depth images, which can be a single image or a batch.
|
929 |
+
|
930 |
+
Returns:
|
931 |
+
`List[PIL.Image.Image]`:
|
932 |
+
A list of PIL images converted from the input NumPy depth images.
|
933 |
+
"""
|
934 |
+
if images.ndim == 3:
|
935 |
+
images = images[None, ...]
|
936 |
+
images_depth = images[:, :, :, 3:]
|
937 |
+
if images.shape[-1] == 6:
|
938 |
+
images_depth = (images_depth * 255).round().astype("uint8")
|
939 |
+
pil_images = [
|
940 |
+
Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
|
941 |
+
]
|
942 |
+
elif images.shape[-1] == 4:
|
943 |
+
images_depth = (images_depth * 65535.0).astype(np.uint16)
|
944 |
+
pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
|
945 |
+
else:
|
946 |
+
raise Exception("Not supported")
|
947 |
+
|
948 |
+
return pil_images
|
949 |
+
|
950 |
+
def postprocess(
|
951 |
+
self,
|
952 |
+
image: torch.Tensor,
|
953 |
+
output_type: str = "pil",
|
954 |
+
do_denormalize: Optional[List[bool]] = None,
|
955 |
+
) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
|
956 |
+
"""
|
957 |
+
Postprocess the image output from tensor to `output_type`.
|
958 |
+
|
959 |
+
Args:
|
960 |
+
image (`torch.Tensor`):
|
961 |
+
The image input, should be a pytorch tensor with shape `B x C x H x W`.
|
962 |
+
output_type (`str`, *optional*, defaults to `pil`):
|
963 |
+
The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
|
964 |
+
do_denormalize (`List[bool]`, *optional*, defaults to `None`):
|
965 |
+
Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
|
966 |
+
`VaeImageProcessor` config.
|
967 |
+
|
968 |
+
Returns:
|
969 |
+
`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
|
970 |
+
The postprocessed image.
|
971 |
+
"""
|
972 |
+
if not isinstance(image, torch.Tensor):
|
973 |
+
raise ValueError(
|
974 |
+
f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
|
975 |
+
)
|
976 |
+
if output_type not in ["latent", "pt", "np", "pil"]:
|
977 |
+
deprecation_message = (
|
978 |
+
f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
|
979 |
+
"`pil`, `np`, `pt`, `latent`"
|
980 |
+
)
|
981 |
+
deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
|
982 |
+
output_type = "np"
|
983 |
+
|
984 |
+
image = self._denormalize_conditionally(image, do_denormalize)
|
985 |
+
|
986 |
+
image = self.pt_to_numpy(image)
|
987 |
+
|
988 |
+
if output_type == "np":
|
989 |
+
if image.shape[-1] == 6:
|
990 |
+
image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
|
991 |
+
else:
|
992 |
+
image_depth = image[:, :, :, 3:]
|
993 |
+
return image[:, :, :, :3], image_depth
|
994 |
+
|
995 |
+
if output_type == "pil":
|
996 |
+
return self.numpy_to_pil(image), self.numpy_to_depth(image)
|
997 |
+
else:
|
998 |
+
raise Exception(f"This type {output_type} is not supported")
|
999 |
+
|
1000 |
+
def preprocess(
|
1001 |
+
self,
|
1002 |
+
rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
|
1003 |
+
depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
|
1004 |
+
height: Optional[int] = None,
|
1005 |
+
width: Optional[int] = None,
|
1006 |
+
target_res: Optional[int] = None,
|
1007 |
+
) -> torch.Tensor:
|
1008 |
+
r"""
|
1009 |
+
Preprocess the image input. Accepted formats are PIL images, NumPy arrays, or PyTorch tensors.
|
1010 |
+
|
1011 |
+
Args:
|
1012 |
+
rgb (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`):
|
1013 |
+
The RGB input image, which can be a single image or a batch.
|
1014 |
+
depth (`Union[torch.Tensor, PIL.Image.Image, np.ndarray]`):
|
1015 |
+
The depth input image, which can be a single image or a batch.
|
1016 |
+
height (`Optional[int]`, *optional*, defaults to `None`):
|
1017 |
+
The desired height of the processed image. If `None`, defaults to the height of the input image.
|
1018 |
+
width (`Optional[int]`, *optional*, defaults to `None`):
|
1019 |
+
The desired width of the processed image. If `None`, defaults to the width of the input image.
|
1020 |
+
target_res (`Optional[int]`, *optional*, defaults to `None`):
|
1021 |
+
Target resolution for resizing the images. If specified, overrides height and width.
|
1022 |
+
|
1023 |
+
Returns:
|
1024 |
+
`Tuple[torch.Tensor, torch.Tensor]`:
|
1025 |
+
A tuple containing the processed RGB and depth images as PyTorch tensors.
|
1026 |
+
"""
|
1027 |
+
supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
|
1028 |
+
|
1029 |
+
# Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
|
1030 |
+
if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
|
1031 |
+
raise Exception("This is not yet supported")
|
1032 |
+
|
1033 |
+
if isinstance(rgb, supported_formats):
|
1034 |
+
rgb = [rgb]
|
1035 |
+
depth = [depth]
|
1036 |
+
elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
|
1037 |
+
raise ValueError(
|
1038 |
+
f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
|
1039 |
+
)
|
1040 |
+
|
1041 |
+
if isinstance(rgb[0], PIL.Image.Image):
|
1042 |
+
if self.config.do_convert_rgb:
|
1043 |
+
raise Exception("This is not yet supported")
|
1044 |
+
# rgb = [self.convert_to_rgb(i) for i in rgb]
|
1045 |
+
# depth = [self.convert_to_depth(i) for i in depth] #TODO define convert_to_depth
|
1046 |
+
if self.config.do_resize or target_res:
|
1047 |
+
height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
|
1048 |
+
rgb = [self.resize(i, height, width) for i in rgb]
|
1049 |
+
depth = [self.resize(i, height, width) for i in depth]
|
1050 |
+
rgb = self.pil_to_numpy(rgb) # to np
|
1051 |
+
rgb = self.numpy_to_pt(rgb) # to pt
|
1052 |
+
|
1053 |
+
depth = self.depth_pil_to_numpy(depth) # to np
|
1054 |
+
depth = self.numpy_to_pt(depth) # to pt
|
1055 |
+
|
1056 |
+
elif isinstance(rgb[0], np.ndarray):
|
1057 |
+
rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
|
1058 |
+
rgb = self.numpy_to_pt(rgb)
|
1059 |
+
height, width = self.get_default_height_width(rgb, height, width)
|
1060 |
+
if self.config.do_resize:
|
1061 |
+
rgb = self.resize(rgb, height, width)
|
1062 |
+
|
1063 |
+
depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
|
1064 |
+
depth = self.numpy_to_pt(depth)
|
1065 |
+
height, width = self.get_default_height_width(depth, height, width)
|
1066 |
+
if self.config.do_resize:
|
1067 |
+
depth = self.resize(depth, height, width)
|
1068 |
+
|
1069 |
+
elif isinstance(rgb[0], torch.Tensor):
|
1070 |
+
raise Exception("This is not yet supported")
|
1071 |
+
# rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)
|
1072 |
+
|
1073 |
+
# if self.config.do_convert_grayscale and rgb.ndim == 3:
|
1074 |
+
# rgb = rgb.unsqueeze(1)
|
1075 |
+
|
1076 |
+
# channel = rgb.shape[1]
|
1077 |
+
|
1078 |
+
# height, width = self.get_default_height_width(rgb, height, width)
|
1079 |
+
# if self.config.do_resize:
|
1080 |
+
# rgb = self.resize(rgb, height, width)
|
1081 |
+
|
1082 |
+
# depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)
|
1083 |
+
|
1084 |
+
# if self.config.do_convert_grayscale and depth.ndim == 3:
|
1085 |
+
# depth = depth.unsqueeze(1)
|
1086 |
+
|
1087 |
+
# channel = depth.shape[1]
|
1088 |
+
# # don't need any preprocess if the image is latents
|
1089 |
+
# if depth == 4:
|
1090 |
+
# return rgb, depth
|
1091 |
+
|
1092 |
+
# height, width = self.get_default_height_width(depth, height, width)
|
1093 |
+
# if self.config.do_resize:
|
1094 |
+
# depth = self.resize(depth, height, width)
|
1095 |
+
# expected range [0,1], normalize to [-1,1]
|
1096 |
+
do_normalize = self.config.do_normalize
|
1097 |
+
if rgb.min() < 0 and do_normalize:
|
1098 |
+
warnings.warn(
|
1099 |
+
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
|
1100 |
+
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
|
1101 |
+
FutureWarning,
|
1102 |
+
)
|
1103 |
+
do_normalize = False
|
1104 |
+
|
1105 |
+
if do_normalize:
|
1106 |
+
rgb = self.normalize(rgb)
|
1107 |
+
depth = self.normalize(depth)
|
1108 |
+
|
1109 |
+
if self.config.do_binarize:
|
1110 |
+
rgb = self.binarize(rgb)
|
1111 |
+
depth = self.binarize(depth)
|
1112 |
+
|
1113 |
+
return rgb, depth
|
1114 |
+
|
1115 |
+
|
1116 |
+
class IPAdapterMaskProcessor(VaeImageProcessor):
|
1117 |
+
"""
|
1118 |
+
Image processor for IP Adapter image masks.
|
1119 |
+
|
1120 |
+
Args:
|
1121 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
1122 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
|
1123 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
1124 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
1125 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
1126 |
+
Resampling filter to use when resizing the image.
|
1127 |
+
do_normalize (`bool`, *optional*, defaults to `False`):
|
1128 |
+
Whether to normalize the image to [-1,1].
|
1129 |
+
do_binarize (`bool`, *optional*, defaults to `True`):
|
1130 |
+
Whether to binarize the image to 0/1.
|
1131 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
|
1132 |
+
Whether to convert the images to grayscale format.
|
1133 |
+
|
1134 |
+
"""
|
1135 |
+
|
1136 |
+
config_name = CONFIG_NAME
|
1137 |
+
|
1138 |
+
@register_to_config
|
1139 |
+
def __init__(
|
1140 |
+
self,
|
1141 |
+
do_resize: bool = True,
|
1142 |
+
vae_scale_factor: int = 8,
|
1143 |
+
resample: str = "lanczos",
|
1144 |
+
do_normalize: bool = False,
|
1145 |
+
do_binarize: bool = True,
|
1146 |
+
do_convert_grayscale: bool = True,
|
1147 |
+
):
|
1148 |
+
super().__init__(
|
1149 |
+
do_resize=do_resize,
|
1150 |
+
vae_scale_factor=vae_scale_factor,
|
1151 |
+
resample=resample,
|
1152 |
+
do_normalize=do_normalize,
|
1153 |
+
do_binarize=do_binarize,
|
1154 |
+
do_convert_grayscale=do_convert_grayscale,
|
1155 |
+
)
|
1156 |
+
|
1157 |
+
@staticmethod
|
1158 |
+
def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int):
|
1159 |
+
"""
|
1160 |
+
Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the
|
1161 |
+
aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
|
1162 |
+
|
1163 |
+
Args:
|
1164 |
+
mask (`torch.Tensor`):
|
1165 |
+
The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
|
1166 |
+
batch_size (`int`):
|
1167 |
+
The batch size.
|
1168 |
+
num_queries (`int`):
|
1169 |
+
The number of queries.
|
1170 |
+
value_embed_dim (`int`):
|
1171 |
+
The dimensionality of the value embeddings.
|
1172 |
+
|
1173 |
+
Returns:
|
1174 |
+
`torch.Tensor`:
|
1175 |
+
The downsampled mask tensor.
|
1176 |
+
|
1177 |
+
"""
|
1178 |
+
o_h = mask.shape[1]
|
1179 |
+
o_w = mask.shape[2]
|
1180 |
+
ratio = o_w / o_h
|
1181 |
+
mask_h = int(math.sqrt(num_queries / ratio))
|
1182 |
+
mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
|
1183 |
+
mask_w = num_queries // mask_h
|
1184 |
+
|
1185 |
+
mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)
|
1186 |
+
|
1187 |
+
# Repeat batch_size times
|
1188 |
+
if mask_downsample.shape[0] < batch_size:
|
1189 |
+
mask_downsample = mask_downsample.repeat(batch_size, 1, 1)
|
1190 |
+
|
1191 |
+
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)
|
1192 |
+
|
1193 |
+
downsampled_area = mask_h * mask_w
|
1194 |
+
# If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
|
1195 |
+
# Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
|
1196 |
+
if downsampled_area < num_queries:
|
1197 |
+
warnings.warn(
|
1198 |
+
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
|
1199 |
+
"Please update your masks or adjust the output size for optimal performance.",
|
1200 |
+
UserWarning,
|
1201 |
+
)
|
1202 |
+
mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
|
1203 |
+
# Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
|
1204 |
+
if downsampled_area > num_queries:
|
1205 |
+
warnings.warn(
|
1206 |
+
"The aspect ratio of the mask does not match the aspect ratio of the output image. "
|
1207 |
+
"Please update your masks or adjust the output size for optimal performance.",
|
1208 |
+
UserWarning,
|
1209 |
+
)
|
1210 |
+
mask_downsample = mask_downsample[:, :num_queries]
|
1211 |
+
|
1212 |
+
# Repeat last dimension to match SDPA output shape
|
1213 |
+
mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
|
1214 |
+
1, 1, value_embed_dim
|
1215 |
+
)
|
1216 |
+
|
1217 |
+
return mask_downsample
|
1218 |
+
|
1219 |
+
|
1220 |
+
class PixArtImageProcessor(VaeImageProcessor):
|
1221 |
+
"""
|
1222 |
+
Image processor for PixArt image resize and crop.
|
1223 |
+
|
1224 |
+
Args:
|
1225 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
1226 |
+
Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
|
1227 |
+
`height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
|
1228 |
+
vae_scale_factor (`int`, *optional*, defaults to `8`):
|
1229 |
+
VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
|
1230 |
+
resample (`str`, *optional*, defaults to `lanczos`):
|
1231 |
+
Resampling filter to use when resizing the image.
|
1232 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
1233 |
+
Whether to normalize the image to [-1,1].
|
1234 |
+
do_binarize (`bool`, *optional*, defaults to `False`):
|
1235 |
+
Whether to binarize the image to 0/1.
|
1236 |
+
do_convert_rgb (`bool`, *optional*, defaults to be `False`):
|
1237 |
+
Whether to convert the images to RGB format.
|
1238 |
+
do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
|
1239 |
+
Whether to convert the images to grayscale format.
|
1240 |
+
"""
|
1241 |
+
|
1242 |
+
@register_to_config
|
1243 |
+
def __init__(
|
1244 |
+
self,
|
1245 |
+
do_resize: bool = True,
|
1246 |
+
vae_scale_factor: int = 8,
|
1247 |
+
resample: str = "lanczos",
|
1248 |
+
do_normalize: bool = True,
|
1249 |
+
do_binarize: bool = False,
|
1250 |
+
do_convert_grayscale: bool = False,
|
1251 |
+
):
|
1252 |
+
super().__init__(
|
1253 |
+
do_resize=do_resize,
|
1254 |
+
vae_scale_factor=vae_scale_factor,
|
1255 |
+
resample=resample,
|
1256 |
+
do_normalize=do_normalize,
|
1257 |
+
do_binarize=do_binarize,
|
1258 |
+
do_convert_grayscale=do_convert_grayscale,
|
1259 |
+
)
|
1260 |
+
|
1261 |
+
@staticmethod
|
1262 |
+
def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
|
1263 |
+
r"""
|
1264 |
+
Returns the binned height and width based on the aspect ratio.
|
1265 |
+
|
1266 |
+
Args:
|
1267 |
+
height (`int`): The height of the image.
|
1268 |
+
width (`int`): The width of the image.
|
1269 |
+
ratios (`dict`): A dictionary where keys are aspect ratios and values are tuples of (height, width).
|
1270 |
+
|
1271 |
+
Returns:
|
1272 |
+
`Tuple[int, int]`: The closest binned height and width.
|
1273 |
+
"""
|
1274 |
+
ar = float(height / width)
|
1275 |
+
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
|
1276 |
+
default_hw = ratios[closest_ratio]
|
1277 |
+
return int(default_hw[0]), int(default_hw[1])
|
1278 |
+
|
1279 |
+
@staticmethod
|
1280 |
+
def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
|
1281 |
+
r"""
|
1282 |
+
Resizes and crops a tensor of images to the specified dimensions.
|
1283 |
+
|
1284 |
+
Args:
|
1285 |
+
samples (`torch.Tensor`):
|
1286 |
+
A tensor of shape (N, C, H, W) where N is the batch size, C is the number of channels, H is the height,
|
1287 |
+
and W is the width.
|
1288 |
+
new_width (`int`): The desired width of the output images.
|
1289 |
+
new_height (`int`): The desired height of the output images.
|
1290 |
+
|
1291 |
+
Returns:
|
1292 |
+
`torch.Tensor`: A tensor containing the resized and cropped images.
|
1293 |
+
"""
|
1294 |
+
orig_height, orig_width = samples.shape[2], samples.shape[3]
|
1295 |
+
|
1296 |
+
# Check if resizing is needed
|
1297 |
+
if orig_height != new_height or orig_width != new_width:
|
1298 |
+
ratio = max(new_height / orig_height, new_width / orig_width)
|
1299 |
+
resized_width = int(orig_width * ratio)
|
1300 |
+
resized_height = int(orig_height * ratio)
|
1301 |
+
|
1302 |
+
# Resize
|
1303 |
+
samples = F.interpolate(
|
1304 |
+
samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
|
1305 |
+
)
|
1306 |
+
|
1307 |
+
# Center Crop
|
1308 |
+
start_x = (resized_width - new_width) // 2
|
1309 |
+
end_x = start_x + new_width
|
1310 |
+
start_y = (resized_height - new_height) // 2
|
1311 |
+
end_y = start_y + new_height
|
1312 |
+
samples = samples[:, :, start_y:end_y, start_x:end_x]
|
1313 |
+
|
1314 |
+
return samples
|
icedit/diffusers/loaders/__init__.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import TYPE_CHECKING
|
2 |
+
|
3 |
+
from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
|
4 |
+
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
|
5 |
+
|
6 |
+
|
7 |
+
def text_encoder_lora_state_dict(text_encoder):
|
8 |
+
deprecate(
|
9 |
+
"text_encoder_load_state_dict in `models`",
|
10 |
+
"0.27.0",
|
11 |
+
"`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
|
12 |
+
)
|
13 |
+
state_dict = {}
|
14 |
+
|
15 |
+
for name, module in text_encoder_attn_modules(text_encoder):
|
16 |
+
for k, v in module.q_proj.lora_linear_layer.state_dict().items():
|
17 |
+
state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v
|
18 |
+
|
19 |
+
for k, v in module.k_proj.lora_linear_layer.state_dict().items():
|
20 |
+
state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v
|
21 |
+
|
22 |
+
for k, v in module.v_proj.lora_linear_layer.state_dict().items():
|
23 |
+
state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v
|
24 |
+
|
25 |
+
for k, v in module.out_proj.lora_linear_layer.state_dict().items():
|
26 |
+
state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v
|
27 |
+
|
28 |
+
return state_dict
|
29 |
+
|
30 |
+
|
31 |
+
if is_transformers_available():
|
32 |
+
|
33 |
+
def text_encoder_attn_modules(text_encoder):
|
34 |
+
deprecate(
|
35 |
+
"text_encoder_attn_modules in `models`",
|
36 |
+
"0.27.0",
|
37 |
+
"`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
|
38 |
+
)
|
39 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection
|
40 |
+
|
41 |
+
attn_modules = []
|
42 |
+
|
43 |
+
if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
|
44 |
+
for i, layer in enumerate(text_encoder.text_model.encoder.layers):
|
45 |
+
name = f"text_model.encoder.layers.{i}.self_attn"
|
46 |
+
mod = layer.self_attn
|
47 |
+
attn_modules.append((name, mod))
|
48 |
+
else:
|
49 |
+
raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")
|
50 |
+
|
51 |
+
return attn_modules
|
52 |
+
|
53 |
+
|
54 |
+
_import_structure = {}
|
55 |
+
|
56 |
+
if is_torch_available():
|
57 |
+
_import_structure["single_file_model"] = ["FromOriginalModelMixin"]
|
58 |
+
_import_structure["transformer_flux"] = ["FluxTransformer2DLoadersMixin"]
|
59 |
+
_import_structure["transformer_sd3"] = ["SD3Transformer2DLoadersMixin"]
|
60 |
+
_import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
|
61 |
+
_import_structure["utils"] = ["AttnProcsLayers"]
|
62 |
+
if is_transformers_available():
|
63 |
+
_import_structure["single_file"] = ["FromSingleFileMixin"]
|
64 |
+
_import_structure["lora_pipeline"] = [
|
65 |
+
"AmusedLoraLoaderMixin",
|
66 |
+
"StableDiffusionLoraLoaderMixin",
|
67 |
+
"SD3LoraLoaderMixin",
|
68 |
+
"StableDiffusionXLLoraLoaderMixin",
|
69 |
+
"LTXVideoLoraLoaderMixin",
|
70 |
+
"LoraLoaderMixin",
|
71 |
+
"FluxLoraLoaderMixin",
|
72 |
+
"CogVideoXLoraLoaderMixin",
|
73 |
+
"Mochi1LoraLoaderMixin",
|
74 |
+
"HunyuanVideoLoraLoaderMixin",
|
75 |
+
"SanaLoraLoaderMixin",
|
76 |
+
]
|
77 |
+
_import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
|
78 |
+
_import_structure["ip_adapter"] = [
|
79 |
+
"IPAdapterMixin",
|
80 |
+
"FluxIPAdapterMixin",
|
81 |
+
"SD3IPAdapterMixin",
|
82 |
+
]
|
83 |
+
|
84 |
+
_import_structure["peft"] = ["PeftAdapterMixin"]
|
85 |
+
|
86 |
+
|
87 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
88 |
+
if is_torch_available():
|
89 |
+
from .single_file_model import FromOriginalModelMixin
|
90 |
+
from .transformer_flux import FluxTransformer2DLoadersMixin
|
91 |
+
from .transformer_sd3 import SD3Transformer2DLoadersMixin
|
92 |
+
from .unet import UNet2DConditionLoadersMixin
|
93 |
+
from .utils import AttnProcsLayers
|
94 |
+
|
95 |
+
if is_transformers_available():
|
96 |
+
from .ip_adapter import (
|
97 |
+
FluxIPAdapterMixin,
|
98 |
+
IPAdapterMixin,
|
99 |
+
SD3IPAdapterMixin,
|
100 |
+
)
|
101 |
+
from .lora_pipeline import (
|
102 |
+
AmusedLoraLoaderMixin,
|
103 |
+
CogVideoXLoraLoaderMixin,
|
104 |
+
FluxLoraLoaderMixin,
|
105 |
+
HunyuanVideoLoraLoaderMixin,
|
106 |
+
LoraLoaderMixin,
|
107 |
+
LTXVideoLoraLoaderMixin,
|
108 |
+
Mochi1LoraLoaderMixin,
|
109 |
+
SanaLoraLoaderMixin,
|
110 |
+
SD3LoraLoaderMixin,
|
111 |
+
StableDiffusionLoraLoaderMixin,
|
112 |
+
StableDiffusionXLLoraLoaderMixin,
|
113 |
+
)
|
114 |
+
from .single_file import FromSingleFileMixin
|
115 |
+
from .textual_inversion import TextualInversionLoaderMixin
|
116 |
+
|
117 |
+
from .peft import PeftAdapterMixin
|
118 |
+
else:
|
119 |
+
import sys
|
120 |
+
|
121 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
icedit/diffusers/loaders/ip_adapter.py
ADDED
@@ -0,0 +1,871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from pathlib import Path
|
16 |
+
from typing import Dict, List, Optional, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
21 |
+
from safetensors import safe_open
|
22 |
+
|
23 |
+
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_state_dict
|
24 |
+
from ..utils import (
|
25 |
+
USE_PEFT_BACKEND,
|
26 |
+
_get_model_file,
|
27 |
+
is_accelerate_available,
|
28 |
+
is_torch_version,
|
29 |
+
is_transformers_available,
|
30 |
+
logging,
|
31 |
+
)
|
32 |
+
from .unet_loader_utils import _maybe_expand_lora_scales
|
33 |
+
|
34 |
+
|
35 |
+
if is_transformers_available():
|
36 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, SiglipImageProcessor, SiglipVisionModel
|
37 |
+
|
38 |
+
from ..models.attention_processor import (
|
39 |
+
AttnProcessor,
|
40 |
+
AttnProcessor2_0,
|
41 |
+
FluxAttnProcessor2_0,
|
42 |
+
FluxIPAdapterJointAttnProcessor2_0,
|
43 |
+
IPAdapterAttnProcessor,
|
44 |
+
IPAdapterAttnProcessor2_0,
|
45 |
+
IPAdapterXFormersAttnProcessor,
|
46 |
+
JointAttnProcessor2_0,
|
47 |
+
SD3IPAdapterJointAttnProcessor2_0,
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
|
54 |
+
class IPAdapterMixin:
|
55 |
+
"""Mixin for handling IP Adapters."""
|
56 |
+
|
57 |
+
@validate_hf_hub_args
|
58 |
+
def load_ip_adapter(
|
59 |
+
self,
|
60 |
+
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
|
61 |
+
subfolder: Union[str, List[str]],
|
62 |
+
weight_name: Union[str, List[str]],
|
63 |
+
image_encoder_folder: Optional[str] = "image_encoder",
|
64 |
+
**kwargs,
|
65 |
+
):
|
66 |
+
"""
|
67 |
+
Parameters:
|
68 |
+
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
|
69 |
+
Can be either:
|
70 |
+
|
71 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
72 |
+
the Hub.
|
73 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
74 |
+
with [`ModelMixin.save_pretrained`].
|
75 |
+
- A [torch state
|
76 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
77 |
+
subfolder (`str` or `List[str]`):
|
78 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
|
79 |
+
list is passed, it should have the same length as `weight_name`.
|
80 |
+
weight_name (`str` or `List[str]`):
|
81 |
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
82 |
+
`subfolder`.
|
83 |
+
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
84 |
+
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
85 |
+
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
|
86 |
+
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
|
87 |
+
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
|
88 |
+
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
|
89 |
+
`image_encoder_folder="different_subfolder/image_encoder"`.
|
90 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
91 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
92 |
+
is not used.
|
93 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
94 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
95 |
+
cached versions if they exist.
|
96 |
+
|
97 |
+
proxies (`Dict[str, str]`, *optional*):
|
98 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
99 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
100 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
101 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
102 |
+
won't be downloaded from the Hub.
|
103 |
+
token (`str` or *bool*, *optional*):
|
104 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
105 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
106 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
107 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
108 |
+
allowed by Git.
|
109 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
110 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
111 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
112 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
113 |
+
argument to `True` will raise an error.
|
114 |
+
"""
|
115 |
+
|
116 |
+
# handle the list inputs for multiple IP Adapters
|
117 |
+
if not isinstance(weight_name, list):
|
118 |
+
weight_name = [weight_name]
|
119 |
+
|
120 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
121 |
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
|
122 |
+
if len(pretrained_model_name_or_path_or_dict) == 1:
|
123 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
|
124 |
+
|
125 |
+
if not isinstance(subfolder, list):
|
126 |
+
subfolder = [subfolder]
|
127 |
+
if len(subfolder) == 1:
|
128 |
+
subfolder = subfolder * len(weight_name)
|
129 |
+
|
130 |
+
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
|
131 |
+
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
|
132 |
+
|
133 |
+
if len(weight_name) != len(subfolder):
|
134 |
+
raise ValueError("`weight_name` and `subfolder` must have the same length.")
|
135 |
+
|
136 |
+
# Load the main state dict first.
|
137 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
138 |
+
force_download = kwargs.pop("force_download", False)
|
139 |
+
proxies = kwargs.pop("proxies", None)
|
140 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
141 |
+
token = kwargs.pop("token", None)
|
142 |
+
revision = kwargs.pop("revision", None)
|
143 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
144 |
+
|
145 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
146 |
+
low_cpu_mem_usage = False
|
147 |
+
logger.warning(
|
148 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
149 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
150 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
151 |
+
" install accelerate\n```\n."
|
152 |
+
)
|
153 |
+
|
154 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
155 |
+
raise NotImplementedError(
|
156 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
157 |
+
" `low_cpu_mem_usage=False`."
|
158 |
+
)
|
159 |
+
|
160 |
+
user_agent = {
|
161 |
+
"file_type": "attn_procs_weights",
|
162 |
+
"framework": "pytorch",
|
163 |
+
}
|
164 |
+
state_dicts = []
|
165 |
+
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
|
166 |
+
pretrained_model_name_or_path_or_dict, weight_name, subfolder
|
167 |
+
):
|
168 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
169 |
+
model_file = _get_model_file(
|
170 |
+
pretrained_model_name_or_path_or_dict,
|
171 |
+
weights_name=weight_name,
|
172 |
+
cache_dir=cache_dir,
|
173 |
+
force_download=force_download,
|
174 |
+
proxies=proxies,
|
175 |
+
local_files_only=local_files_only,
|
176 |
+
token=token,
|
177 |
+
revision=revision,
|
178 |
+
subfolder=subfolder,
|
179 |
+
user_agent=user_agent,
|
180 |
+
)
|
181 |
+
if weight_name.endswith(".safetensors"):
|
182 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
183 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
184 |
+
for key in f.keys():
|
185 |
+
if key.startswith("image_proj."):
|
186 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
187 |
+
elif key.startswith("ip_adapter."):
|
188 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
189 |
+
else:
|
190 |
+
state_dict = load_state_dict(model_file)
|
191 |
+
else:
|
192 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
193 |
+
|
194 |
+
keys = list(state_dict.keys())
|
195 |
+
if "image_proj" not in keys and "ip_adapter" not in keys:
|
196 |
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
197 |
+
|
198 |
+
state_dicts.append(state_dict)
|
199 |
+
|
200 |
+
# load CLIP image encoder here if it has not been registered to the pipeline yet
|
201 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
202 |
+
if image_encoder_folder is not None:
|
203 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
204 |
+
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
|
205 |
+
if image_encoder_folder.count("/") == 0:
|
206 |
+
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
|
207 |
+
else:
|
208 |
+
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
|
209 |
+
|
210 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
211 |
+
pretrained_model_name_or_path_or_dict,
|
212 |
+
subfolder=image_encoder_subfolder,
|
213 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
214 |
+
cache_dir=cache_dir,
|
215 |
+
local_files_only=local_files_only,
|
216 |
+
).to(self.device, dtype=self.dtype)
|
217 |
+
self.register_modules(image_encoder=image_encoder)
|
218 |
+
else:
|
219 |
+
raise ValueError(
|
220 |
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
logger.warning(
|
224 |
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
225 |
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
226 |
+
)
|
227 |
+
|
228 |
+
# create feature extractor if it has not been registered to the pipeline yet
|
229 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
|
230 |
+
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
|
231 |
+
default_clip_size = 224
|
232 |
+
clip_image_size = (
|
233 |
+
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
|
234 |
+
)
|
235 |
+
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
|
236 |
+
self.register_modules(feature_extractor=feature_extractor)
|
237 |
+
|
238 |
+
# load ip-adapter into unet
|
239 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
240 |
+
unet._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
241 |
+
|
242 |
+
extra_loras = unet._load_ip_adapter_loras(state_dicts)
|
243 |
+
if extra_loras != {}:
|
244 |
+
if not USE_PEFT_BACKEND:
|
245 |
+
logger.warning("PEFT backend is required to load these weights.")
|
246 |
+
else:
|
247 |
+
# apply the IP Adapter Face ID LoRA weights
|
248 |
+
peft_config = getattr(unet, "peft_config", {})
|
249 |
+
for k, lora in extra_loras.items():
|
250 |
+
if f"faceid_{k}" not in peft_config:
|
251 |
+
self.load_lora_weights(lora, adapter_name=f"faceid_{k}")
|
252 |
+
self.set_adapters([f"faceid_{k}"], adapter_weights=[1.0])
|
253 |
+
|
254 |
+
def set_ip_adapter_scale(self, scale):
|
255 |
+
"""
|
256 |
+
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
|
257 |
+
granular control over each IP-Adapter behavior. A config can be a float or a dictionary.
|
258 |
+
|
259 |
+
Example:
|
260 |
+
|
261 |
+
```py
|
262 |
+
# To use original IP-Adapter
|
263 |
+
scale = 1.0
|
264 |
+
pipeline.set_ip_adapter_scale(scale)
|
265 |
+
|
266 |
+
# To use style block only
|
267 |
+
scale = {
|
268 |
+
"up": {"block_0": [0.0, 1.0, 0.0]},
|
269 |
+
}
|
270 |
+
pipeline.set_ip_adapter_scale(scale)
|
271 |
+
|
272 |
+
# To use style+layout blocks
|
273 |
+
scale = {
|
274 |
+
"down": {"block_2": [0.0, 1.0]},
|
275 |
+
"up": {"block_0": [0.0, 1.0, 0.0]},
|
276 |
+
}
|
277 |
+
pipeline.set_ip_adapter_scale(scale)
|
278 |
+
|
279 |
+
# To use style and layout from 2 reference images
|
280 |
+
scales = [{"down": {"block_2": [0.0, 1.0]}}, {"up": {"block_0": [0.0, 1.0, 0.0]}}]
|
281 |
+
pipeline.set_ip_adapter_scale(scales)
|
282 |
+
```
|
283 |
+
"""
|
284 |
+
unet = getattr(self, self.unet_name) if not hasattr(self, "unet") else self.unet
|
285 |
+
if not isinstance(scale, list):
|
286 |
+
scale = [scale]
|
287 |
+
scale_configs = _maybe_expand_lora_scales(unet, scale, default_scale=0.0)
|
288 |
+
|
289 |
+
for attn_name, attn_processor in unet.attn_processors.items():
|
290 |
+
if isinstance(
|
291 |
+
attn_processor, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
|
292 |
+
):
|
293 |
+
if len(scale_configs) != len(attn_processor.scale):
|
294 |
+
raise ValueError(
|
295 |
+
f"Cannot assign {len(scale_configs)} scale_configs to "
|
296 |
+
f"{len(attn_processor.scale)} IP-Adapter."
|
297 |
+
)
|
298 |
+
elif len(scale_configs) == 1:
|
299 |
+
scale_configs = scale_configs * len(attn_processor.scale)
|
300 |
+
for i, scale_config in enumerate(scale_configs):
|
301 |
+
if isinstance(scale_config, dict):
|
302 |
+
for k, s in scale_config.items():
|
303 |
+
if attn_name.startswith(k):
|
304 |
+
attn_processor.scale[i] = s
|
305 |
+
else:
|
306 |
+
attn_processor.scale[i] = scale_config
|
307 |
+
|
308 |
+
def unload_ip_adapter(self):
|
309 |
+
"""
|
310 |
+
Unloads the IP Adapter weights
|
311 |
+
|
312 |
+
Examples:
|
313 |
+
|
314 |
+
```python
|
315 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
316 |
+
>>> pipeline.unload_ip_adapter()
|
317 |
+
>>> ...
|
318 |
+
```
|
319 |
+
"""
|
320 |
+
# remove CLIP image encoder
|
321 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
322 |
+
self.image_encoder = None
|
323 |
+
self.register_to_config(image_encoder=[None, None])
|
324 |
+
|
325 |
+
# remove feature extractor only when safety_checker is None as safety_checker uses
|
326 |
+
# the feature_extractor later
|
327 |
+
if not hasattr(self, "safety_checker"):
|
328 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
329 |
+
self.feature_extractor = None
|
330 |
+
self.register_to_config(feature_extractor=[None, None])
|
331 |
+
|
332 |
+
# remove hidden encoder
|
333 |
+
self.unet.encoder_hid_proj = None
|
334 |
+
self.unet.config.encoder_hid_dim_type = None
|
335 |
+
|
336 |
+
# Kolors: restore `encoder_hid_proj` with `text_encoder_hid_proj`
|
337 |
+
if hasattr(self.unet, "text_encoder_hid_proj") and self.unet.text_encoder_hid_proj is not None:
|
338 |
+
self.unet.encoder_hid_proj = self.unet.text_encoder_hid_proj
|
339 |
+
self.unet.text_encoder_hid_proj = None
|
340 |
+
self.unet.config.encoder_hid_dim_type = "text_proj"
|
341 |
+
|
342 |
+
# restore original Unet attention processors layers
|
343 |
+
attn_procs = {}
|
344 |
+
for name, value in self.unet.attn_processors.items():
|
345 |
+
attn_processor_class = (
|
346 |
+
AttnProcessor2_0() if hasattr(F, "scaled_dot_product_attention") else AttnProcessor()
|
347 |
+
)
|
348 |
+
attn_procs[name] = (
|
349 |
+
attn_processor_class
|
350 |
+
if isinstance(
|
351 |
+
value, (IPAdapterAttnProcessor, IPAdapterAttnProcessor2_0, IPAdapterXFormersAttnProcessor)
|
352 |
+
)
|
353 |
+
else value.__class__()
|
354 |
+
)
|
355 |
+
self.unet.set_attn_processor(attn_procs)
|
356 |
+
|
357 |
+
|
358 |
+
class FluxIPAdapterMixin:
|
359 |
+
"""Mixin for handling Flux IP Adapters."""
|
360 |
+
|
361 |
+
@validate_hf_hub_args
|
362 |
+
def load_ip_adapter(
|
363 |
+
self,
|
364 |
+
pretrained_model_name_or_path_or_dict: Union[str, List[str], Dict[str, torch.Tensor]],
|
365 |
+
weight_name: Union[str, List[str]],
|
366 |
+
subfolder: Optional[Union[str, List[str]]] = "",
|
367 |
+
image_encoder_pretrained_model_name_or_path: Optional[str] = "image_encoder",
|
368 |
+
image_encoder_subfolder: Optional[str] = "",
|
369 |
+
image_encoder_dtype: torch.dtype = torch.float16,
|
370 |
+
**kwargs,
|
371 |
+
):
|
372 |
+
"""
|
373 |
+
Parameters:
|
374 |
+
pretrained_model_name_or_path_or_dict (`str` or `List[str]` or `os.PathLike` or `List[os.PathLike]` or `dict` or `List[dict]`):
|
375 |
+
Can be either:
|
376 |
+
|
377 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
378 |
+
the Hub.
|
379 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
380 |
+
with [`ModelMixin.save_pretrained`].
|
381 |
+
- A [torch state
|
382 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
383 |
+
subfolder (`str` or `List[str]`):
|
384 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
|
385 |
+
list is passed, it should have the same length as `weight_name`.
|
386 |
+
weight_name (`str` or `List[str]`):
|
387 |
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
388 |
+
`weight_name`.
|
389 |
+
image_encoder_pretrained_model_name_or_path (`str`, *optional*, defaults to `./image_encoder`):
|
390 |
+
Can be either:
|
391 |
+
|
392 |
+
- A string, the *model id* (for example `openai/clip-vit-large-patch14`) of a pretrained model
|
393 |
+
hosted on the Hub.
|
394 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
395 |
+
with [`ModelMixin.save_pretrained`].
|
396 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
397 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
398 |
+
is not used.
|
399 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
400 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
401 |
+
cached versions if they exist.
|
402 |
+
|
403 |
+
proxies (`Dict[str, str]`, *optional*):
|
404 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
405 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
406 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
407 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
408 |
+
won't be downloaded from the Hub.
|
409 |
+
token (`str` or *bool*, *optional*):
|
410 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
411 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
412 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
413 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
414 |
+
allowed by Git.
|
415 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
416 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
417 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
418 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
419 |
+
argument to `True` will raise an error.
|
420 |
+
"""
|
421 |
+
|
422 |
+
# handle the list inputs for multiple IP Adapters
|
423 |
+
if not isinstance(weight_name, list):
|
424 |
+
weight_name = [weight_name]
|
425 |
+
|
426 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, list):
|
427 |
+
pretrained_model_name_or_path_or_dict = [pretrained_model_name_or_path_or_dict]
|
428 |
+
if len(pretrained_model_name_or_path_or_dict) == 1:
|
429 |
+
pretrained_model_name_or_path_or_dict = pretrained_model_name_or_path_or_dict * len(weight_name)
|
430 |
+
|
431 |
+
if not isinstance(subfolder, list):
|
432 |
+
subfolder = [subfolder]
|
433 |
+
if len(subfolder) == 1:
|
434 |
+
subfolder = subfolder * len(weight_name)
|
435 |
+
|
436 |
+
if len(weight_name) != len(pretrained_model_name_or_path_or_dict):
|
437 |
+
raise ValueError("`weight_name` and `pretrained_model_name_or_path_or_dict` must have the same length.")
|
438 |
+
|
439 |
+
if len(weight_name) != len(subfolder):
|
440 |
+
raise ValueError("`weight_name` and `subfolder` must have the same length.")
|
441 |
+
|
442 |
+
# Load the main state dict first.
|
443 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
444 |
+
force_download = kwargs.pop("force_download", False)
|
445 |
+
proxies = kwargs.pop("proxies", None)
|
446 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
447 |
+
token = kwargs.pop("token", None)
|
448 |
+
revision = kwargs.pop("revision", None)
|
449 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
450 |
+
|
451 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
452 |
+
low_cpu_mem_usage = False
|
453 |
+
logger.warning(
|
454 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
455 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
456 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
457 |
+
" install accelerate\n```\n."
|
458 |
+
)
|
459 |
+
|
460 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
461 |
+
raise NotImplementedError(
|
462 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
463 |
+
" `low_cpu_mem_usage=False`."
|
464 |
+
)
|
465 |
+
|
466 |
+
user_agent = {
|
467 |
+
"file_type": "attn_procs_weights",
|
468 |
+
"framework": "pytorch",
|
469 |
+
}
|
470 |
+
state_dicts = []
|
471 |
+
for pretrained_model_name_or_path_or_dict, weight_name, subfolder in zip(
|
472 |
+
pretrained_model_name_or_path_or_dict, weight_name, subfolder
|
473 |
+
):
|
474 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
475 |
+
model_file = _get_model_file(
|
476 |
+
pretrained_model_name_or_path_or_dict,
|
477 |
+
weights_name=weight_name,
|
478 |
+
cache_dir=cache_dir,
|
479 |
+
force_download=force_download,
|
480 |
+
proxies=proxies,
|
481 |
+
local_files_only=local_files_only,
|
482 |
+
token=token,
|
483 |
+
revision=revision,
|
484 |
+
subfolder=subfolder,
|
485 |
+
user_agent=user_agent,
|
486 |
+
)
|
487 |
+
if weight_name.endswith(".safetensors"):
|
488 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
489 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
490 |
+
image_proj_keys = ["ip_adapter_proj_model.", "image_proj."]
|
491 |
+
ip_adapter_keys = ["double_blocks.", "ip_adapter."]
|
492 |
+
for key in f.keys():
|
493 |
+
if any(key.startswith(prefix) for prefix in image_proj_keys):
|
494 |
+
diffusers_name = ".".join(key.split(".")[1:])
|
495 |
+
state_dict["image_proj"][diffusers_name] = f.get_tensor(key)
|
496 |
+
elif any(key.startswith(prefix) for prefix in ip_adapter_keys):
|
497 |
+
diffusers_name = (
|
498 |
+
".".join(key.split(".")[1:])
|
499 |
+
.replace("ip_adapter_double_stream_k_proj", "to_k_ip")
|
500 |
+
.replace("ip_adapter_double_stream_v_proj", "to_v_ip")
|
501 |
+
.replace("processor.", "")
|
502 |
+
)
|
503 |
+
state_dict["ip_adapter"][diffusers_name] = f.get_tensor(key)
|
504 |
+
else:
|
505 |
+
state_dict = load_state_dict(model_file)
|
506 |
+
else:
|
507 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
508 |
+
|
509 |
+
keys = list(state_dict.keys())
|
510 |
+
if keys != ["image_proj", "ip_adapter"]:
|
511 |
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
512 |
+
|
513 |
+
state_dicts.append(state_dict)
|
514 |
+
|
515 |
+
# load CLIP image encoder here if it has not been registered to the pipeline yet
|
516 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
517 |
+
if image_encoder_pretrained_model_name_or_path is not None:
|
518 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
519 |
+
logger.info(f"loading image_encoder from {image_encoder_pretrained_model_name_or_path}")
|
520 |
+
image_encoder = (
|
521 |
+
CLIPVisionModelWithProjection.from_pretrained(
|
522 |
+
image_encoder_pretrained_model_name_or_path,
|
523 |
+
subfolder=image_encoder_subfolder,
|
524 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
525 |
+
cache_dir=cache_dir,
|
526 |
+
local_files_only=local_files_only,
|
527 |
+
)
|
528 |
+
.to(self.device, dtype=image_encoder_dtype)
|
529 |
+
.eval()
|
530 |
+
)
|
531 |
+
self.register_modules(image_encoder=image_encoder)
|
532 |
+
else:
|
533 |
+
raise ValueError(
|
534 |
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
535 |
+
)
|
536 |
+
else:
|
537 |
+
logger.warning(
|
538 |
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
539 |
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
540 |
+
)
|
541 |
+
|
542 |
+
# create feature extractor if it has not been registered to the pipeline yet
|
543 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is None:
|
544 |
+
# FaceID IP adapters don't need the image encoder so it's not present, in this case we default to 224
|
545 |
+
default_clip_size = 224
|
546 |
+
clip_image_size = (
|
547 |
+
self.image_encoder.config.image_size if self.image_encoder is not None else default_clip_size
|
548 |
+
)
|
549 |
+
feature_extractor = CLIPImageProcessor(size=clip_image_size, crop_size=clip_image_size)
|
550 |
+
self.register_modules(feature_extractor=feature_extractor)
|
551 |
+
|
552 |
+
# load ip-adapter into transformer
|
553 |
+
self.transformer._load_ip_adapter_weights(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
554 |
+
|
555 |
+
def set_ip_adapter_scale(self, scale: Union[float, List[float], List[List[float]]]):
|
556 |
+
"""
|
557 |
+
Set IP-Adapter scales per-transformer block. Input `scale` could be a single config or a list of configs for
|
558 |
+
granular control over each IP-Adapter behavior. A config can be a float or a list.
|
559 |
+
|
560 |
+
`float` is converted to list and repeated for the number of blocks and the number of IP adapters. `List[float]`
|
561 |
+
length match the number of blocks, it is repeated for each IP adapter. `List[List[float]]` must match the
|
562 |
+
number of IP adapters and each must match the number of blocks.
|
563 |
+
|
564 |
+
Example:
|
565 |
+
|
566 |
+
```py
|
567 |
+
# To use original IP-Adapter
|
568 |
+
scale = 1.0
|
569 |
+
pipeline.set_ip_adapter_scale(scale)
|
570 |
+
|
571 |
+
|
572 |
+
def LinearStrengthModel(start, finish, size):
|
573 |
+
return [(start + (finish - start) * (i / (size - 1))) for i in range(size)]
|
574 |
+
|
575 |
+
|
576 |
+
ip_strengths = LinearStrengthModel(0.3, 0.92, 19)
|
577 |
+
pipeline.set_ip_adapter_scale(ip_strengths)
|
578 |
+
```
|
579 |
+
"""
|
580 |
+
transformer = self.transformer
|
581 |
+
if not isinstance(scale, list):
|
582 |
+
scale = [[scale] * transformer.config.num_layers]
|
583 |
+
elif isinstance(scale, list) and isinstance(scale[0], int) or isinstance(scale[0], float):
|
584 |
+
if len(scale) != transformer.config.num_layers:
|
585 |
+
raise ValueError(f"Expected list of {transformer.config.num_layers} scales, got {len(scale)}.")
|
586 |
+
scale = [scale]
|
587 |
+
|
588 |
+
scale_configs = scale
|
589 |
+
|
590 |
+
key_id = 0
|
591 |
+
for attn_name, attn_processor in transformer.attn_processors.items():
|
592 |
+
if isinstance(attn_processor, (FluxIPAdapterJointAttnProcessor2_0)):
|
593 |
+
if len(scale_configs) != len(attn_processor.scale):
|
594 |
+
raise ValueError(
|
595 |
+
f"Cannot assign {len(scale_configs)} scale_configs to "
|
596 |
+
f"{len(attn_processor.scale)} IP-Adapter."
|
597 |
+
)
|
598 |
+
elif len(scale_configs) == 1:
|
599 |
+
scale_configs = scale_configs * len(attn_processor.scale)
|
600 |
+
for i, scale_config in enumerate(scale_configs):
|
601 |
+
attn_processor.scale[i] = scale_config[key_id]
|
602 |
+
key_id += 1
|
603 |
+
|
604 |
+
def unload_ip_adapter(self):
|
605 |
+
"""
|
606 |
+
Unloads the IP Adapter weights
|
607 |
+
|
608 |
+
Examples:
|
609 |
+
|
610 |
+
```python
|
611 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
612 |
+
>>> pipeline.unload_ip_adapter()
|
613 |
+
>>> ...
|
614 |
+
```
|
615 |
+
"""
|
616 |
+
# remove CLIP image encoder
|
617 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
618 |
+
self.image_encoder = None
|
619 |
+
self.register_to_config(image_encoder=[None, None])
|
620 |
+
|
621 |
+
# remove feature extractor only when safety_checker is None as safety_checker uses
|
622 |
+
# the feature_extractor later
|
623 |
+
if not hasattr(self, "safety_checker"):
|
624 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
625 |
+
self.feature_extractor = None
|
626 |
+
self.register_to_config(feature_extractor=[None, None])
|
627 |
+
|
628 |
+
# remove hidden encoder
|
629 |
+
self.transformer.encoder_hid_proj = None
|
630 |
+
self.transformer.config.encoder_hid_dim_type = None
|
631 |
+
|
632 |
+
# restore original Transformer attention processors layers
|
633 |
+
attn_procs = {}
|
634 |
+
for name, value in self.transformer.attn_processors.items():
|
635 |
+
attn_processor_class = FluxAttnProcessor2_0()
|
636 |
+
attn_procs[name] = (
|
637 |
+
attn_processor_class if isinstance(value, (FluxIPAdapterJointAttnProcessor2_0)) else value.__class__()
|
638 |
+
)
|
639 |
+
self.transformer.set_attn_processor(attn_procs)
|
640 |
+
|
641 |
+
|
642 |
+
class SD3IPAdapterMixin:
|
643 |
+
"""Mixin for handling StableDiffusion 3 IP Adapters."""
|
644 |
+
|
645 |
+
@property
|
646 |
+
def is_ip_adapter_active(self) -> bool:
|
647 |
+
"""Checks if IP-Adapter is loaded and scale > 0.
|
648 |
+
|
649 |
+
IP-Adapter scale controls the influence of the image prompt versus text prompt. When this value is set to 0,
|
650 |
+
the image context is irrelevant.
|
651 |
+
|
652 |
+
Returns:
|
653 |
+
`bool`: True when IP-Adapter is loaded and any layer has scale > 0.
|
654 |
+
"""
|
655 |
+
scales = [
|
656 |
+
attn_proc.scale
|
657 |
+
for attn_proc in self.transformer.attn_processors.values()
|
658 |
+
if isinstance(attn_proc, SD3IPAdapterJointAttnProcessor2_0)
|
659 |
+
]
|
660 |
+
|
661 |
+
return len(scales) > 0 and any(scale > 0 for scale in scales)
|
662 |
+
|
663 |
+
@validate_hf_hub_args
|
664 |
+
def load_ip_adapter(
|
665 |
+
self,
|
666 |
+
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]],
|
667 |
+
weight_name: str = "ip-adapter.safetensors",
|
668 |
+
subfolder: Optional[str] = None,
|
669 |
+
image_encoder_folder: Optional[str] = "image_encoder",
|
670 |
+
**kwargs,
|
671 |
+
) -> None:
|
672 |
+
"""
|
673 |
+
Parameters:
|
674 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
675 |
+
Can be either:
|
676 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
677 |
+
the Hub.
|
678 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
679 |
+
with [`ModelMixin.save_pretrained`].
|
680 |
+
- A [torch state
|
681 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
682 |
+
weight_name (`str`, defaults to "ip-adapter.safetensors"):
|
683 |
+
The name of the weight file to load. If a list is passed, it should have the same length as
|
684 |
+
`subfolder`.
|
685 |
+
subfolder (`str`, *optional*):
|
686 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally. If a
|
687 |
+
list is passed, it should have the same length as `weight_name`.
|
688 |
+
image_encoder_folder (`str`, *optional*, defaults to `image_encoder`):
|
689 |
+
The subfolder location of the image encoder within a larger model repository on the Hub or locally.
|
690 |
+
Pass `None` to not load the image encoder. If the image encoder is located in a folder inside
|
691 |
+
`subfolder`, you only need to pass the name of the folder that contains image encoder weights, e.g.
|
692 |
+
`image_encoder_folder="image_encoder"`. If the image encoder is located in a folder other than
|
693 |
+
`subfolder`, you should pass the path to the folder that contains image encoder weights, for example,
|
694 |
+
`image_encoder_folder="different_subfolder/image_encoder"`.
|
695 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
696 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
697 |
+
is not used.
|
698 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
699 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
700 |
+
cached versions if they exist.
|
701 |
+
proxies (`Dict[str, str]`, *optional*):
|
702 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
703 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
704 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
705 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
706 |
+
won't be downloaded from the Hub.
|
707 |
+
token (`str` or *bool*, *optional*):
|
708 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
709 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
710 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
711 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
712 |
+
allowed by Git.
|
713 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
714 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
715 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
716 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
717 |
+
argument to `True` will raise an error.
|
718 |
+
"""
|
719 |
+
# Load the main state dict first
|
720 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
721 |
+
force_download = kwargs.pop("force_download", False)
|
722 |
+
proxies = kwargs.pop("proxies", None)
|
723 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
724 |
+
token = kwargs.pop("token", None)
|
725 |
+
revision = kwargs.pop("revision", None)
|
726 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
|
727 |
+
|
728 |
+
if low_cpu_mem_usage and not is_accelerate_available():
|
729 |
+
low_cpu_mem_usage = False
|
730 |
+
logger.warning(
|
731 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
732 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
733 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
734 |
+
" install accelerate\n```\n."
|
735 |
+
)
|
736 |
+
|
737 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
738 |
+
raise NotImplementedError(
|
739 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
740 |
+
" `low_cpu_mem_usage=False`."
|
741 |
+
)
|
742 |
+
|
743 |
+
user_agent = {
|
744 |
+
"file_type": "attn_procs_weights",
|
745 |
+
"framework": "pytorch",
|
746 |
+
}
|
747 |
+
|
748 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
749 |
+
model_file = _get_model_file(
|
750 |
+
pretrained_model_name_or_path_or_dict,
|
751 |
+
weights_name=weight_name,
|
752 |
+
cache_dir=cache_dir,
|
753 |
+
force_download=force_download,
|
754 |
+
proxies=proxies,
|
755 |
+
local_files_only=local_files_only,
|
756 |
+
token=token,
|
757 |
+
revision=revision,
|
758 |
+
subfolder=subfolder,
|
759 |
+
user_agent=user_agent,
|
760 |
+
)
|
761 |
+
if weight_name.endswith(".safetensors"):
|
762 |
+
state_dict = {"image_proj": {}, "ip_adapter": {}}
|
763 |
+
with safe_open(model_file, framework="pt", device="cpu") as f:
|
764 |
+
for key in f.keys():
|
765 |
+
if key.startswith("image_proj."):
|
766 |
+
state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
|
767 |
+
elif key.startswith("ip_adapter."):
|
768 |
+
state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
|
769 |
+
else:
|
770 |
+
state_dict = load_state_dict(model_file)
|
771 |
+
else:
|
772 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
773 |
+
|
774 |
+
keys = list(state_dict.keys())
|
775 |
+
if "image_proj" not in keys and "ip_adapter" not in keys:
|
776 |
+
raise ValueError("Required keys are (`image_proj` and `ip_adapter`) missing from the state dict.")
|
777 |
+
|
778 |
+
# Load image_encoder and feature_extractor here if they haven't been registered to the pipeline yet
|
779 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is None:
|
780 |
+
if image_encoder_folder is not None:
|
781 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
782 |
+
logger.info(f"loading image_encoder from {pretrained_model_name_or_path_or_dict}")
|
783 |
+
if image_encoder_folder.count("/") == 0:
|
784 |
+
image_encoder_subfolder = Path(subfolder, image_encoder_folder).as_posix()
|
785 |
+
else:
|
786 |
+
image_encoder_subfolder = Path(image_encoder_folder).as_posix()
|
787 |
+
|
788 |
+
# Commons args for loading image encoder and image processor
|
789 |
+
kwargs = {
|
790 |
+
"low_cpu_mem_usage": low_cpu_mem_usage,
|
791 |
+
"cache_dir": cache_dir,
|
792 |
+
"local_files_only": local_files_only,
|
793 |
+
}
|
794 |
+
|
795 |
+
self.register_modules(
|
796 |
+
feature_extractor=SiglipImageProcessor.from_pretrained(image_encoder_subfolder, **kwargs).to(
|
797 |
+
self.device, dtype=self.dtype
|
798 |
+
),
|
799 |
+
image_encoder=SiglipVisionModel.from_pretrained(image_encoder_subfolder, **kwargs).to(
|
800 |
+
self.device, dtype=self.dtype
|
801 |
+
),
|
802 |
+
)
|
803 |
+
else:
|
804 |
+
raise ValueError(
|
805 |
+
"`image_encoder` cannot be loaded because `pretrained_model_name_or_path_or_dict` is a state dict."
|
806 |
+
)
|
807 |
+
else:
|
808 |
+
logger.warning(
|
809 |
+
"image_encoder is not loaded since `image_encoder_folder=None` passed. You will not be able to use `ip_adapter_image` when calling the pipeline with IP-Adapter."
|
810 |
+
"Use `ip_adapter_image_embeds` to pass pre-generated image embedding instead."
|
811 |
+
)
|
812 |
+
|
813 |
+
# Load IP-Adapter into transformer
|
814 |
+
self.transformer._load_ip_adapter_weights(state_dict, low_cpu_mem_usage=low_cpu_mem_usage)
|
815 |
+
|
816 |
+
def set_ip_adapter_scale(self, scale: float) -> None:
|
817 |
+
"""
|
818 |
+
Set IP-Adapter scale, which controls image prompt conditioning. A value of 1.0 means the model is only
|
819 |
+
conditioned on the image prompt, and 0.0 only conditioned by the text prompt. Lowering this value encourages
|
820 |
+
the model to produce more diverse images, but they may not be as aligned with the image prompt.
|
821 |
+
|
822 |
+
Example:
|
823 |
+
|
824 |
+
```python
|
825 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
826 |
+
>>> pipeline.set_ip_adapter_scale(0.6)
|
827 |
+
>>> ...
|
828 |
+
```
|
829 |
+
|
830 |
+
Args:
|
831 |
+
scale (float):
|
832 |
+
IP-Adapter scale to be set.
|
833 |
+
|
834 |
+
"""
|
835 |
+
for attn_processor in self.transformer.attn_processors.values():
|
836 |
+
if isinstance(attn_processor, SD3IPAdapterJointAttnProcessor2_0):
|
837 |
+
attn_processor.scale = scale
|
838 |
+
|
839 |
+
def unload_ip_adapter(self) -> None:
|
840 |
+
"""
|
841 |
+
Unloads the IP Adapter weights.
|
842 |
+
|
843 |
+
Example:
|
844 |
+
|
845 |
+
```python
|
846 |
+
>>> # Assuming `pipeline` is already loaded with the IP Adapter weights.
|
847 |
+
>>> pipeline.unload_ip_adapter()
|
848 |
+
>>> ...
|
849 |
+
```
|
850 |
+
"""
|
851 |
+
# Remove image encoder
|
852 |
+
if hasattr(self, "image_encoder") and getattr(self, "image_encoder", None) is not None:
|
853 |
+
self.image_encoder = None
|
854 |
+
self.register_to_config(image_encoder=None)
|
855 |
+
|
856 |
+
# Remove feature extractor
|
857 |
+
if hasattr(self, "feature_extractor") and getattr(self, "feature_extractor", None) is not None:
|
858 |
+
self.feature_extractor = None
|
859 |
+
self.register_to_config(feature_extractor=None)
|
860 |
+
|
861 |
+
# Remove image projection
|
862 |
+
self.transformer.image_proj = None
|
863 |
+
|
864 |
+
# Restore original attention processors layers
|
865 |
+
attn_procs = {
|
866 |
+
name: (
|
867 |
+
JointAttnProcessor2_0() if isinstance(value, SD3IPAdapterJointAttnProcessor2_0) else value.__class__()
|
868 |
+
)
|
869 |
+
for name, value in self.transformer.attn_processors.items()
|
870 |
+
}
|
871 |
+
self.transformer.set_attn_processor(attn_procs)
|
icedit/diffusers/loaders/lora_base.py
ADDED
@@ -0,0 +1,900 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import copy
|
16 |
+
import inspect
|
17 |
+
import os
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Callable, Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import safetensors
|
22 |
+
import torch
|
23 |
+
import torch.nn as nn
|
24 |
+
from huggingface_hub import model_info
|
25 |
+
from huggingface_hub.constants import HF_HUB_OFFLINE
|
26 |
+
|
27 |
+
from ..models.modeling_utils import ModelMixin, load_state_dict
|
28 |
+
from ..utils import (
|
29 |
+
USE_PEFT_BACKEND,
|
30 |
+
_get_model_file,
|
31 |
+
convert_state_dict_to_diffusers,
|
32 |
+
convert_state_dict_to_peft,
|
33 |
+
delete_adapter_layers,
|
34 |
+
deprecate,
|
35 |
+
get_adapter_name,
|
36 |
+
get_peft_kwargs,
|
37 |
+
is_accelerate_available,
|
38 |
+
is_peft_available,
|
39 |
+
is_peft_version,
|
40 |
+
is_transformers_available,
|
41 |
+
is_transformers_version,
|
42 |
+
logging,
|
43 |
+
recurse_remove_peft_layers,
|
44 |
+
scale_lora_layers,
|
45 |
+
set_adapter_layers,
|
46 |
+
set_weights_and_activate_adapters,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
if is_transformers_available():
|
51 |
+
from transformers import PreTrainedModel
|
52 |
+
|
53 |
+
from ..models.lora import text_encoder_attn_modules, text_encoder_mlp_modules
|
54 |
+
|
55 |
+
if is_peft_available():
|
56 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
57 |
+
|
58 |
+
if is_accelerate_available():
|
59 |
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
60 |
+
|
61 |
+
logger = logging.get_logger(__name__)
|
62 |
+
|
63 |
+
LORA_WEIGHT_NAME = "pytorch_lora_weights.bin"
|
64 |
+
LORA_WEIGHT_NAME_SAFE = "pytorch_lora_weights.safetensors"
|
65 |
+
|
66 |
+
|
67 |
+
def fuse_text_encoder_lora(text_encoder, lora_scale=1.0, safe_fusing=False, adapter_names=None):
|
68 |
+
"""
|
69 |
+
Fuses LoRAs for the text encoder.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
text_encoder (`torch.nn.Module`):
|
73 |
+
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
|
74 |
+
attribute.
|
75 |
+
lora_scale (`float`, defaults to 1.0):
|
76 |
+
Controls how much to influence the outputs with the LoRA parameters.
|
77 |
+
safe_fusing (`bool`, defaults to `False`):
|
78 |
+
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
|
79 |
+
adapter_names (`List[str]` or `str`):
|
80 |
+
The names of the adapters to use.
|
81 |
+
"""
|
82 |
+
merge_kwargs = {"safe_merge": safe_fusing}
|
83 |
+
|
84 |
+
for module in text_encoder.modules():
|
85 |
+
if isinstance(module, BaseTunerLayer):
|
86 |
+
if lora_scale != 1.0:
|
87 |
+
module.scale_layer(lora_scale)
|
88 |
+
|
89 |
+
# For BC with previous PEFT versions, we need to check the signature
|
90 |
+
# of the `merge` method to see if it supports the `adapter_names` argument.
|
91 |
+
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
|
92 |
+
if "adapter_names" in supported_merge_kwargs:
|
93 |
+
merge_kwargs["adapter_names"] = adapter_names
|
94 |
+
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
|
95 |
+
raise ValueError(
|
96 |
+
"The `adapter_names` argument is not supported with your PEFT version. "
|
97 |
+
"Please upgrade to the latest version of PEFT. `pip install -U peft`"
|
98 |
+
)
|
99 |
+
|
100 |
+
module.merge(**merge_kwargs)
|
101 |
+
|
102 |
+
|
103 |
+
def unfuse_text_encoder_lora(text_encoder):
|
104 |
+
"""
|
105 |
+
Unfuses LoRAs for the text encoder.
|
106 |
+
|
107 |
+
Args:
|
108 |
+
text_encoder (`torch.nn.Module`):
|
109 |
+
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
|
110 |
+
attribute.
|
111 |
+
"""
|
112 |
+
for module in text_encoder.modules():
|
113 |
+
if isinstance(module, BaseTunerLayer):
|
114 |
+
module.unmerge()
|
115 |
+
|
116 |
+
|
117 |
+
def set_adapters_for_text_encoder(
|
118 |
+
adapter_names: Union[List[str], str],
|
119 |
+
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
|
120 |
+
text_encoder_weights: Optional[Union[float, List[float], List[None]]] = None,
|
121 |
+
):
|
122 |
+
"""
|
123 |
+
Sets the adapter layers for the text encoder.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
adapter_names (`List[str]` or `str`):
|
127 |
+
The names of the adapters to use.
|
128 |
+
text_encoder (`torch.nn.Module`, *optional*):
|
129 |
+
The text encoder module to set the adapter layers for. If `None`, it will try to get the `text_encoder`
|
130 |
+
attribute.
|
131 |
+
text_encoder_weights (`List[float]`, *optional*):
|
132 |
+
The weights to use for the text encoder. If `None`, the weights are set to `1.0` for all the adapters.
|
133 |
+
"""
|
134 |
+
if text_encoder is None:
|
135 |
+
raise ValueError(
|
136 |
+
"The pipeline does not have a default `pipe.text_encoder` class. Please make sure to pass a `text_encoder` instead."
|
137 |
+
)
|
138 |
+
|
139 |
+
def process_weights(adapter_names, weights):
|
140 |
+
# Expand weights into a list, one entry per adapter
|
141 |
+
# e.g. for 2 adapters: 7 -> [7,7] ; [3, None] -> [3, None]
|
142 |
+
if not isinstance(weights, list):
|
143 |
+
weights = [weights] * len(adapter_names)
|
144 |
+
|
145 |
+
if len(adapter_names) != len(weights):
|
146 |
+
raise ValueError(
|
147 |
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(weights)}"
|
148 |
+
)
|
149 |
+
|
150 |
+
# Set None values to default of 1.0
|
151 |
+
# e.g. [7,7] -> [7,7] ; [3, None] -> [3,1]
|
152 |
+
weights = [w if w is not None else 1.0 for w in weights]
|
153 |
+
|
154 |
+
return weights
|
155 |
+
|
156 |
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
157 |
+
text_encoder_weights = process_weights(adapter_names, text_encoder_weights)
|
158 |
+
set_weights_and_activate_adapters(text_encoder, adapter_names, text_encoder_weights)
|
159 |
+
|
160 |
+
|
161 |
+
def disable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None):
|
162 |
+
"""
|
163 |
+
Disables the LoRA layers for the text encoder.
|
164 |
+
|
165 |
+
Args:
|
166 |
+
text_encoder (`torch.nn.Module`, *optional*):
|
167 |
+
The text encoder module to disable the LoRA layers for. If `None`, it will try to get the `text_encoder`
|
168 |
+
attribute.
|
169 |
+
"""
|
170 |
+
if text_encoder is None:
|
171 |
+
raise ValueError("Text Encoder not found.")
|
172 |
+
set_adapter_layers(text_encoder, enabled=False)
|
173 |
+
|
174 |
+
|
175 |
+
def enable_lora_for_text_encoder(text_encoder: Optional["PreTrainedModel"] = None):
|
176 |
+
"""
|
177 |
+
Enables the LoRA layers for the text encoder.
|
178 |
+
|
179 |
+
Args:
|
180 |
+
text_encoder (`torch.nn.Module`, *optional*):
|
181 |
+
The text encoder module to enable the LoRA layers for. If `None`, it will try to get the `text_encoder`
|
182 |
+
attribute.
|
183 |
+
"""
|
184 |
+
if text_encoder is None:
|
185 |
+
raise ValueError("Text Encoder not found.")
|
186 |
+
set_adapter_layers(text_encoder, enabled=True)
|
187 |
+
|
188 |
+
|
189 |
+
def _remove_text_encoder_monkey_patch(text_encoder):
|
190 |
+
recurse_remove_peft_layers(text_encoder)
|
191 |
+
if getattr(text_encoder, "peft_config", None) is not None:
|
192 |
+
del text_encoder.peft_config
|
193 |
+
text_encoder._hf_peft_config_loaded = None
|
194 |
+
|
195 |
+
|
196 |
+
def _fetch_state_dict(
|
197 |
+
pretrained_model_name_or_path_or_dict,
|
198 |
+
weight_name,
|
199 |
+
use_safetensors,
|
200 |
+
local_files_only,
|
201 |
+
cache_dir,
|
202 |
+
force_download,
|
203 |
+
proxies,
|
204 |
+
token,
|
205 |
+
revision,
|
206 |
+
subfolder,
|
207 |
+
user_agent,
|
208 |
+
allow_pickle,
|
209 |
+
):
|
210 |
+
model_file = None
|
211 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
212 |
+
# Let's first try to load .safetensors weights
|
213 |
+
if (use_safetensors and weight_name is None) or (
|
214 |
+
weight_name is not None and weight_name.endswith(".safetensors")
|
215 |
+
):
|
216 |
+
try:
|
217 |
+
# Here we're relaxing the loading check to enable more Inference API
|
218 |
+
# friendliness where sometimes, it's not at all possible to automatically
|
219 |
+
# determine `weight_name`.
|
220 |
+
if weight_name is None:
|
221 |
+
weight_name = _best_guess_weight_name(
|
222 |
+
pretrained_model_name_or_path_or_dict,
|
223 |
+
file_extension=".safetensors",
|
224 |
+
local_files_only=local_files_only,
|
225 |
+
)
|
226 |
+
model_file = _get_model_file(
|
227 |
+
pretrained_model_name_or_path_or_dict,
|
228 |
+
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
229 |
+
cache_dir=cache_dir,
|
230 |
+
force_download=force_download,
|
231 |
+
proxies=proxies,
|
232 |
+
local_files_only=local_files_only,
|
233 |
+
token=token,
|
234 |
+
revision=revision,
|
235 |
+
subfolder=subfolder,
|
236 |
+
user_agent=user_agent,
|
237 |
+
)
|
238 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
239 |
+
except (IOError, safetensors.SafetensorError) as e:
|
240 |
+
if not allow_pickle:
|
241 |
+
raise e
|
242 |
+
# try loading non-safetensors weights
|
243 |
+
model_file = None
|
244 |
+
pass
|
245 |
+
|
246 |
+
if model_file is None:
|
247 |
+
if weight_name is None:
|
248 |
+
weight_name = _best_guess_weight_name(
|
249 |
+
pretrained_model_name_or_path_or_dict, file_extension=".bin", local_files_only=local_files_only
|
250 |
+
)
|
251 |
+
model_file = _get_model_file(
|
252 |
+
pretrained_model_name_or_path_or_dict,
|
253 |
+
weights_name=weight_name or LORA_WEIGHT_NAME,
|
254 |
+
cache_dir=cache_dir,
|
255 |
+
force_download=force_download,
|
256 |
+
proxies=proxies,
|
257 |
+
local_files_only=local_files_only,
|
258 |
+
token=token,
|
259 |
+
revision=revision,
|
260 |
+
subfolder=subfolder,
|
261 |
+
user_agent=user_agent,
|
262 |
+
)
|
263 |
+
state_dict = load_state_dict(model_file)
|
264 |
+
else:
|
265 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
266 |
+
|
267 |
+
return state_dict
|
268 |
+
|
269 |
+
|
270 |
+
def _best_guess_weight_name(
|
271 |
+
pretrained_model_name_or_path_or_dict, file_extension=".safetensors", local_files_only=False
|
272 |
+
):
|
273 |
+
if local_files_only or HF_HUB_OFFLINE:
|
274 |
+
raise ValueError("When using the offline mode, you must specify a `weight_name`.")
|
275 |
+
|
276 |
+
targeted_files = []
|
277 |
+
|
278 |
+
if os.path.isfile(pretrained_model_name_or_path_or_dict):
|
279 |
+
return
|
280 |
+
elif os.path.isdir(pretrained_model_name_or_path_or_dict):
|
281 |
+
targeted_files = [f for f in os.listdir(pretrained_model_name_or_path_or_dict) if f.endswith(file_extension)]
|
282 |
+
else:
|
283 |
+
files_in_repo = model_info(pretrained_model_name_or_path_or_dict).siblings
|
284 |
+
targeted_files = [f.rfilename for f in files_in_repo if f.rfilename.endswith(file_extension)]
|
285 |
+
if len(targeted_files) == 0:
|
286 |
+
return
|
287 |
+
|
288 |
+
# "scheduler" does not correspond to a LoRA checkpoint.
|
289 |
+
# "optimizer" does not correspond to a LoRA checkpoint
|
290 |
+
# only top-level checkpoints are considered and not the other ones, hence "checkpoint".
|
291 |
+
unallowed_substrings = {"scheduler", "optimizer", "checkpoint"}
|
292 |
+
targeted_files = list(
|
293 |
+
filter(lambda x: all(substring not in x for substring in unallowed_substrings), targeted_files)
|
294 |
+
)
|
295 |
+
|
296 |
+
if any(f.endswith(LORA_WEIGHT_NAME) for f in targeted_files):
|
297 |
+
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME), targeted_files))
|
298 |
+
elif any(f.endswith(LORA_WEIGHT_NAME_SAFE) for f in targeted_files):
|
299 |
+
targeted_files = list(filter(lambda x: x.endswith(LORA_WEIGHT_NAME_SAFE), targeted_files))
|
300 |
+
|
301 |
+
if len(targeted_files) > 1:
|
302 |
+
raise ValueError(
|
303 |
+
f"Provided path contains more than one weights file in the {file_extension} format. Either specify `weight_name` in `load_lora_weights` or make sure there's only one `.safetensors` or `.bin` file in {pretrained_model_name_or_path_or_dict}."
|
304 |
+
)
|
305 |
+
weight_name = targeted_files[0]
|
306 |
+
return weight_name
|
307 |
+
|
308 |
+
|
309 |
+
def _load_lora_into_text_encoder(
|
310 |
+
state_dict,
|
311 |
+
network_alphas,
|
312 |
+
text_encoder,
|
313 |
+
prefix=None,
|
314 |
+
lora_scale=1.0,
|
315 |
+
text_encoder_name="text_encoder",
|
316 |
+
adapter_name=None,
|
317 |
+
_pipeline=None,
|
318 |
+
low_cpu_mem_usage=False,
|
319 |
+
):
|
320 |
+
if not USE_PEFT_BACKEND:
|
321 |
+
raise ValueError("PEFT backend is required for this method.")
|
322 |
+
|
323 |
+
peft_kwargs = {}
|
324 |
+
if low_cpu_mem_usage:
|
325 |
+
if not is_peft_version(">=", "0.13.1"):
|
326 |
+
raise ValueError(
|
327 |
+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
328 |
+
)
|
329 |
+
if not is_transformers_version(">", "4.45.2"):
|
330 |
+
# Note from sayakpaul: It's not in `transformers` stable yet.
|
331 |
+
# https://github.com/huggingface/transformers/pull/33725/
|
332 |
+
raise ValueError(
|
333 |
+
"`low_cpu_mem_usage=True` is not compatible with this `transformers` version. Please update it with `pip install -U transformers`."
|
334 |
+
)
|
335 |
+
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
336 |
+
|
337 |
+
from peft import LoraConfig
|
338 |
+
|
339 |
+
# If the serialization format is new (introduced in https://github.com/huggingface/diffusers/pull/2918),
|
340 |
+
# then the `state_dict` keys should have `unet_name` and/or `text_encoder_name` as
|
341 |
+
# their prefixes.
|
342 |
+
keys = list(state_dict.keys())
|
343 |
+
prefix = text_encoder_name if prefix is None else prefix
|
344 |
+
|
345 |
+
# Safe prefix to check with.
|
346 |
+
if any(text_encoder_name in key for key in keys):
|
347 |
+
# Load the layers corresponding to text encoder and make necessary adjustments.
|
348 |
+
text_encoder_keys = [k for k in keys if k.startswith(prefix) and k.split(".")[0] == prefix]
|
349 |
+
text_encoder_lora_state_dict = {
|
350 |
+
k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in text_encoder_keys
|
351 |
+
}
|
352 |
+
|
353 |
+
if len(text_encoder_lora_state_dict) > 0:
|
354 |
+
logger.info(f"Loading {prefix}.")
|
355 |
+
rank = {}
|
356 |
+
text_encoder_lora_state_dict = convert_state_dict_to_diffusers(text_encoder_lora_state_dict)
|
357 |
+
|
358 |
+
# convert state dict
|
359 |
+
text_encoder_lora_state_dict = convert_state_dict_to_peft(text_encoder_lora_state_dict)
|
360 |
+
|
361 |
+
for name, _ in text_encoder_attn_modules(text_encoder):
|
362 |
+
for module in ("out_proj", "q_proj", "k_proj", "v_proj"):
|
363 |
+
rank_key = f"{name}.{module}.lora_B.weight"
|
364 |
+
if rank_key not in text_encoder_lora_state_dict:
|
365 |
+
continue
|
366 |
+
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
|
367 |
+
|
368 |
+
for name, _ in text_encoder_mlp_modules(text_encoder):
|
369 |
+
for module in ("fc1", "fc2"):
|
370 |
+
rank_key = f"{name}.{module}.lora_B.weight"
|
371 |
+
if rank_key not in text_encoder_lora_state_dict:
|
372 |
+
continue
|
373 |
+
rank[rank_key] = text_encoder_lora_state_dict[rank_key].shape[1]
|
374 |
+
|
375 |
+
if network_alphas is not None:
|
376 |
+
alpha_keys = [k for k in network_alphas.keys() if k.startswith(prefix) and k.split(".")[0] == prefix]
|
377 |
+
network_alphas = {k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys}
|
378 |
+
|
379 |
+
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, text_encoder_lora_state_dict, is_unet=False)
|
380 |
+
|
381 |
+
if "use_dora" in lora_config_kwargs:
|
382 |
+
if lora_config_kwargs["use_dora"]:
|
383 |
+
if is_peft_version("<", "0.9.0"):
|
384 |
+
raise ValueError(
|
385 |
+
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
386 |
+
)
|
387 |
+
else:
|
388 |
+
if is_peft_version("<", "0.9.0"):
|
389 |
+
lora_config_kwargs.pop("use_dora")
|
390 |
+
|
391 |
+
if "lora_bias" in lora_config_kwargs:
|
392 |
+
if lora_config_kwargs["lora_bias"]:
|
393 |
+
if is_peft_version("<=", "0.13.2"):
|
394 |
+
raise ValueError(
|
395 |
+
"You need `peft` 0.14.0 at least to use `bias` in LoRAs. Please upgrade your installation of `peft`."
|
396 |
+
)
|
397 |
+
else:
|
398 |
+
if is_peft_version("<=", "0.13.2"):
|
399 |
+
lora_config_kwargs.pop("lora_bias")
|
400 |
+
|
401 |
+
lora_config = LoraConfig(**lora_config_kwargs)
|
402 |
+
|
403 |
+
# adapter_name
|
404 |
+
if adapter_name is None:
|
405 |
+
adapter_name = get_adapter_name(text_encoder)
|
406 |
+
|
407 |
+
is_model_cpu_offload, is_sequential_cpu_offload = _func_optionally_disable_offloading(_pipeline)
|
408 |
+
|
409 |
+
# inject LoRA layers and load the state dict
|
410 |
+
# in transformers we automatically check whether the adapter name is already in use or not
|
411 |
+
text_encoder.load_adapter(
|
412 |
+
adapter_name=adapter_name,
|
413 |
+
adapter_state_dict=text_encoder_lora_state_dict,
|
414 |
+
peft_config=lora_config,
|
415 |
+
**peft_kwargs,
|
416 |
+
)
|
417 |
+
|
418 |
+
# scale LoRA layers with `lora_scale`
|
419 |
+
scale_lora_layers(text_encoder, weight=lora_scale)
|
420 |
+
|
421 |
+
text_encoder.to(device=text_encoder.device, dtype=text_encoder.dtype)
|
422 |
+
|
423 |
+
# Offload back.
|
424 |
+
if is_model_cpu_offload:
|
425 |
+
_pipeline.enable_model_cpu_offload()
|
426 |
+
elif is_sequential_cpu_offload:
|
427 |
+
_pipeline.enable_sequential_cpu_offload()
|
428 |
+
# Unsafe code />
|
429 |
+
|
430 |
+
|
431 |
+
def _func_optionally_disable_offloading(_pipeline):
|
432 |
+
is_model_cpu_offload = False
|
433 |
+
is_sequential_cpu_offload = False
|
434 |
+
|
435 |
+
if _pipeline is not None and _pipeline.hf_device_map is None:
|
436 |
+
for _, component in _pipeline.components.items():
|
437 |
+
if isinstance(component, nn.Module) and hasattr(component, "_hf_hook"):
|
438 |
+
if not is_model_cpu_offload:
|
439 |
+
is_model_cpu_offload = isinstance(component._hf_hook, CpuOffload)
|
440 |
+
if not is_sequential_cpu_offload:
|
441 |
+
is_sequential_cpu_offload = (
|
442 |
+
isinstance(component._hf_hook, AlignDevicesHook)
|
443 |
+
or hasattr(component._hf_hook, "hooks")
|
444 |
+
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
|
445 |
+
)
|
446 |
+
|
447 |
+
logger.info(
|
448 |
+
"Accelerate hooks detected. Since you have called `load_lora_weights()`, the previous hooks will be first removed. Then the LoRA parameters will be loaded and the hooks will be applied again."
|
449 |
+
)
|
450 |
+
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
451 |
+
|
452 |
+
return (is_model_cpu_offload, is_sequential_cpu_offload)
|
453 |
+
|
454 |
+
|
455 |
+
class LoraBaseMixin:
|
456 |
+
"""Utility class for handling LoRAs."""
|
457 |
+
|
458 |
+
_lora_loadable_modules = []
|
459 |
+
num_fused_loras = 0
|
460 |
+
|
461 |
+
def load_lora_weights(self, **kwargs):
|
462 |
+
raise NotImplementedError("`load_lora_weights()` is not implemented.")
|
463 |
+
|
464 |
+
@classmethod
|
465 |
+
def save_lora_weights(cls, **kwargs):
|
466 |
+
raise NotImplementedError("`save_lora_weights()` not implemented.")
|
467 |
+
|
468 |
+
@classmethod
|
469 |
+
def lora_state_dict(cls, **kwargs):
|
470 |
+
raise NotImplementedError("`lora_state_dict()` is not implemented.")
|
471 |
+
|
472 |
+
@classmethod
|
473 |
+
def _optionally_disable_offloading(cls, _pipeline):
|
474 |
+
"""
|
475 |
+
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
476 |
+
|
477 |
+
Args:
|
478 |
+
_pipeline (`DiffusionPipeline`):
|
479 |
+
The pipeline to disable offloading for.
|
480 |
+
|
481 |
+
Returns:
|
482 |
+
tuple:
|
483 |
+
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
484 |
+
"""
|
485 |
+
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
486 |
+
|
487 |
+
@classmethod
|
488 |
+
def _fetch_state_dict(cls, *args, **kwargs):
|
489 |
+
deprecation_message = f"Using the `_fetch_state_dict()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _fetch_state_dict`."
|
490 |
+
deprecate("_fetch_state_dict", "0.35.0", deprecation_message)
|
491 |
+
return _fetch_state_dict(*args, **kwargs)
|
492 |
+
|
493 |
+
@classmethod
|
494 |
+
def _best_guess_weight_name(cls, *args, **kwargs):
|
495 |
+
deprecation_message = f"Using the `_best_guess_weight_name()` method from {cls} has been deprecated and will be removed in a future version. Please use `from diffusers.loaders.lora_base import _best_guess_weight_name`."
|
496 |
+
deprecate("_best_guess_weight_name", "0.35.0", deprecation_message)
|
497 |
+
return _best_guess_weight_name(*args, **kwargs)
|
498 |
+
|
499 |
+
def unload_lora_weights(self):
|
500 |
+
"""
|
501 |
+
Unloads the LoRA parameters.
|
502 |
+
|
503 |
+
Examples:
|
504 |
+
|
505 |
+
```python
|
506 |
+
>>> # Assuming `pipeline` is already loaded with the LoRA parameters.
|
507 |
+
>>> pipeline.unload_lora_weights()
|
508 |
+
>>> ...
|
509 |
+
```
|
510 |
+
"""
|
511 |
+
if not USE_PEFT_BACKEND:
|
512 |
+
raise ValueError("PEFT backend is required for this method.")
|
513 |
+
|
514 |
+
for component in self._lora_loadable_modules:
|
515 |
+
model = getattr(self, component, None)
|
516 |
+
if model is not None:
|
517 |
+
if issubclass(model.__class__, ModelMixin):
|
518 |
+
model.unload_lora()
|
519 |
+
elif issubclass(model.__class__, PreTrainedModel):
|
520 |
+
_remove_text_encoder_monkey_patch(model)
|
521 |
+
|
522 |
+
def fuse_lora(
|
523 |
+
self,
|
524 |
+
components: List[str] = [],
|
525 |
+
lora_scale: float = 1.0,
|
526 |
+
safe_fusing: bool = False,
|
527 |
+
adapter_names: Optional[List[str]] = None,
|
528 |
+
**kwargs,
|
529 |
+
):
|
530 |
+
r"""
|
531 |
+
Fuses the LoRA parameters into the original parameters of the corresponding blocks.
|
532 |
+
|
533 |
+
<Tip warning={true}>
|
534 |
+
|
535 |
+
This is an experimental API.
|
536 |
+
|
537 |
+
</Tip>
|
538 |
+
|
539 |
+
Args:
|
540 |
+
components: (`List[str]`): List of LoRA-injectable components to fuse the LoRAs into.
|
541 |
+
lora_scale (`float`, defaults to 1.0):
|
542 |
+
Controls how much to influence the outputs with the LoRA parameters.
|
543 |
+
safe_fusing (`bool`, defaults to `False`):
|
544 |
+
Whether to check fused weights for NaN values before fusing and if values are NaN not fusing them.
|
545 |
+
adapter_names (`List[str]`, *optional*):
|
546 |
+
Adapter names to be used for fusing. If nothing is passed, all active adapters will be fused.
|
547 |
+
|
548 |
+
Example:
|
549 |
+
|
550 |
+
```py
|
551 |
+
from diffusers import DiffusionPipeline
|
552 |
+
import torch
|
553 |
+
|
554 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
555 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
556 |
+
).to("cuda")
|
557 |
+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
558 |
+
pipeline.fuse_lora(lora_scale=0.7)
|
559 |
+
```
|
560 |
+
"""
|
561 |
+
if "fuse_unet" in kwargs:
|
562 |
+
depr_message = "Passing `fuse_unet` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_unet` will be removed in a future version."
|
563 |
+
deprecate(
|
564 |
+
"fuse_unet",
|
565 |
+
"1.0.0",
|
566 |
+
depr_message,
|
567 |
+
)
|
568 |
+
if "fuse_transformer" in kwargs:
|
569 |
+
depr_message = "Passing `fuse_transformer` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_transformer` will be removed in a future version."
|
570 |
+
deprecate(
|
571 |
+
"fuse_transformer",
|
572 |
+
"1.0.0",
|
573 |
+
depr_message,
|
574 |
+
)
|
575 |
+
if "fuse_text_encoder" in kwargs:
|
576 |
+
depr_message = "Passing `fuse_text_encoder` to `fuse_lora()` is deprecated and will be ignored. Please use the `components` argument and provide a list of the components whose LoRAs are to be fused. `fuse_text_encoder` will be removed in a future version."
|
577 |
+
deprecate(
|
578 |
+
"fuse_text_encoder",
|
579 |
+
"1.0.0",
|
580 |
+
depr_message,
|
581 |
+
)
|
582 |
+
|
583 |
+
if len(components) == 0:
|
584 |
+
raise ValueError("`components` cannot be an empty list.")
|
585 |
+
|
586 |
+
for fuse_component in components:
|
587 |
+
if fuse_component not in self._lora_loadable_modules:
|
588 |
+
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.")
|
589 |
+
|
590 |
+
model = getattr(self, fuse_component, None)
|
591 |
+
if model is not None:
|
592 |
+
# check if diffusers model
|
593 |
+
if issubclass(model.__class__, ModelMixin):
|
594 |
+
model.fuse_lora(lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names)
|
595 |
+
# handle transformers models.
|
596 |
+
if issubclass(model.__class__, PreTrainedModel):
|
597 |
+
fuse_text_encoder_lora(
|
598 |
+
model, lora_scale=lora_scale, safe_fusing=safe_fusing, adapter_names=adapter_names
|
599 |
+
)
|
600 |
+
|
601 |
+
self.num_fused_loras += 1
|
602 |
+
|
603 |
+
def unfuse_lora(self, components: List[str] = [], **kwargs):
|
604 |
+
r"""
|
605 |
+
Reverses the effect of
|
606 |
+
[`pipe.fuse_lora()`](https://huggingface.co/docs/diffusers/main/en/api/loaders#diffusers.loaders.LoraBaseMixin.fuse_lora).
|
607 |
+
|
608 |
+
<Tip warning={true}>
|
609 |
+
|
610 |
+
This is an experimental API.
|
611 |
+
|
612 |
+
</Tip>
|
613 |
+
|
614 |
+
Args:
|
615 |
+
components (`List[str]`): List of LoRA-injectable components to unfuse LoRA from.
|
616 |
+
unfuse_unet (`bool`, defaults to `True`): Whether to unfuse the UNet LoRA parameters.
|
617 |
+
unfuse_text_encoder (`bool`, defaults to `True`):
|
618 |
+
Whether to unfuse the text encoder LoRA parameters. If the text encoder wasn't monkey-patched with the
|
619 |
+
LoRA parameters then it won't have any effect.
|
620 |
+
"""
|
621 |
+
if "unfuse_unet" in kwargs:
|
622 |
+
depr_message = "Passing `unfuse_unet` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_unet` will be removed in a future version."
|
623 |
+
deprecate(
|
624 |
+
"unfuse_unet",
|
625 |
+
"1.0.0",
|
626 |
+
depr_message,
|
627 |
+
)
|
628 |
+
if "unfuse_transformer" in kwargs:
|
629 |
+
depr_message = "Passing `unfuse_transformer` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_transformer` will be removed in a future version."
|
630 |
+
deprecate(
|
631 |
+
"unfuse_transformer",
|
632 |
+
"1.0.0",
|
633 |
+
depr_message,
|
634 |
+
)
|
635 |
+
if "unfuse_text_encoder" in kwargs:
|
636 |
+
depr_message = "Passing `unfuse_text_encoder` to `unfuse_lora()` is deprecated and will be ignored. Please use the `components` argument. `unfuse_text_encoder` will be removed in a future version."
|
637 |
+
deprecate(
|
638 |
+
"unfuse_text_encoder",
|
639 |
+
"1.0.0",
|
640 |
+
depr_message,
|
641 |
+
)
|
642 |
+
|
643 |
+
if len(components) == 0:
|
644 |
+
raise ValueError("`components` cannot be an empty list.")
|
645 |
+
|
646 |
+
for fuse_component in components:
|
647 |
+
if fuse_component not in self._lora_loadable_modules:
|
648 |
+
raise ValueError(f"{fuse_component} is not found in {self._lora_loadable_modules=}.")
|
649 |
+
|
650 |
+
model = getattr(self, fuse_component, None)
|
651 |
+
if model is not None:
|
652 |
+
if issubclass(model.__class__, (ModelMixin, PreTrainedModel)):
|
653 |
+
for module in model.modules():
|
654 |
+
if isinstance(module, BaseTunerLayer):
|
655 |
+
module.unmerge()
|
656 |
+
|
657 |
+
self.num_fused_loras -= 1
|
658 |
+
|
659 |
+
def set_adapters(
|
660 |
+
self,
|
661 |
+
adapter_names: Union[List[str], str],
|
662 |
+
adapter_weights: Optional[Union[float, Dict, List[float], List[Dict]]] = None,
|
663 |
+
):
|
664 |
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
665 |
+
|
666 |
+
adapter_weights = copy.deepcopy(adapter_weights)
|
667 |
+
|
668 |
+
# Expand weights into a list, one entry per adapter
|
669 |
+
if not isinstance(adapter_weights, list):
|
670 |
+
adapter_weights = [adapter_weights] * len(adapter_names)
|
671 |
+
|
672 |
+
if len(adapter_names) != len(adapter_weights):
|
673 |
+
raise ValueError(
|
674 |
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of the weights {len(adapter_weights)}"
|
675 |
+
)
|
676 |
+
|
677 |
+
list_adapters = self.get_list_adapters() # eg {"unet": ["adapter1", "adapter2"], "text_encoder": ["adapter2"]}
|
678 |
+
# eg ["adapter1", "adapter2"]
|
679 |
+
all_adapters = {adapter for adapters in list_adapters.values() for adapter in adapters}
|
680 |
+
missing_adapters = set(adapter_names) - all_adapters
|
681 |
+
if len(missing_adapters) > 0:
|
682 |
+
raise ValueError(
|
683 |
+
f"Adapter name(s) {missing_adapters} not in the list of present adapters: {all_adapters}."
|
684 |
+
)
|
685 |
+
|
686 |
+
# eg {"adapter1": ["unet"], "adapter2": ["unet", "text_encoder"]}
|
687 |
+
invert_list_adapters = {
|
688 |
+
adapter: [part for part, adapters in list_adapters.items() if adapter in adapters]
|
689 |
+
for adapter in all_adapters
|
690 |
+
}
|
691 |
+
|
692 |
+
# Decompose weights into weights for denoiser and text encoders.
|
693 |
+
_component_adapter_weights = {}
|
694 |
+
for component in self._lora_loadable_modules:
|
695 |
+
model = getattr(self, component)
|
696 |
+
|
697 |
+
for adapter_name, weights in zip(adapter_names, adapter_weights):
|
698 |
+
if isinstance(weights, dict):
|
699 |
+
component_adapter_weights = weights.pop(component, None)
|
700 |
+
|
701 |
+
if component_adapter_weights is not None and not hasattr(self, component):
|
702 |
+
logger.warning(
|
703 |
+
f"Lora weight dict contains {component} weights but will be ignored because pipeline does not have {component}."
|
704 |
+
)
|
705 |
+
|
706 |
+
if component_adapter_weights is not None and component not in invert_list_adapters[adapter_name]:
|
707 |
+
logger.warning(
|
708 |
+
(
|
709 |
+
f"Lora weight dict for adapter '{adapter_name}' contains {component},"
|
710 |
+
f"but this will be ignored because {adapter_name} does not contain weights for {component}."
|
711 |
+
f"Valid parts for {adapter_name} are: {invert_list_adapters[adapter_name]}."
|
712 |
+
)
|
713 |
+
)
|
714 |
+
|
715 |
+
else:
|
716 |
+
component_adapter_weights = weights
|
717 |
+
|
718 |
+
_component_adapter_weights.setdefault(component, [])
|
719 |
+
_component_adapter_weights[component].append(component_adapter_weights)
|
720 |
+
|
721 |
+
if issubclass(model.__class__, ModelMixin):
|
722 |
+
model.set_adapters(adapter_names, _component_adapter_weights[component])
|
723 |
+
elif issubclass(model.__class__, PreTrainedModel):
|
724 |
+
set_adapters_for_text_encoder(adapter_names, model, _component_adapter_weights[component])
|
725 |
+
|
726 |
+
def disable_lora(self):
|
727 |
+
if not USE_PEFT_BACKEND:
|
728 |
+
raise ValueError("PEFT backend is required for this method.")
|
729 |
+
|
730 |
+
for component in self._lora_loadable_modules:
|
731 |
+
model = getattr(self, component, None)
|
732 |
+
if model is not None:
|
733 |
+
if issubclass(model.__class__, ModelMixin):
|
734 |
+
model.disable_lora()
|
735 |
+
elif issubclass(model.__class__, PreTrainedModel):
|
736 |
+
disable_lora_for_text_encoder(model)
|
737 |
+
|
738 |
+
def enable_lora(self):
|
739 |
+
if not USE_PEFT_BACKEND:
|
740 |
+
raise ValueError("PEFT backend is required for this method.")
|
741 |
+
|
742 |
+
for component in self._lora_loadable_modules:
|
743 |
+
model = getattr(self, component, None)
|
744 |
+
if model is not None:
|
745 |
+
if issubclass(model.__class__, ModelMixin):
|
746 |
+
model.enable_lora()
|
747 |
+
elif issubclass(model.__class__, PreTrainedModel):
|
748 |
+
enable_lora_for_text_encoder(model)
|
749 |
+
|
750 |
+
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
751 |
+
"""
|
752 |
+
Args:
|
753 |
+
Deletes the LoRA layers of `adapter_name` for the unet and text-encoder(s).
|
754 |
+
adapter_names (`Union[List[str], str]`):
|
755 |
+
The names of the adapter to delete. Can be a single string or a list of strings
|
756 |
+
"""
|
757 |
+
if not USE_PEFT_BACKEND:
|
758 |
+
raise ValueError("PEFT backend is required for this method.")
|
759 |
+
|
760 |
+
if isinstance(adapter_names, str):
|
761 |
+
adapter_names = [adapter_names]
|
762 |
+
|
763 |
+
for component in self._lora_loadable_modules:
|
764 |
+
model = getattr(self, component, None)
|
765 |
+
if model is not None:
|
766 |
+
if issubclass(model.__class__, ModelMixin):
|
767 |
+
model.delete_adapters(adapter_names)
|
768 |
+
elif issubclass(model.__class__, PreTrainedModel):
|
769 |
+
for adapter_name in adapter_names:
|
770 |
+
delete_adapter_layers(model, adapter_name)
|
771 |
+
|
772 |
+
def get_active_adapters(self) -> List[str]:
|
773 |
+
"""
|
774 |
+
Gets the list of the current active adapters.
|
775 |
+
|
776 |
+
Example:
|
777 |
+
|
778 |
+
```python
|
779 |
+
from diffusers import DiffusionPipeline
|
780 |
+
|
781 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
782 |
+
"stabilityai/stable-diffusion-xl-base-1.0",
|
783 |
+
).to("cuda")
|
784 |
+
pipeline.load_lora_weights("CiroN2022/toy-face", weight_name="toy_face_sdxl.safetensors", adapter_name="toy")
|
785 |
+
pipeline.get_active_adapters()
|
786 |
+
```
|
787 |
+
"""
|
788 |
+
if not USE_PEFT_BACKEND:
|
789 |
+
raise ValueError(
|
790 |
+
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
|
791 |
+
)
|
792 |
+
|
793 |
+
active_adapters = []
|
794 |
+
|
795 |
+
for component in self._lora_loadable_modules:
|
796 |
+
model = getattr(self, component, None)
|
797 |
+
if model is not None and issubclass(model.__class__, ModelMixin):
|
798 |
+
for module in model.modules():
|
799 |
+
if isinstance(module, BaseTunerLayer):
|
800 |
+
active_adapters = module.active_adapters
|
801 |
+
break
|
802 |
+
|
803 |
+
return active_adapters
|
804 |
+
|
805 |
+
def get_list_adapters(self) -> Dict[str, List[str]]:
|
806 |
+
"""
|
807 |
+
Gets the current list of all available adapters in the pipeline.
|
808 |
+
"""
|
809 |
+
if not USE_PEFT_BACKEND:
|
810 |
+
raise ValueError(
|
811 |
+
"PEFT backend is required for this method. Please install the latest version of PEFT `pip install -U peft`"
|
812 |
+
)
|
813 |
+
|
814 |
+
set_adapters = {}
|
815 |
+
|
816 |
+
for component in self._lora_loadable_modules:
|
817 |
+
model = getattr(self, component, None)
|
818 |
+
if (
|
819 |
+
model is not None
|
820 |
+
and issubclass(model.__class__, (ModelMixin, PreTrainedModel))
|
821 |
+
and hasattr(model, "peft_config")
|
822 |
+
):
|
823 |
+
set_adapters[component] = list(model.peft_config.keys())
|
824 |
+
|
825 |
+
return set_adapters
|
826 |
+
|
827 |
+
def set_lora_device(self, adapter_names: List[str], device: Union[torch.device, str, int]) -> None:
|
828 |
+
"""
|
829 |
+
Moves the LoRAs listed in `adapter_names` to a target device. Useful for offloading the LoRA to the CPU in case
|
830 |
+
you want to load multiple adapters and free some GPU memory.
|
831 |
+
|
832 |
+
Args:
|
833 |
+
adapter_names (`List[str]`):
|
834 |
+
List of adapters to send device to.
|
835 |
+
device (`Union[torch.device, str, int]`):
|
836 |
+
Device to send the adapters to. Can be either a torch device, a str or an integer.
|
837 |
+
"""
|
838 |
+
if not USE_PEFT_BACKEND:
|
839 |
+
raise ValueError("PEFT backend is required for this method.")
|
840 |
+
|
841 |
+
for component in self._lora_loadable_modules:
|
842 |
+
model = getattr(self, component, None)
|
843 |
+
if model is not None:
|
844 |
+
for module in model.modules():
|
845 |
+
if isinstance(module, BaseTunerLayer):
|
846 |
+
for adapter_name in adapter_names:
|
847 |
+
module.lora_A[adapter_name].to(device)
|
848 |
+
module.lora_B[adapter_name].to(device)
|
849 |
+
# this is a param, not a module, so device placement is not in-place -> re-assign
|
850 |
+
if hasattr(module, "lora_magnitude_vector") and module.lora_magnitude_vector is not None:
|
851 |
+
if adapter_name in module.lora_magnitude_vector:
|
852 |
+
module.lora_magnitude_vector[adapter_name] = module.lora_magnitude_vector[
|
853 |
+
adapter_name
|
854 |
+
].to(device)
|
855 |
+
|
856 |
+
@staticmethod
|
857 |
+
def pack_weights(layers, prefix):
|
858 |
+
layers_weights = layers.state_dict() if isinstance(layers, torch.nn.Module) else layers
|
859 |
+
layers_state_dict = {f"{prefix}.{module_name}": param for module_name, param in layers_weights.items()}
|
860 |
+
return layers_state_dict
|
861 |
+
|
862 |
+
@staticmethod
|
863 |
+
def write_lora_layers(
|
864 |
+
state_dict: Dict[str, torch.Tensor],
|
865 |
+
save_directory: str,
|
866 |
+
is_main_process: bool,
|
867 |
+
weight_name: str,
|
868 |
+
save_function: Callable,
|
869 |
+
safe_serialization: bool,
|
870 |
+
):
|
871 |
+
if os.path.isfile(save_directory):
|
872 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
873 |
+
return
|
874 |
+
|
875 |
+
if save_function is None:
|
876 |
+
if safe_serialization:
|
877 |
+
|
878 |
+
def save_function(weights, filename):
|
879 |
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
880 |
+
|
881 |
+
else:
|
882 |
+
save_function = torch.save
|
883 |
+
|
884 |
+
os.makedirs(save_directory, exist_ok=True)
|
885 |
+
|
886 |
+
if weight_name is None:
|
887 |
+
if safe_serialization:
|
888 |
+
weight_name = LORA_WEIGHT_NAME_SAFE
|
889 |
+
else:
|
890 |
+
weight_name = LORA_WEIGHT_NAME
|
891 |
+
|
892 |
+
save_path = Path(save_directory, weight_name).as_posix()
|
893 |
+
save_function(state_dict, save_path)
|
894 |
+
logger.info(f"Model weights saved in {save_path}")
|
895 |
+
|
896 |
+
@property
|
897 |
+
def lora_scale(self) -> float:
|
898 |
+
# property function that returns the lora scale which can be set at run time by the pipeline.
|
899 |
+
# if _lora_scale has not been set, return 1
|
900 |
+
return self._lora_scale if hasattr(self, "_lora_scale") else 1.0
|
icedit/diffusers/loaders/lora_conversion_utils.py
ADDED
@@ -0,0 +1,1150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import re
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
from ..utils import is_peft_version, logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
def _maybe_map_sgm_blocks_to_diffusers(state_dict, unet_config, delimiter="_", block_slice_pos=5):
|
26 |
+
# 1. get all state_dict_keys
|
27 |
+
all_keys = list(state_dict.keys())
|
28 |
+
sgm_patterns = ["input_blocks", "middle_block", "output_blocks"]
|
29 |
+
|
30 |
+
# 2. check if needs remapping, if not return original dict
|
31 |
+
is_in_sgm_format = False
|
32 |
+
for key in all_keys:
|
33 |
+
if any(p in key for p in sgm_patterns):
|
34 |
+
is_in_sgm_format = True
|
35 |
+
break
|
36 |
+
|
37 |
+
if not is_in_sgm_format:
|
38 |
+
return state_dict
|
39 |
+
|
40 |
+
# 3. Else remap from SGM patterns
|
41 |
+
new_state_dict = {}
|
42 |
+
inner_block_map = ["resnets", "attentions", "upsamplers"]
|
43 |
+
|
44 |
+
# Retrieves # of down, mid and up blocks
|
45 |
+
input_block_ids, middle_block_ids, output_block_ids = set(), set(), set()
|
46 |
+
|
47 |
+
for layer in all_keys:
|
48 |
+
if "text" in layer:
|
49 |
+
new_state_dict[layer] = state_dict.pop(layer)
|
50 |
+
else:
|
51 |
+
layer_id = int(layer.split(delimiter)[:block_slice_pos][-1])
|
52 |
+
if sgm_patterns[0] in layer:
|
53 |
+
input_block_ids.add(layer_id)
|
54 |
+
elif sgm_patterns[1] in layer:
|
55 |
+
middle_block_ids.add(layer_id)
|
56 |
+
elif sgm_patterns[2] in layer:
|
57 |
+
output_block_ids.add(layer_id)
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Checkpoint not supported because layer {layer} not supported.")
|
60 |
+
|
61 |
+
input_blocks = {
|
62 |
+
layer_id: [key for key in state_dict if f"input_blocks{delimiter}{layer_id}" in key]
|
63 |
+
for layer_id in input_block_ids
|
64 |
+
}
|
65 |
+
middle_blocks = {
|
66 |
+
layer_id: [key for key in state_dict if f"middle_block{delimiter}{layer_id}" in key]
|
67 |
+
for layer_id in middle_block_ids
|
68 |
+
}
|
69 |
+
output_blocks = {
|
70 |
+
layer_id: [key for key in state_dict if f"output_blocks{delimiter}{layer_id}" in key]
|
71 |
+
for layer_id in output_block_ids
|
72 |
+
}
|
73 |
+
|
74 |
+
# Rename keys accordingly
|
75 |
+
for i in input_block_ids:
|
76 |
+
block_id = (i - 1) // (unet_config.layers_per_block + 1)
|
77 |
+
layer_in_block_id = (i - 1) % (unet_config.layers_per_block + 1)
|
78 |
+
|
79 |
+
for key in input_blocks[i]:
|
80 |
+
inner_block_id = int(key.split(delimiter)[block_slice_pos])
|
81 |
+
inner_block_key = inner_block_map[inner_block_id] if "op" not in key else "downsamplers"
|
82 |
+
inner_layers_in_block = str(layer_in_block_id) if "op" not in key else "0"
|
83 |
+
new_key = delimiter.join(
|
84 |
+
key.split(delimiter)[: block_slice_pos - 1]
|
85 |
+
+ [str(block_id), inner_block_key, inner_layers_in_block]
|
86 |
+
+ key.split(delimiter)[block_slice_pos + 1 :]
|
87 |
+
)
|
88 |
+
new_state_dict[new_key] = state_dict.pop(key)
|
89 |
+
|
90 |
+
for i in middle_block_ids:
|
91 |
+
key_part = None
|
92 |
+
if i == 0:
|
93 |
+
key_part = [inner_block_map[0], "0"]
|
94 |
+
elif i == 1:
|
95 |
+
key_part = [inner_block_map[1], "0"]
|
96 |
+
elif i == 2:
|
97 |
+
key_part = [inner_block_map[0], "1"]
|
98 |
+
else:
|
99 |
+
raise ValueError(f"Invalid middle block id {i}.")
|
100 |
+
|
101 |
+
for key in middle_blocks[i]:
|
102 |
+
new_key = delimiter.join(
|
103 |
+
key.split(delimiter)[: block_slice_pos - 1] + key_part + key.split(delimiter)[block_slice_pos:]
|
104 |
+
)
|
105 |
+
new_state_dict[new_key] = state_dict.pop(key)
|
106 |
+
|
107 |
+
for i in output_block_ids:
|
108 |
+
block_id = i // (unet_config.layers_per_block + 1)
|
109 |
+
layer_in_block_id = i % (unet_config.layers_per_block + 1)
|
110 |
+
|
111 |
+
for key in output_blocks[i]:
|
112 |
+
inner_block_id = int(key.split(delimiter)[block_slice_pos])
|
113 |
+
inner_block_key = inner_block_map[inner_block_id]
|
114 |
+
inner_layers_in_block = str(layer_in_block_id) if inner_block_id < 2 else "0"
|
115 |
+
new_key = delimiter.join(
|
116 |
+
key.split(delimiter)[: block_slice_pos - 1]
|
117 |
+
+ [str(block_id), inner_block_key, inner_layers_in_block]
|
118 |
+
+ key.split(delimiter)[block_slice_pos + 1 :]
|
119 |
+
)
|
120 |
+
new_state_dict[new_key] = state_dict.pop(key)
|
121 |
+
|
122 |
+
if len(state_dict) > 0:
|
123 |
+
raise ValueError("At this point all state dict entries have to be converted.")
|
124 |
+
|
125 |
+
return new_state_dict
|
126 |
+
|
127 |
+
|
128 |
+
def _convert_non_diffusers_lora_to_diffusers(state_dict, unet_name="unet", text_encoder_name="text_encoder"):
|
129 |
+
"""
|
130 |
+
Converts a non-Diffusers LoRA state dict to a Diffusers compatible state dict.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
state_dict (`dict`): The state dict to convert.
|
134 |
+
unet_name (`str`, optional): The name of the U-Net module in the Diffusers model. Defaults to "unet".
|
135 |
+
text_encoder_name (`str`, optional): The name of the text encoder module in the Diffusers model. Defaults to
|
136 |
+
"text_encoder".
|
137 |
+
|
138 |
+
Returns:
|
139 |
+
`tuple`: A tuple containing the converted state dict and a dictionary of alphas.
|
140 |
+
"""
|
141 |
+
unet_state_dict = {}
|
142 |
+
te_state_dict = {}
|
143 |
+
te2_state_dict = {}
|
144 |
+
network_alphas = {}
|
145 |
+
|
146 |
+
# Check for DoRA-enabled LoRAs.
|
147 |
+
dora_present_in_unet = any("dora_scale" in k and "lora_unet_" in k for k in state_dict)
|
148 |
+
dora_present_in_te = any("dora_scale" in k and ("lora_te_" in k or "lora_te1_" in k) for k in state_dict)
|
149 |
+
dora_present_in_te2 = any("dora_scale" in k and "lora_te2_" in k for k in state_dict)
|
150 |
+
if dora_present_in_unet or dora_present_in_te or dora_present_in_te2:
|
151 |
+
if is_peft_version("<", "0.9.0"):
|
152 |
+
raise ValueError(
|
153 |
+
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
154 |
+
)
|
155 |
+
|
156 |
+
# Iterate over all LoRA weights.
|
157 |
+
all_lora_keys = list(state_dict.keys())
|
158 |
+
for key in all_lora_keys:
|
159 |
+
if not key.endswith("lora_down.weight"):
|
160 |
+
continue
|
161 |
+
|
162 |
+
# Extract LoRA name.
|
163 |
+
lora_name = key.split(".")[0]
|
164 |
+
|
165 |
+
# Find corresponding up weight and alpha.
|
166 |
+
lora_name_up = lora_name + ".lora_up.weight"
|
167 |
+
lora_name_alpha = lora_name + ".alpha"
|
168 |
+
|
169 |
+
# Handle U-Net LoRAs.
|
170 |
+
if lora_name.startswith("lora_unet_"):
|
171 |
+
diffusers_name = _convert_unet_lora_key(key)
|
172 |
+
|
173 |
+
# Store down and up weights.
|
174 |
+
unet_state_dict[diffusers_name] = state_dict.pop(key)
|
175 |
+
unet_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
176 |
+
|
177 |
+
# Store DoRA scale if present.
|
178 |
+
if dora_present_in_unet:
|
179 |
+
dora_scale_key_to_replace = "_lora.down." if "_lora.down." in diffusers_name else ".lora.down."
|
180 |
+
unet_state_dict[
|
181 |
+
diffusers_name.replace(dora_scale_key_to_replace, ".lora_magnitude_vector.")
|
182 |
+
] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
|
183 |
+
|
184 |
+
# Handle text encoder LoRAs.
|
185 |
+
elif lora_name.startswith(("lora_te_", "lora_te1_", "lora_te2_")):
|
186 |
+
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)
|
187 |
+
|
188 |
+
# Store down and up weights for te or te2.
|
189 |
+
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
190 |
+
te_state_dict[diffusers_name] = state_dict.pop(key)
|
191 |
+
te_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
192 |
+
else:
|
193 |
+
te2_state_dict[diffusers_name] = state_dict.pop(key)
|
194 |
+
te2_state_dict[diffusers_name.replace(".down.", ".up.")] = state_dict.pop(lora_name_up)
|
195 |
+
|
196 |
+
# Store DoRA scale if present.
|
197 |
+
if dora_present_in_te or dora_present_in_te2:
|
198 |
+
dora_scale_key_to_replace_te = (
|
199 |
+
"_lora.down." if "_lora.down." in diffusers_name else ".lora_linear_layer."
|
200 |
+
)
|
201 |
+
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
202 |
+
te_state_dict[
|
203 |
+
diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
|
204 |
+
] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
|
205 |
+
elif lora_name.startswith("lora_te2_"):
|
206 |
+
te2_state_dict[
|
207 |
+
diffusers_name.replace(dora_scale_key_to_replace_te, ".lora_magnitude_vector.")
|
208 |
+
] = state_dict.pop(key.replace("lora_down.weight", "dora_scale"))
|
209 |
+
|
210 |
+
# Store alpha if present.
|
211 |
+
if lora_name_alpha in state_dict:
|
212 |
+
alpha = state_dict.pop(lora_name_alpha).item()
|
213 |
+
network_alphas.update(_get_alpha_name(lora_name_alpha, diffusers_name, alpha))
|
214 |
+
|
215 |
+
# Check if any keys remain.
|
216 |
+
if len(state_dict) > 0:
|
217 |
+
raise ValueError(f"The following keys have not been correctly renamed: \n\n {', '.join(state_dict.keys())}")
|
218 |
+
|
219 |
+
logger.info("Non-diffusers checkpoint detected.")
|
220 |
+
|
221 |
+
# Construct final state dict.
|
222 |
+
unet_state_dict = {f"{unet_name}.{module_name}": params for module_name, params in unet_state_dict.items()}
|
223 |
+
te_state_dict = {f"{text_encoder_name}.{module_name}": params for module_name, params in te_state_dict.items()}
|
224 |
+
te2_state_dict = (
|
225 |
+
{f"text_encoder_2.{module_name}": params for module_name, params in te2_state_dict.items()}
|
226 |
+
if len(te2_state_dict) > 0
|
227 |
+
else None
|
228 |
+
)
|
229 |
+
if te2_state_dict is not None:
|
230 |
+
te_state_dict.update(te2_state_dict)
|
231 |
+
|
232 |
+
new_state_dict = {**unet_state_dict, **te_state_dict}
|
233 |
+
return new_state_dict, network_alphas
|
234 |
+
|
235 |
+
|
236 |
+
def _convert_unet_lora_key(key):
|
237 |
+
"""
|
238 |
+
Converts a U-Net LoRA key to a Diffusers compatible key.
|
239 |
+
"""
|
240 |
+
diffusers_name = key.replace("lora_unet_", "").replace("_", ".")
|
241 |
+
|
242 |
+
# Replace common U-Net naming patterns.
|
243 |
+
diffusers_name = diffusers_name.replace("input.blocks", "down_blocks")
|
244 |
+
diffusers_name = diffusers_name.replace("down.blocks", "down_blocks")
|
245 |
+
diffusers_name = diffusers_name.replace("middle.block", "mid_block")
|
246 |
+
diffusers_name = diffusers_name.replace("mid.block", "mid_block")
|
247 |
+
diffusers_name = diffusers_name.replace("output.blocks", "up_blocks")
|
248 |
+
diffusers_name = diffusers_name.replace("up.blocks", "up_blocks")
|
249 |
+
diffusers_name = diffusers_name.replace("transformer.blocks", "transformer_blocks")
|
250 |
+
diffusers_name = diffusers_name.replace("to.q.lora", "to_q_lora")
|
251 |
+
diffusers_name = diffusers_name.replace("to.k.lora", "to_k_lora")
|
252 |
+
diffusers_name = diffusers_name.replace("to.v.lora", "to_v_lora")
|
253 |
+
diffusers_name = diffusers_name.replace("to.out.0.lora", "to_out_lora")
|
254 |
+
diffusers_name = diffusers_name.replace("proj.in", "proj_in")
|
255 |
+
diffusers_name = diffusers_name.replace("proj.out", "proj_out")
|
256 |
+
diffusers_name = diffusers_name.replace("emb.layers", "time_emb_proj")
|
257 |
+
|
258 |
+
# SDXL specific conversions.
|
259 |
+
if "emb" in diffusers_name and "time.emb.proj" not in diffusers_name:
|
260 |
+
pattern = r"\.\d+(?=\D*$)"
|
261 |
+
diffusers_name = re.sub(pattern, "", diffusers_name, count=1)
|
262 |
+
if ".in." in diffusers_name:
|
263 |
+
diffusers_name = diffusers_name.replace("in.layers.2", "conv1")
|
264 |
+
if ".out." in diffusers_name:
|
265 |
+
diffusers_name = diffusers_name.replace("out.layers.3", "conv2")
|
266 |
+
if "downsamplers" in diffusers_name or "upsamplers" in diffusers_name:
|
267 |
+
diffusers_name = diffusers_name.replace("op", "conv")
|
268 |
+
if "skip" in diffusers_name:
|
269 |
+
diffusers_name = diffusers_name.replace("skip.connection", "conv_shortcut")
|
270 |
+
|
271 |
+
# LyCORIS specific conversions.
|
272 |
+
if "time.emb.proj" in diffusers_name:
|
273 |
+
diffusers_name = diffusers_name.replace("time.emb.proj", "time_emb_proj")
|
274 |
+
if "conv.shortcut" in diffusers_name:
|
275 |
+
diffusers_name = diffusers_name.replace("conv.shortcut", "conv_shortcut")
|
276 |
+
|
277 |
+
# General conversions.
|
278 |
+
if "transformer_blocks" in diffusers_name:
|
279 |
+
if "attn1" in diffusers_name or "attn2" in diffusers_name:
|
280 |
+
diffusers_name = diffusers_name.replace("attn1", "attn1.processor")
|
281 |
+
diffusers_name = diffusers_name.replace("attn2", "attn2.processor")
|
282 |
+
elif "ff" in diffusers_name:
|
283 |
+
pass
|
284 |
+
elif any(key in diffusers_name for key in ("proj_in", "proj_out")):
|
285 |
+
pass
|
286 |
+
else:
|
287 |
+
pass
|
288 |
+
|
289 |
+
return diffusers_name
|
290 |
+
|
291 |
+
|
292 |
+
def _convert_text_encoder_lora_key(key, lora_name):
|
293 |
+
"""
|
294 |
+
Converts a text encoder LoRA key to a Diffusers compatible key.
|
295 |
+
"""
|
296 |
+
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
297 |
+
key_to_replace = "lora_te_" if lora_name.startswith("lora_te_") else "lora_te1_"
|
298 |
+
else:
|
299 |
+
key_to_replace = "lora_te2_"
|
300 |
+
|
301 |
+
diffusers_name = key.replace(key_to_replace, "").replace("_", ".")
|
302 |
+
diffusers_name = diffusers_name.replace("text.model", "text_model")
|
303 |
+
diffusers_name = diffusers_name.replace("self.attn", "self_attn")
|
304 |
+
diffusers_name = diffusers_name.replace("q.proj.lora", "to_q_lora")
|
305 |
+
diffusers_name = diffusers_name.replace("k.proj.lora", "to_k_lora")
|
306 |
+
diffusers_name = diffusers_name.replace("v.proj.lora", "to_v_lora")
|
307 |
+
diffusers_name = diffusers_name.replace("out.proj.lora", "to_out_lora")
|
308 |
+
diffusers_name = diffusers_name.replace("text.projection", "text_projection")
|
309 |
+
|
310 |
+
if "self_attn" in diffusers_name or "text_projection" in diffusers_name:
|
311 |
+
pass
|
312 |
+
elif "mlp" in diffusers_name:
|
313 |
+
# Be aware that this is the new diffusers convention and the rest of the code might
|
314 |
+
# not utilize it yet.
|
315 |
+
diffusers_name = diffusers_name.replace(".lora.", ".lora_linear_layer.")
|
316 |
+
return diffusers_name
|
317 |
+
|
318 |
+
|
319 |
+
def _get_alpha_name(lora_name_alpha, diffusers_name, alpha):
|
320 |
+
"""
|
321 |
+
Gets the correct alpha name for the Diffusers model.
|
322 |
+
"""
|
323 |
+
if lora_name_alpha.startswith("lora_unet_"):
|
324 |
+
prefix = "unet."
|
325 |
+
elif lora_name_alpha.startswith(("lora_te_", "lora_te1_")):
|
326 |
+
prefix = "text_encoder."
|
327 |
+
else:
|
328 |
+
prefix = "text_encoder_2."
|
329 |
+
new_name = prefix + diffusers_name.split(".lora.")[0] + ".alpha"
|
330 |
+
return {new_name: alpha}
|
331 |
+
|
332 |
+
|
333 |
+
# The utilities under `_convert_kohya_flux_lora_to_diffusers()`
|
334 |
+
# are taken from https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
|
335 |
+
# All credits go to `kohya-ss`.
|
336 |
+
def _convert_kohya_flux_lora_to_diffusers(state_dict):
|
337 |
+
def _convert_to_ai_toolkit(sds_sd, ait_sd, sds_key, ait_key):
|
338 |
+
if sds_key + ".lora_down.weight" not in sds_sd:
|
339 |
+
return
|
340 |
+
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
|
341 |
+
|
342 |
+
# scale weight by alpha and dim
|
343 |
+
rank = down_weight.shape[0]
|
344 |
+
alpha = sds_sd.pop(sds_key + ".alpha").item() # alpha is scalar
|
345 |
+
scale = alpha / rank # LoRA is scaled by 'alpha / rank' in forward pass, so we need to scale it back here
|
346 |
+
|
347 |
+
# calculate scale_down and scale_up to keep the same value. if scale is 4, scale_down is 2 and scale_up is 2
|
348 |
+
scale_down = scale
|
349 |
+
scale_up = 1.0
|
350 |
+
while scale_down * 2 < scale_up:
|
351 |
+
scale_down *= 2
|
352 |
+
scale_up /= 2
|
353 |
+
|
354 |
+
ait_sd[ait_key + ".lora_A.weight"] = down_weight * scale_down
|
355 |
+
ait_sd[ait_key + ".lora_B.weight"] = sds_sd.pop(sds_key + ".lora_up.weight") * scale_up
|
356 |
+
|
357 |
+
def _convert_to_ai_toolkit_cat(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
|
358 |
+
if sds_key + ".lora_down.weight" not in sds_sd:
|
359 |
+
return
|
360 |
+
down_weight = sds_sd.pop(sds_key + ".lora_down.weight")
|
361 |
+
up_weight = sds_sd.pop(sds_key + ".lora_up.weight")
|
362 |
+
sd_lora_rank = down_weight.shape[0]
|
363 |
+
|
364 |
+
# scale weight by alpha and dim
|
365 |
+
alpha = sds_sd.pop(sds_key + ".alpha")
|
366 |
+
scale = alpha / sd_lora_rank
|
367 |
+
|
368 |
+
# calculate scale_down and scale_up
|
369 |
+
scale_down = scale
|
370 |
+
scale_up = 1.0
|
371 |
+
while scale_down * 2 < scale_up:
|
372 |
+
scale_down *= 2
|
373 |
+
scale_up /= 2
|
374 |
+
|
375 |
+
down_weight = down_weight * scale_down
|
376 |
+
up_weight = up_weight * scale_up
|
377 |
+
|
378 |
+
# calculate dims if not provided
|
379 |
+
num_splits = len(ait_keys)
|
380 |
+
if dims is None:
|
381 |
+
dims = [up_weight.shape[0] // num_splits] * num_splits
|
382 |
+
else:
|
383 |
+
assert sum(dims) == up_weight.shape[0]
|
384 |
+
|
385 |
+
# check upweight is sparse or not
|
386 |
+
is_sparse = False
|
387 |
+
if sd_lora_rank % num_splits == 0:
|
388 |
+
ait_rank = sd_lora_rank // num_splits
|
389 |
+
is_sparse = True
|
390 |
+
i = 0
|
391 |
+
for j in range(len(dims)):
|
392 |
+
for k in range(len(dims)):
|
393 |
+
if j == k:
|
394 |
+
continue
|
395 |
+
is_sparse = is_sparse and torch.all(
|
396 |
+
up_weight[i : i + dims[j], k * ait_rank : (k + 1) * ait_rank] == 0
|
397 |
+
)
|
398 |
+
i += dims[j]
|
399 |
+
if is_sparse:
|
400 |
+
logger.info(f"weight is sparse: {sds_key}")
|
401 |
+
|
402 |
+
# make ai-toolkit weight
|
403 |
+
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
|
404 |
+
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
|
405 |
+
if not is_sparse:
|
406 |
+
# down_weight is copied to each split
|
407 |
+
ait_sd.update({k: down_weight for k in ait_down_keys})
|
408 |
+
|
409 |
+
# up_weight is split to each split
|
410 |
+
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
|
411 |
+
else:
|
412 |
+
# down_weight is chunked to each split
|
413 |
+
ait_sd.update({k: v for k, v in zip(ait_down_keys, torch.chunk(down_weight, num_splits, dim=0))}) # noqa: C416
|
414 |
+
|
415 |
+
# up_weight is sparse: only non-zero values are copied to each split
|
416 |
+
i = 0
|
417 |
+
for j in range(len(dims)):
|
418 |
+
ait_sd[ait_up_keys[j]] = up_weight[i : i + dims[j], j * ait_rank : (j + 1) * ait_rank].contiguous()
|
419 |
+
i += dims[j]
|
420 |
+
|
421 |
+
def _convert_sd_scripts_to_ai_toolkit(sds_sd):
|
422 |
+
ait_sd = {}
|
423 |
+
for i in range(19):
|
424 |
+
_convert_to_ai_toolkit(
|
425 |
+
sds_sd,
|
426 |
+
ait_sd,
|
427 |
+
f"lora_unet_double_blocks_{i}_img_attn_proj",
|
428 |
+
f"transformer.transformer_blocks.{i}.attn.to_out.0",
|
429 |
+
)
|
430 |
+
_convert_to_ai_toolkit_cat(
|
431 |
+
sds_sd,
|
432 |
+
ait_sd,
|
433 |
+
f"lora_unet_double_blocks_{i}_img_attn_qkv",
|
434 |
+
[
|
435 |
+
f"transformer.transformer_blocks.{i}.attn.to_q",
|
436 |
+
f"transformer.transformer_blocks.{i}.attn.to_k",
|
437 |
+
f"transformer.transformer_blocks.{i}.attn.to_v",
|
438 |
+
],
|
439 |
+
)
|
440 |
+
_convert_to_ai_toolkit(
|
441 |
+
sds_sd,
|
442 |
+
ait_sd,
|
443 |
+
f"lora_unet_double_blocks_{i}_img_mlp_0",
|
444 |
+
f"transformer.transformer_blocks.{i}.ff.net.0.proj",
|
445 |
+
)
|
446 |
+
_convert_to_ai_toolkit(
|
447 |
+
sds_sd,
|
448 |
+
ait_sd,
|
449 |
+
f"lora_unet_double_blocks_{i}_img_mlp_2",
|
450 |
+
f"transformer.transformer_blocks.{i}.ff.net.2",
|
451 |
+
)
|
452 |
+
_convert_to_ai_toolkit(
|
453 |
+
sds_sd,
|
454 |
+
ait_sd,
|
455 |
+
f"lora_unet_double_blocks_{i}_img_mod_lin",
|
456 |
+
f"transformer.transformer_blocks.{i}.norm1.linear",
|
457 |
+
)
|
458 |
+
_convert_to_ai_toolkit(
|
459 |
+
sds_sd,
|
460 |
+
ait_sd,
|
461 |
+
f"lora_unet_double_blocks_{i}_txt_attn_proj",
|
462 |
+
f"transformer.transformer_blocks.{i}.attn.to_add_out",
|
463 |
+
)
|
464 |
+
_convert_to_ai_toolkit_cat(
|
465 |
+
sds_sd,
|
466 |
+
ait_sd,
|
467 |
+
f"lora_unet_double_blocks_{i}_txt_attn_qkv",
|
468 |
+
[
|
469 |
+
f"transformer.transformer_blocks.{i}.attn.add_q_proj",
|
470 |
+
f"transformer.transformer_blocks.{i}.attn.add_k_proj",
|
471 |
+
f"transformer.transformer_blocks.{i}.attn.add_v_proj",
|
472 |
+
],
|
473 |
+
)
|
474 |
+
_convert_to_ai_toolkit(
|
475 |
+
sds_sd,
|
476 |
+
ait_sd,
|
477 |
+
f"lora_unet_double_blocks_{i}_txt_mlp_0",
|
478 |
+
f"transformer.transformer_blocks.{i}.ff_context.net.0.proj",
|
479 |
+
)
|
480 |
+
_convert_to_ai_toolkit(
|
481 |
+
sds_sd,
|
482 |
+
ait_sd,
|
483 |
+
f"lora_unet_double_blocks_{i}_txt_mlp_2",
|
484 |
+
f"transformer.transformer_blocks.{i}.ff_context.net.2",
|
485 |
+
)
|
486 |
+
_convert_to_ai_toolkit(
|
487 |
+
sds_sd,
|
488 |
+
ait_sd,
|
489 |
+
f"lora_unet_double_blocks_{i}_txt_mod_lin",
|
490 |
+
f"transformer.transformer_blocks.{i}.norm1_context.linear",
|
491 |
+
)
|
492 |
+
|
493 |
+
for i in range(38):
|
494 |
+
_convert_to_ai_toolkit_cat(
|
495 |
+
sds_sd,
|
496 |
+
ait_sd,
|
497 |
+
f"lora_unet_single_blocks_{i}_linear1",
|
498 |
+
[
|
499 |
+
f"transformer.single_transformer_blocks.{i}.attn.to_q",
|
500 |
+
f"transformer.single_transformer_blocks.{i}.attn.to_k",
|
501 |
+
f"transformer.single_transformer_blocks.{i}.attn.to_v",
|
502 |
+
f"transformer.single_transformer_blocks.{i}.proj_mlp",
|
503 |
+
],
|
504 |
+
dims=[3072, 3072, 3072, 12288],
|
505 |
+
)
|
506 |
+
_convert_to_ai_toolkit(
|
507 |
+
sds_sd,
|
508 |
+
ait_sd,
|
509 |
+
f"lora_unet_single_blocks_{i}_linear2",
|
510 |
+
f"transformer.single_transformer_blocks.{i}.proj_out",
|
511 |
+
)
|
512 |
+
_convert_to_ai_toolkit(
|
513 |
+
sds_sd,
|
514 |
+
ait_sd,
|
515 |
+
f"lora_unet_single_blocks_{i}_modulation_lin",
|
516 |
+
f"transformer.single_transformer_blocks.{i}.norm.linear",
|
517 |
+
)
|
518 |
+
|
519 |
+
remaining_keys = list(sds_sd.keys())
|
520 |
+
te_state_dict = {}
|
521 |
+
if remaining_keys:
|
522 |
+
if not all(k.startswith("lora_te1") for k in remaining_keys):
|
523 |
+
raise ValueError(f"Incompatible keys detected: \n\n {', '.join(remaining_keys)}")
|
524 |
+
for key in remaining_keys:
|
525 |
+
if not key.endswith("lora_down.weight"):
|
526 |
+
continue
|
527 |
+
|
528 |
+
lora_name = key.split(".")[0]
|
529 |
+
lora_name_up = f"{lora_name}.lora_up.weight"
|
530 |
+
lora_name_alpha = f"{lora_name}.alpha"
|
531 |
+
diffusers_name = _convert_text_encoder_lora_key(key, lora_name)
|
532 |
+
|
533 |
+
if lora_name.startswith(("lora_te_", "lora_te1_")):
|
534 |
+
down_weight = sds_sd.pop(key)
|
535 |
+
sd_lora_rank = down_weight.shape[0]
|
536 |
+
te_state_dict[diffusers_name] = down_weight
|
537 |
+
te_state_dict[diffusers_name.replace(".down.", ".up.")] = sds_sd.pop(lora_name_up)
|
538 |
+
|
539 |
+
if lora_name_alpha in sds_sd:
|
540 |
+
alpha = sds_sd.pop(lora_name_alpha).item()
|
541 |
+
scale = alpha / sd_lora_rank
|
542 |
+
|
543 |
+
scale_down = scale
|
544 |
+
scale_up = 1.0
|
545 |
+
while scale_down * 2 < scale_up:
|
546 |
+
scale_down *= 2
|
547 |
+
scale_up /= 2
|
548 |
+
|
549 |
+
te_state_dict[diffusers_name] *= scale_down
|
550 |
+
te_state_dict[diffusers_name.replace(".down.", ".up.")] *= scale_up
|
551 |
+
|
552 |
+
if len(sds_sd) > 0:
|
553 |
+
logger.warning(f"Unsupported keys for ai-toolkit: {sds_sd.keys()}")
|
554 |
+
|
555 |
+
if te_state_dict:
|
556 |
+
te_state_dict = {f"text_encoder.{module_name}": params for module_name, params in te_state_dict.items()}
|
557 |
+
|
558 |
+
new_state_dict = {**ait_sd, **te_state_dict}
|
559 |
+
return new_state_dict
|
560 |
+
|
561 |
+
return _convert_sd_scripts_to_ai_toolkit(state_dict)
|
562 |
+
|
563 |
+
|
564 |
+
# Adapted from https://gist.github.com/Leommm-byte/6b331a1e9bd53271210b26543a7065d6
|
565 |
+
# Some utilities were reused from
|
566 |
+
# https://github.com/kohya-ss/sd-scripts/blob/a61cf73a5cb5209c3f4d1a3688dd276a4dfd1ecb/networks/convert_flux_lora.py
|
567 |
+
def _convert_xlabs_flux_lora_to_diffusers(old_state_dict):
|
568 |
+
new_state_dict = {}
|
569 |
+
orig_keys = list(old_state_dict.keys())
|
570 |
+
|
571 |
+
def handle_qkv(sds_sd, ait_sd, sds_key, ait_keys, dims=None):
|
572 |
+
down_weight = sds_sd.pop(sds_key)
|
573 |
+
up_weight = sds_sd.pop(sds_key.replace(".down.weight", ".up.weight"))
|
574 |
+
|
575 |
+
# calculate dims if not provided
|
576 |
+
num_splits = len(ait_keys)
|
577 |
+
if dims is None:
|
578 |
+
dims = [up_weight.shape[0] // num_splits] * num_splits
|
579 |
+
else:
|
580 |
+
assert sum(dims) == up_weight.shape[0]
|
581 |
+
|
582 |
+
# make ai-toolkit weight
|
583 |
+
ait_down_keys = [k + ".lora_A.weight" for k in ait_keys]
|
584 |
+
ait_up_keys = [k + ".lora_B.weight" for k in ait_keys]
|
585 |
+
|
586 |
+
# down_weight is copied to each split
|
587 |
+
ait_sd.update({k: down_weight for k in ait_down_keys})
|
588 |
+
|
589 |
+
# up_weight is split to each split
|
590 |
+
ait_sd.update({k: v for k, v in zip(ait_up_keys, torch.split(up_weight, dims, dim=0))}) # noqa: C416
|
591 |
+
|
592 |
+
for old_key in orig_keys:
|
593 |
+
# Handle double_blocks
|
594 |
+
if old_key.startswith(("diffusion_model.double_blocks", "double_blocks")):
|
595 |
+
block_num = re.search(r"double_blocks\.(\d+)", old_key).group(1)
|
596 |
+
new_key = f"transformer.transformer_blocks.{block_num}"
|
597 |
+
|
598 |
+
if "processor.proj_lora1" in old_key:
|
599 |
+
new_key += ".attn.to_out.0"
|
600 |
+
elif "processor.proj_lora2" in old_key:
|
601 |
+
new_key += ".attn.to_add_out"
|
602 |
+
# Handle text latents.
|
603 |
+
elif "processor.qkv_lora2" in old_key and "up" not in old_key:
|
604 |
+
handle_qkv(
|
605 |
+
old_state_dict,
|
606 |
+
new_state_dict,
|
607 |
+
old_key,
|
608 |
+
[
|
609 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_q_proj",
|
610 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_k_proj",
|
611 |
+
f"transformer.transformer_blocks.{block_num}.attn.add_v_proj",
|
612 |
+
],
|
613 |
+
)
|
614 |
+
# continue
|
615 |
+
# Handle image latents.
|
616 |
+
elif "processor.qkv_lora1" in old_key and "up" not in old_key:
|
617 |
+
handle_qkv(
|
618 |
+
old_state_dict,
|
619 |
+
new_state_dict,
|
620 |
+
old_key,
|
621 |
+
[
|
622 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_q",
|
623 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_k",
|
624 |
+
f"transformer.transformer_blocks.{block_num}.attn.to_v",
|
625 |
+
],
|
626 |
+
)
|
627 |
+
# continue
|
628 |
+
|
629 |
+
if "down" in old_key:
|
630 |
+
new_key += ".lora_A.weight"
|
631 |
+
elif "up" in old_key:
|
632 |
+
new_key += ".lora_B.weight"
|
633 |
+
|
634 |
+
# Handle single_blocks
|
635 |
+
elif old_key.startswith(("diffusion_model.single_blocks", "single_blocks")):
|
636 |
+
block_num = re.search(r"single_blocks\.(\d+)", old_key).group(1)
|
637 |
+
new_key = f"transformer.single_transformer_blocks.{block_num}"
|
638 |
+
|
639 |
+
if "proj_lora" in old_key:
|
640 |
+
new_key += ".proj_out"
|
641 |
+
elif "qkv_lora" in old_key and "up" not in old_key:
|
642 |
+
handle_qkv(
|
643 |
+
old_state_dict,
|
644 |
+
new_state_dict,
|
645 |
+
old_key,
|
646 |
+
[
|
647 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_q",
|
648 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_k",
|
649 |
+
f"transformer.single_transformer_blocks.{block_num}.attn.to_v",
|
650 |
+
],
|
651 |
+
)
|
652 |
+
|
653 |
+
if "down" in old_key:
|
654 |
+
new_key += ".lora_A.weight"
|
655 |
+
elif "up" in old_key:
|
656 |
+
new_key += ".lora_B.weight"
|
657 |
+
|
658 |
+
else:
|
659 |
+
# Handle other potential key patterns here
|
660 |
+
new_key = old_key
|
661 |
+
|
662 |
+
# Since we already handle qkv above.
|
663 |
+
if "qkv" not in old_key:
|
664 |
+
new_state_dict[new_key] = old_state_dict.pop(old_key)
|
665 |
+
|
666 |
+
if len(old_state_dict) > 0:
|
667 |
+
raise ValueError(f"`old_state_dict` should be at this point but has: {list(old_state_dict.keys())}.")
|
668 |
+
|
669 |
+
return new_state_dict
|
670 |
+
|
671 |
+
|
672 |
+
def _convert_bfl_flux_control_lora_to_diffusers(original_state_dict):
|
673 |
+
converted_state_dict = {}
|
674 |
+
original_state_dict_keys = list(original_state_dict.keys())
|
675 |
+
num_layers = 19
|
676 |
+
num_single_layers = 38
|
677 |
+
inner_dim = 3072
|
678 |
+
mlp_ratio = 4.0
|
679 |
+
|
680 |
+
def swap_scale_shift(weight):
|
681 |
+
shift, scale = weight.chunk(2, dim=0)
|
682 |
+
new_weight = torch.cat([scale, shift], dim=0)
|
683 |
+
return new_weight
|
684 |
+
|
685 |
+
for lora_key in ["lora_A", "lora_B"]:
|
686 |
+
## time_text_embed.timestep_embedder <- time_in
|
687 |
+
converted_state_dict[
|
688 |
+
f"time_text_embed.timestep_embedder.linear_1.{lora_key}.weight"
|
689 |
+
] = original_state_dict.pop(f"time_in.in_layer.{lora_key}.weight")
|
690 |
+
if f"time_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
|
691 |
+
converted_state_dict[
|
692 |
+
f"time_text_embed.timestep_embedder.linear_1.{lora_key}.bias"
|
693 |
+
] = original_state_dict.pop(f"time_in.in_layer.{lora_key}.bias")
|
694 |
+
|
695 |
+
converted_state_dict[
|
696 |
+
f"time_text_embed.timestep_embedder.linear_2.{lora_key}.weight"
|
697 |
+
] = original_state_dict.pop(f"time_in.out_layer.{lora_key}.weight")
|
698 |
+
if f"time_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
|
699 |
+
converted_state_dict[
|
700 |
+
f"time_text_embed.timestep_embedder.linear_2.{lora_key}.bias"
|
701 |
+
] = original_state_dict.pop(f"time_in.out_layer.{lora_key}.bias")
|
702 |
+
|
703 |
+
## time_text_embed.text_embedder <- vector_in
|
704 |
+
converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.weight"] = original_state_dict.pop(
|
705 |
+
f"vector_in.in_layer.{lora_key}.weight"
|
706 |
+
)
|
707 |
+
if f"vector_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
|
708 |
+
converted_state_dict[f"time_text_embed.text_embedder.linear_1.{lora_key}.bias"] = original_state_dict.pop(
|
709 |
+
f"vector_in.in_layer.{lora_key}.bias"
|
710 |
+
)
|
711 |
+
|
712 |
+
converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.weight"] = original_state_dict.pop(
|
713 |
+
f"vector_in.out_layer.{lora_key}.weight"
|
714 |
+
)
|
715 |
+
if f"vector_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
|
716 |
+
converted_state_dict[f"time_text_embed.text_embedder.linear_2.{lora_key}.bias"] = original_state_dict.pop(
|
717 |
+
f"vector_in.out_layer.{lora_key}.bias"
|
718 |
+
)
|
719 |
+
|
720 |
+
# guidance
|
721 |
+
has_guidance = any("guidance" in k for k in original_state_dict)
|
722 |
+
if has_guidance:
|
723 |
+
converted_state_dict[
|
724 |
+
f"time_text_embed.guidance_embedder.linear_1.{lora_key}.weight"
|
725 |
+
] = original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.weight")
|
726 |
+
if f"guidance_in.in_layer.{lora_key}.bias" in original_state_dict_keys:
|
727 |
+
converted_state_dict[
|
728 |
+
f"time_text_embed.guidance_embedder.linear_1.{lora_key}.bias"
|
729 |
+
] = original_state_dict.pop(f"guidance_in.in_layer.{lora_key}.bias")
|
730 |
+
|
731 |
+
converted_state_dict[
|
732 |
+
f"time_text_embed.guidance_embedder.linear_2.{lora_key}.weight"
|
733 |
+
] = original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.weight")
|
734 |
+
if f"guidance_in.out_layer.{lora_key}.bias" in original_state_dict_keys:
|
735 |
+
converted_state_dict[
|
736 |
+
f"time_text_embed.guidance_embedder.linear_2.{lora_key}.bias"
|
737 |
+
] = original_state_dict.pop(f"guidance_in.out_layer.{lora_key}.bias")
|
738 |
+
|
739 |
+
# context_embedder
|
740 |
+
converted_state_dict[f"context_embedder.{lora_key}.weight"] = original_state_dict.pop(
|
741 |
+
f"txt_in.{lora_key}.weight"
|
742 |
+
)
|
743 |
+
if f"txt_in.{lora_key}.bias" in original_state_dict_keys:
|
744 |
+
converted_state_dict[f"context_embedder.{lora_key}.bias"] = original_state_dict.pop(
|
745 |
+
f"txt_in.{lora_key}.bias"
|
746 |
+
)
|
747 |
+
|
748 |
+
# x_embedder
|
749 |
+
converted_state_dict[f"x_embedder.{lora_key}.weight"] = original_state_dict.pop(f"img_in.{lora_key}.weight")
|
750 |
+
if f"img_in.{lora_key}.bias" in original_state_dict_keys:
|
751 |
+
converted_state_dict[f"x_embedder.{lora_key}.bias"] = original_state_dict.pop(f"img_in.{lora_key}.bias")
|
752 |
+
|
753 |
+
# double transformer blocks
|
754 |
+
for i in range(num_layers):
|
755 |
+
block_prefix = f"transformer_blocks.{i}."
|
756 |
+
|
757 |
+
for lora_key in ["lora_A", "lora_B"]:
|
758 |
+
# norms
|
759 |
+
converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.weight"] = original_state_dict.pop(
|
760 |
+
f"double_blocks.{i}.img_mod.lin.{lora_key}.weight"
|
761 |
+
)
|
762 |
+
if f"double_blocks.{i}.img_mod.lin.{lora_key}.bias" in original_state_dict_keys:
|
763 |
+
converted_state_dict[f"{block_prefix}norm1.linear.{lora_key}.bias"] = original_state_dict.pop(
|
764 |
+
f"double_blocks.{i}.img_mod.lin.{lora_key}.bias"
|
765 |
+
)
|
766 |
+
|
767 |
+
converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.weight"] = original_state_dict.pop(
|
768 |
+
f"double_blocks.{i}.txt_mod.lin.{lora_key}.weight"
|
769 |
+
)
|
770 |
+
if f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias" in original_state_dict_keys:
|
771 |
+
converted_state_dict[f"{block_prefix}norm1_context.linear.{lora_key}.bias"] = original_state_dict.pop(
|
772 |
+
f"double_blocks.{i}.txt_mod.lin.{lora_key}.bias"
|
773 |
+
)
|
774 |
+
|
775 |
+
# Q, K, V
|
776 |
+
if lora_key == "lora_A":
|
777 |
+
sample_lora_weight = original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight")
|
778 |
+
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_lora_weight])
|
779 |
+
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_lora_weight])
|
780 |
+
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_lora_weight])
|
781 |
+
|
782 |
+
context_lora_weight = original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight")
|
783 |
+
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat(
|
784 |
+
[context_lora_weight]
|
785 |
+
)
|
786 |
+
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat(
|
787 |
+
[context_lora_weight]
|
788 |
+
)
|
789 |
+
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat(
|
790 |
+
[context_lora_weight]
|
791 |
+
)
|
792 |
+
else:
|
793 |
+
sample_q, sample_k, sample_v = torch.chunk(
|
794 |
+
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.weight"), 3, dim=0
|
795 |
+
)
|
796 |
+
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([sample_q])
|
797 |
+
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([sample_k])
|
798 |
+
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([sample_v])
|
799 |
+
|
800 |
+
context_q, context_k, context_v = torch.chunk(
|
801 |
+
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.weight"), 3, dim=0
|
802 |
+
)
|
803 |
+
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.weight"] = torch.cat([context_q])
|
804 |
+
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.weight"] = torch.cat([context_k])
|
805 |
+
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.weight"] = torch.cat([context_v])
|
806 |
+
|
807 |
+
if f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias" in original_state_dict_keys:
|
808 |
+
sample_q_bias, sample_k_bias, sample_v_bias = torch.chunk(
|
809 |
+
original_state_dict.pop(f"double_blocks.{i}.img_attn.qkv.{lora_key}.bias"), 3, dim=0
|
810 |
+
)
|
811 |
+
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([sample_q_bias])
|
812 |
+
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([sample_k_bias])
|
813 |
+
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([sample_v_bias])
|
814 |
+
|
815 |
+
if f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias" in original_state_dict_keys:
|
816 |
+
context_q_bias, context_k_bias, context_v_bias = torch.chunk(
|
817 |
+
original_state_dict.pop(f"double_blocks.{i}.txt_attn.qkv.{lora_key}.bias"), 3, dim=0
|
818 |
+
)
|
819 |
+
converted_state_dict[f"{block_prefix}attn.add_q_proj.{lora_key}.bias"] = torch.cat([context_q_bias])
|
820 |
+
converted_state_dict[f"{block_prefix}attn.add_k_proj.{lora_key}.bias"] = torch.cat([context_k_bias])
|
821 |
+
converted_state_dict[f"{block_prefix}attn.add_v_proj.{lora_key}.bias"] = torch.cat([context_v_bias])
|
822 |
+
|
823 |
+
# ff img_mlp
|
824 |
+
converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.weight"] = original_state_dict.pop(
|
825 |
+
f"double_blocks.{i}.img_mlp.0.{lora_key}.weight"
|
826 |
+
)
|
827 |
+
if f"double_blocks.{i}.img_mlp.0.{lora_key}.bias" in original_state_dict_keys:
|
828 |
+
converted_state_dict[f"{block_prefix}ff.net.0.proj.{lora_key}.bias"] = original_state_dict.pop(
|
829 |
+
f"double_blocks.{i}.img_mlp.0.{lora_key}.bias"
|
830 |
+
)
|
831 |
+
|
832 |
+
converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.weight"] = original_state_dict.pop(
|
833 |
+
f"double_blocks.{i}.img_mlp.2.{lora_key}.weight"
|
834 |
+
)
|
835 |
+
if f"double_blocks.{i}.img_mlp.2.{lora_key}.bias" in original_state_dict_keys:
|
836 |
+
converted_state_dict[f"{block_prefix}ff.net.2.{lora_key}.bias"] = original_state_dict.pop(
|
837 |
+
f"double_blocks.{i}.img_mlp.2.{lora_key}.bias"
|
838 |
+
)
|
839 |
+
|
840 |
+
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.weight"] = original_state_dict.pop(
|
841 |
+
f"double_blocks.{i}.txt_mlp.0.{lora_key}.weight"
|
842 |
+
)
|
843 |
+
if f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias" in original_state_dict_keys:
|
844 |
+
converted_state_dict[f"{block_prefix}ff_context.net.0.proj.{lora_key}.bias"] = original_state_dict.pop(
|
845 |
+
f"double_blocks.{i}.txt_mlp.0.{lora_key}.bias"
|
846 |
+
)
|
847 |
+
|
848 |
+
converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.weight"] = original_state_dict.pop(
|
849 |
+
f"double_blocks.{i}.txt_mlp.2.{lora_key}.weight"
|
850 |
+
)
|
851 |
+
if f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias" in original_state_dict_keys:
|
852 |
+
converted_state_dict[f"{block_prefix}ff_context.net.2.{lora_key}.bias"] = original_state_dict.pop(
|
853 |
+
f"double_blocks.{i}.txt_mlp.2.{lora_key}.bias"
|
854 |
+
)
|
855 |
+
|
856 |
+
# output projections.
|
857 |
+
converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.weight"] = original_state_dict.pop(
|
858 |
+
f"double_blocks.{i}.img_attn.proj.{lora_key}.weight"
|
859 |
+
)
|
860 |
+
if f"double_blocks.{i}.img_attn.proj.{lora_key}.bias" in original_state_dict_keys:
|
861 |
+
converted_state_dict[f"{block_prefix}attn.to_out.0.{lora_key}.bias"] = original_state_dict.pop(
|
862 |
+
f"double_blocks.{i}.img_attn.proj.{lora_key}.bias"
|
863 |
+
)
|
864 |
+
converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.weight"] = original_state_dict.pop(
|
865 |
+
f"double_blocks.{i}.txt_attn.proj.{lora_key}.weight"
|
866 |
+
)
|
867 |
+
if f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias" in original_state_dict_keys:
|
868 |
+
converted_state_dict[f"{block_prefix}attn.to_add_out.{lora_key}.bias"] = original_state_dict.pop(
|
869 |
+
f"double_blocks.{i}.txt_attn.proj.{lora_key}.bias"
|
870 |
+
)
|
871 |
+
|
872 |
+
# qk_norm
|
873 |
+
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
|
874 |
+
f"double_blocks.{i}.img_attn.norm.query_norm.scale"
|
875 |
+
)
|
876 |
+
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
|
877 |
+
f"double_blocks.{i}.img_attn.norm.key_norm.scale"
|
878 |
+
)
|
879 |
+
converted_state_dict[f"{block_prefix}attn.norm_added_q.weight"] = original_state_dict.pop(
|
880 |
+
f"double_blocks.{i}.txt_attn.norm.query_norm.scale"
|
881 |
+
)
|
882 |
+
converted_state_dict[f"{block_prefix}attn.norm_added_k.weight"] = original_state_dict.pop(
|
883 |
+
f"double_blocks.{i}.txt_attn.norm.key_norm.scale"
|
884 |
+
)
|
885 |
+
|
886 |
+
# single transfomer blocks
|
887 |
+
for i in range(num_single_layers):
|
888 |
+
block_prefix = f"single_transformer_blocks.{i}."
|
889 |
+
|
890 |
+
for lora_key in ["lora_A", "lora_B"]:
|
891 |
+
# norm.linear <- single_blocks.0.modulation.lin
|
892 |
+
converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.weight"] = original_state_dict.pop(
|
893 |
+
f"single_blocks.{i}.modulation.lin.{lora_key}.weight"
|
894 |
+
)
|
895 |
+
if f"single_blocks.{i}.modulation.lin.{lora_key}.bias" in original_state_dict_keys:
|
896 |
+
converted_state_dict[f"{block_prefix}norm.linear.{lora_key}.bias"] = original_state_dict.pop(
|
897 |
+
f"single_blocks.{i}.modulation.lin.{lora_key}.bias"
|
898 |
+
)
|
899 |
+
|
900 |
+
# Q, K, V, mlp
|
901 |
+
mlp_hidden_dim = int(inner_dim * mlp_ratio)
|
902 |
+
split_size = (inner_dim, inner_dim, inner_dim, mlp_hidden_dim)
|
903 |
+
|
904 |
+
if lora_key == "lora_A":
|
905 |
+
lora_weight = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight")
|
906 |
+
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([lora_weight])
|
907 |
+
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([lora_weight])
|
908 |
+
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([lora_weight])
|
909 |
+
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([lora_weight])
|
910 |
+
|
911 |
+
if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys:
|
912 |
+
lora_bias = original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias")
|
913 |
+
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([lora_bias])
|
914 |
+
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([lora_bias])
|
915 |
+
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([lora_bias])
|
916 |
+
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([lora_bias])
|
917 |
+
else:
|
918 |
+
q, k, v, mlp = torch.split(
|
919 |
+
original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.weight"), split_size, dim=0
|
920 |
+
)
|
921 |
+
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.weight"] = torch.cat([q])
|
922 |
+
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.weight"] = torch.cat([k])
|
923 |
+
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.weight"] = torch.cat([v])
|
924 |
+
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.weight"] = torch.cat([mlp])
|
925 |
+
|
926 |
+
if f"single_blocks.{i}.linear1.{lora_key}.bias" in original_state_dict_keys:
|
927 |
+
q_bias, k_bias, v_bias, mlp_bias = torch.split(
|
928 |
+
original_state_dict.pop(f"single_blocks.{i}.linear1.{lora_key}.bias"), split_size, dim=0
|
929 |
+
)
|
930 |
+
converted_state_dict[f"{block_prefix}attn.to_q.{lora_key}.bias"] = torch.cat([q_bias])
|
931 |
+
converted_state_dict[f"{block_prefix}attn.to_k.{lora_key}.bias"] = torch.cat([k_bias])
|
932 |
+
converted_state_dict[f"{block_prefix}attn.to_v.{lora_key}.bias"] = torch.cat([v_bias])
|
933 |
+
converted_state_dict[f"{block_prefix}proj_mlp.{lora_key}.bias"] = torch.cat([mlp_bias])
|
934 |
+
|
935 |
+
# output projections.
|
936 |
+
converted_state_dict[f"{block_prefix}proj_out.{lora_key}.weight"] = original_state_dict.pop(
|
937 |
+
f"single_blocks.{i}.linear2.{lora_key}.weight"
|
938 |
+
)
|
939 |
+
if f"single_blocks.{i}.linear2.{lora_key}.bias" in original_state_dict_keys:
|
940 |
+
converted_state_dict[f"{block_prefix}proj_out.{lora_key}.bias"] = original_state_dict.pop(
|
941 |
+
f"single_blocks.{i}.linear2.{lora_key}.bias"
|
942 |
+
)
|
943 |
+
|
944 |
+
# qk norm
|
945 |
+
converted_state_dict[f"{block_prefix}attn.norm_q.weight"] = original_state_dict.pop(
|
946 |
+
f"single_blocks.{i}.norm.query_norm.scale"
|
947 |
+
)
|
948 |
+
converted_state_dict[f"{block_prefix}attn.norm_k.weight"] = original_state_dict.pop(
|
949 |
+
f"single_blocks.{i}.norm.key_norm.scale"
|
950 |
+
)
|
951 |
+
|
952 |
+
for lora_key in ["lora_A", "lora_B"]:
|
953 |
+
converted_state_dict[f"proj_out.{lora_key}.weight"] = original_state_dict.pop(
|
954 |
+
f"final_layer.linear.{lora_key}.weight"
|
955 |
+
)
|
956 |
+
if f"final_layer.linear.{lora_key}.bias" in original_state_dict_keys:
|
957 |
+
converted_state_dict[f"proj_out.{lora_key}.bias"] = original_state_dict.pop(
|
958 |
+
f"final_layer.linear.{lora_key}.bias"
|
959 |
+
)
|
960 |
+
|
961 |
+
converted_state_dict[f"norm_out.linear.{lora_key}.weight"] = swap_scale_shift(
|
962 |
+
original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.weight")
|
963 |
+
)
|
964 |
+
if f"final_layer.adaLN_modulation.1.{lora_key}.bias" in original_state_dict_keys:
|
965 |
+
converted_state_dict[f"norm_out.linear.{lora_key}.bias"] = swap_scale_shift(
|
966 |
+
original_state_dict.pop(f"final_layer.adaLN_modulation.1.{lora_key}.bias")
|
967 |
+
)
|
968 |
+
|
969 |
+
if len(original_state_dict) > 0:
|
970 |
+
raise ValueError(f"`original_state_dict` should be empty at this point but has {original_state_dict.keys()=}.")
|
971 |
+
|
972 |
+
for key in list(converted_state_dict.keys()):
|
973 |
+
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)
|
974 |
+
|
975 |
+
return converted_state_dict
|
976 |
+
|
977 |
+
|
978 |
+
def _convert_hunyuan_video_lora_to_diffusers(original_state_dict):
|
979 |
+
converted_state_dict = {k: original_state_dict.pop(k) for k in list(original_state_dict.keys())}
|
980 |
+
|
981 |
+
def remap_norm_scale_shift_(key, state_dict):
|
982 |
+
weight = state_dict.pop(key)
|
983 |
+
shift, scale = weight.chunk(2, dim=0)
|
984 |
+
new_weight = torch.cat([scale, shift], dim=0)
|
985 |
+
state_dict[key.replace("final_layer.adaLN_modulation.1", "norm_out.linear")] = new_weight
|
986 |
+
|
987 |
+
def remap_txt_in_(key, state_dict):
|
988 |
+
def rename_key(key):
|
989 |
+
new_key = key.replace("individual_token_refiner.blocks", "token_refiner.refiner_blocks")
|
990 |
+
new_key = new_key.replace("adaLN_modulation.1", "norm_out.linear")
|
991 |
+
new_key = new_key.replace("txt_in", "context_embedder")
|
992 |
+
new_key = new_key.replace("t_embedder.mlp.0", "time_text_embed.timestep_embedder.linear_1")
|
993 |
+
new_key = new_key.replace("t_embedder.mlp.2", "time_text_embed.timestep_embedder.linear_2")
|
994 |
+
new_key = new_key.replace("c_embedder", "time_text_embed.text_embedder")
|
995 |
+
new_key = new_key.replace("mlp", "ff")
|
996 |
+
return new_key
|
997 |
+
|
998 |
+
if "self_attn_qkv" in key:
|
999 |
+
weight = state_dict.pop(key)
|
1000 |
+
to_q, to_k, to_v = weight.chunk(3, dim=0)
|
1001 |
+
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_q"))] = to_q
|
1002 |
+
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_k"))] = to_k
|
1003 |
+
state_dict[rename_key(key.replace("self_attn_qkv", "attn.to_v"))] = to_v
|
1004 |
+
else:
|
1005 |
+
state_dict[rename_key(key)] = state_dict.pop(key)
|
1006 |
+
|
1007 |
+
def remap_img_attn_qkv_(key, state_dict):
|
1008 |
+
weight = state_dict.pop(key)
|
1009 |
+
if "lora_A" in key:
|
1010 |
+
state_dict[key.replace("img_attn_qkv", "attn.to_q")] = weight
|
1011 |
+
state_dict[key.replace("img_attn_qkv", "attn.to_k")] = weight
|
1012 |
+
state_dict[key.replace("img_attn_qkv", "attn.to_v")] = weight
|
1013 |
+
else:
|
1014 |
+
to_q, to_k, to_v = weight.chunk(3, dim=0)
|
1015 |
+
state_dict[key.replace("img_attn_qkv", "attn.to_q")] = to_q
|
1016 |
+
state_dict[key.replace("img_attn_qkv", "attn.to_k")] = to_k
|
1017 |
+
state_dict[key.replace("img_attn_qkv", "attn.to_v")] = to_v
|
1018 |
+
|
1019 |
+
def remap_txt_attn_qkv_(key, state_dict):
|
1020 |
+
weight = state_dict.pop(key)
|
1021 |
+
if "lora_A" in key:
|
1022 |
+
state_dict[key.replace("txt_attn_qkv", "attn.add_q_proj")] = weight
|
1023 |
+
state_dict[key.replace("txt_attn_qkv", "attn.add_k_proj")] = weight
|
1024 |
+
state_dict[key.replace("txt_attn_qkv", "attn.add_v_proj")] = weight
|
1025 |
+
else:
|
1026 |
+
to_q, to_k, to_v = weight.chunk(3, dim=0)
|
1027 |
+
state_dict[key.replace("txt_attn_qkv", "attn.add_q_proj")] = to_q
|
1028 |
+
state_dict[key.replace("txt_attn_qkv", "attn.add_k_proj")] = to_k
|
1029 |
+
state_dict[key.replace("txt_attn_qkv", "attn.add_v_proj")] = to_v
|
1030 |
+
|
1031 |
+
def remap_single_transformer_blocks_(key, state_dict):
|
1032 |
+
hidden_size = 3072
|
1033 |
+
|
1034 |
+
if "linear1.lora_A.weight" in key or "linear1.lora_B.weight" in key:
|
1035 |
+
linear1_weight = state_dict.pop(key)
|
1036 |
+
if "lora_A" in key:
|
1037 |
+
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
|
1038 |
+
".linear1.lora_A.weight"
|
1039 |
+
)
|
1040 |
+
state_dict[f"{new_key}.attn.to_q.lora_A.weight"] = linear1_weight
|
1041 |
+
state_dict[f"{new_key}.attn.to_k.lora_A.weight"] = linear1_weight
|
1042 |
+
state_dict[f"{new_key}.attn.to_v.lora_A.weight"] = linear1_weight
|
1043 |
+
state_dict[f"{new_key}.proj_mlp.lora_A.weight"] = linear1_weight
|
1044 |
+
else:
|
1045 |
+
split_size = (hidden_size, hidden_size, hidden_size, linear1_weight.size(0) - 3 * hidden_size)
|
1046 |
+
q, k, v, mlp = torch.split(linear1_weight, split_size, dim=0)
|
1047 |
+
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
|
1048 |
+
".linear1.lora_B.weight"
|
1049 |
+
)
|
1050 |
+
state_dict[f"{new_key}.attn.to_q.lora_B.weight"] = q
|
1051 |
+
state_dict[f"{new_key}.attn.to_k.lora_B.weight"] = k
|
1052 |
+
state_dict[f"{new_key}.attn.to_v.lora_B.weight"] = v
|
1053 |
+
state_dict[f"{new_key}.proj_mlp.lora_B.weight"] = mlp
|
1054 |
+
|
1055 |
+
elif "linear1.lora_A.bias" in key or "linear1.lora_B.bias" in key:
|
1056 |
+
linear1_bias = state_dict.pop(key)
|
1057 |
+
if "lora_A" in key:
|
1058 |
+
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
|
1059 |
+
".linear1.lora_A.bias"
|
1060 |
+
)
|
1061 |
+
state_dict[f"{new_key}.attn.to_q.lora_A.bias"] = linear1_bias
|
1062 |
+
state_dict[f"{new_key}.attn.to_k.lora_A.bias"] = linear1_bias
|
1063 |
+
state_dict[f"{new_key}.attn.to_v.lora_A.bias"] = linear1_bias
|
1064 |
+
state_dict[f"{new_key}.proj_mlp.lora_A.bias"] = linear1_bias
|
1065 |
+
else:
|
1066 |
+
split_size = (hidden_size, hidden_size, hidden_size, linear1_bias.size(0) - 3 * hidden_size)
|
1067 |
+
q_bias, k_bias, v_bias, mlp_bias = torch.split(linear1_bias, split_size, dim=0)
|
1068 |
+
new_key = key.replace("single_blocks", "single_transformer_blocks").removesuffix(
|
1069 |
+
".linear1.lora_B.bias"
|
1070 |
+
)
|
1071 |
+
state_dict[f"{new_key}.attn.to_q.lora_B.bias"] = q_bias
|
1072 |
+
state_dict[f"{new_key}.attn.to_k.lora_B.bias"] = k_bias
|
1073 |
+
state_dict[f"{new_key}.attn.to_v.lora_B.bias"] = v_bias
|
1074 |
+
state_dict[f"{new_key}.proj_mlp.lora_B.bias"] = mlp_bias
|
1075 |
+
|
1076 |
+
else:
|
1077 |
+
new_key = key.replace("single_blocks", "single_transformer_blocks")
|
1078 |
+
new_key = new_key.replace("linear2", "proj_out")
|
1079 |
+
new_key = new_key.replace("q_norm", "attn.norm_q")
|
1080 |
+
new_key = new_key.replace("k_norm", "attn.norm_k")
|
1081 |
+
state_dict[new_key] = state_dict.pop(key)
|
1082 |
+
|
1083 |
+
TRANSFORMER_KEYS_RENAME_DICT = {
|
1084 |
+
"img_in": "x_embedder",
|
1085 |
+
"time_in.mlp.0": "time_text_embed.timestep_embedder.linear_1",
|
1086 |
+
"time_in.mlp.2": "time_text_embed.timestep_embedder.linear_2",
|
1087 |
+
"guidance_in.mlp.0": "time_text_embed.guidance_embedder.linear_1",
|
1088 |
+
"guidance_in.mlp.2": "time_text_embed.guidance_embedder.linear_2",
|
1089 |
+
"vector_in.in_layer": "time_text_embed.text_embedder.linear_1",
|
1090 |
+
"vector_in.out_layer": "time_text_embed.text_embedder.linear_2",
|
1091 |
+
"double_blocks": "transformer_blocks",
|
1092 |
+
"img_attn_q_norm": "attn.norm_q",
|
1093 |
+
"img_attn_k_norm": "attn.norm_k",
|
1094 |
+
"img_attn_proj": "attn.to_out.0",
|
1095 |
+
"txt_attn_q_norm": "attn.norm_added_q",
|
1096 |
+
"txt_attn_k_norm": "attn.norm_added_k",
|
1097 |
+
"txt_attn_proj": "attn.to_add_out",
|
1098 |
+
"img_mod.linear": "norm1.linear",
|
1099 |
+
"img_norm1": "norm1.norm",
|
1100 |
+
"img_norm2": "norm2",
|
1101 |
+
"img_mlp": "ff",
|
1102 |
+
"txt_mod.linear": "norm1_context.linear",
|
1103 |
+
"txt_norm1": "norm1.norm",
|
1104 |
+
"txt_norm2": "norm2_context",
|
1105 |
+
"txt_mlp": "ff_context",
|
1106 |
+
"self_attn_proj": "attn.to_out.0",
|
1107 |
+
"modulation.linear": "norm.linear",
|
1108 |
+
"pre_norm": "norm.norm",
|
1109 |
+
"final_layer.norm_final": "norm_out.norm",
|
1110 |
+
"final_layer.linear": "proj_out",
|
1111 |
+
"fc1": "net.0.proj",
|
1112 |
+
"fc2": "net.2",
|
1113 |
+
"input_embedder": "proj_in",
|
1114 |
+
}
|
1115 |
+
|
1116 |
+
TRANSFORMER_SPECIAL_KEYS_REMAP = {
|
1117 |
+
"txt_in": remap_txt_in_,
|
1118 |
+
"img_attn_qkv": remap_img_attn_qkv_,
|
1119 |
+
"txt_attn_qkv": remap_txt_attn_qkv_,
|
1120 |
+
"single_blocks": remap_single_transformer_blocks_,
|
1121 |
+
"final_layer.adaLN_modulation.1": remap_norm_scale_shift_,
|
1122 |
+
}
|
1123 |
+
|
1124 |
+
# Some folks attempt to make their state dict compatible with diffusers by adding "transformer." prefix to all keys
|
1125 |
+
# and use their custom code. To make sure both "original" and "attempted diffusers" loras work as expected, we make
|
1126 |
+
# sure that both follow the same initial format by stripping off the "transformer." prefix.
|
1127 |
+
for key in list(converted_state_dict.keys()):
|
1128 |
+
if key.startswith("transformer."):
|
1129 |
+
converted_state_dict[key[len("transformer.") :]] = converted_state_dict.pop(key)
|
1130 |
+
if key.startswith("diffusion_model."):
|
1131 |
+
converted_state_dict[key[len("diffusion_model.") :]] = converted_state_dict.pop(key)
|
1132 |
+
|
1133 |
+
# Rename and remap the state dict keys
|
1134 |
+
for key in list(converted_state_dict.keys()):
|
1135 |
+
new_key = key[:]
|
1136 |
+
for replace_key, rename_key in TRANSFORMER_KEYS_RENAME_DICT.items():
|
1137 |
+
new_key = new_key.replace(replace_key, rename_key)
|
1138 |
+
converted_state_dict[new_key] = converted_state_dict.pop(key)
|
1139 |
+
|
1140 |
+
for key in list(converted_state_dict.keys()):
|
1141 |
+
for special_key, handler_fn_inplace in TRANSFORMER_SPECIAL_KEYS_REMAP.items():
|
1142 |
+
if special_key not in key:
|
1143 |
+
continue
|
1144 |
+
handler_fn_inplace(key, converted_state_dict)
|
1145 |
+
|
1146 |
+
# Add back the "transformer." prefix
|
1147 |
+
for key in list(converted_state_dict.keys()):
|
1148 |
+
converted_state_dict[f"transformer.{key}"] = converted_state_dict.pop(key)
|
1149 |
+
|
1150 |
+
return converted_state_dict
|
icedit/diffusers/loaders/lora_pipeline.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
icedit/diffusers/loaders/peft.py
ADDED
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
import inspect
|
16 |
+
import os
|
17 |
+
from functools import partial
|
18 |
+
from pathlib import Path
|
19 |
+
from typing import Dict, List, Optional, Union
|
20 |
+
|
21 |
+
import safetensors
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from ..utils import (
|
25 |
+
MIN_PEFT_VERSION,
|
26 |
+
USE_PEFT_BACKEND,
|
27 |
+
check_peft_version,
|
28 |
+
convert_unet_state_dict_to_peft,
|
29 |
+
delete_adapter_layers,
|
30 |
+
get_adapter_name,
|
31 |
+
get_peft_kwargs,
|
32 |
+
is_peft_available,
|
33 |
+
is_peft_version,
|
34 |
+
logging,
|
35 |
+
set_adapter_layers,
|
36 |
+
set_weights_and_activate_adapters,
|
37 |
+
)
|
38 |
+
from .lora_base import _fetch_state_dict, _func_optionally_disable_offloading
|
39 |
+
from .unet_loader_utils import _maybe_expand_lora_scales
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
_SET_ADAPTER_SCALE_FN_MAPPING = {
|
45 |
+
"UNet2DConditionModel": _maybe_expand_lora_scales,
|
46 |
+
"UNetMotionModel": _maybe_expand_lora_scales,
|
47 |
+
"SD3Transformer2DModel": lambda model_cls, weights: weights,
|
48 |
+
"FluxTransformer2DModel": lambda model_cls, weights: weights,
|
49 |
+
"CogVideoXTransformer3DModel": lambda model_cls, weights: weights,
|
50 |
+
"MochiTransformer3DModel": lambda model_cls, weights: weights,
|
51 |
+
"HunyuanVideoTransformer3DModel": lambda model_cls, weights: weights,
|
52 |
+
"LTXVideoTransformer3DModel": lambda model_cls, weights: weights,
|
53 |
+
"SanaTransformer2DModel": lambda model_cls, weights: weights,
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
def _maybe_adjust_config(config):
|
58 |
+
"""
|
59 |
+
We may run into some ambiguous configuration values when a model has module names, sharing a common prefix
|
60 |
+
(`proj_out.weight` and `blocks.transformer.proj_out.weight`, for example) and they have different LoRA ranks. This
|
61 |
+
method removes the ambiguity by following what is described here:
|
62 |
+
https://github.com/huggingface/diffusers/pull/9985#issuecomment-2493840028.
|
63 |
+
"""
|
64 |
+
rank_pattern = config["rank_pattern"].copy()
|
65 |
+
target_modules = config["target_modules"]
|
66 |
+
original_r = config["r"]
|
67 |
+
|
68 |
+
for key in list(rank_pattern.keys()):
|
69 |
+
key_rank = rank_pattern[key]
|
70 |
+
|
71 |
+
# try to detect ambiguity
|
72 |
+
# `target_modules` can also be a str, in which case this loop would loop
|
73 |
+
# over the chars of the str. The technically correct way to match LoRA keys
|
74 |
+
# in PEFT is to use LoraModel._check_target_module_exists (lora_config, key).
|
75 |
+
# But this cuts it for now.
|
76 |
+
exact_matches = [mod for mod in target_modules if mod == key]
|
77 |
+
substring_matches = [mod for mod in target_modules if key in mod and mod != key]
|
78 |
+
ambiguous_key = key
|
79 |
+
|
80 |
+
if exact_matches and substring_matches:
|
81 |
+
# if ambiguous we update the rank associated with the ambiguous key (`proj_out`, for example)
|
82 |
+
config["r"] = key_rank
|
83 |
+
# remove the ambiguous key from `rank_pattern` and update its rank to `r`, instead
|
84 |
+
del config["rank_pattern"][key]
|
85 |
+
for mod in substring_matches:
|
86 |
+
# avoid overwriting if the module already has a specific rank
|
87 |
+
if mod not in config["rank_pattern"]:
|
88 |
+
config["rank_pattern"][mod] = original_r
|
89 |
+
|
90 |
+
# update the rest of the keys with the `original_r`
|
91 |
+
for mod in target_modules:
|
92 |
+
if mod != ambiguous_key and mod not in config["rank_pattern"]:
|
93 |
+
config["rank_pattern"][mod] = original_r
|
94 |
+
|
95 |
+
# handle alphas to deal with cases like
|
96 |
+
# https://github.com/huggingface/diffusers/pull/9999#issuecomment-2516180777
|
97 |
+
has_different_ranks = len(config["rank_pattern"]) > 1 and list(config["rank_pattern"])[0] != config["r"]
|
98 |
+
if has_different_ranks:
|
99 |
+
config["lora_alpha"] = config["r"]
|
100 |
+
alpha_pattern = {}
|
101 |
+
for module_name, rank in config["rank_pattern"].items():
|
102 |
+
alpha_pattern[module_name] = rank
|
103 |
+
config["alpha_pattern"] = alpha_pattern
|
104 |
+
|
105 |
+
return config
|
106 |
+
|
107 |
+
|
108 |
+
class PeftAdapterMixin:
|
109 |
+
"""
|
110 |
+
A class containing all functions for loading and using adapters weights that are supported in PEFT library. For
|
111 |
+
more details about adapters and injecting them in a base model, check out the PEFT
|
112 |
+
[documentation](https://huggingface.co/docs/peft/index).
|
113 |
+
|
114 |
+
Install the latest version of PEFT, and use this mixin to:
|
115 |
+
|
116 |
+
- Attach new adapters in the model.
|
117 |
+
- Attach multiple adapters and iteratively activate/deactivate them.
|
118 |
+
- Activate/deactivate all adapters from the model.
|
119 |
+
- Get a list of the active adapters.
|
120 |
+
"""
|
121 |
+
|
122 |
+
_hf_peft_config_loaded = False
|
123 |
+
|
124 |
+
@classmethod
|
125 |
+
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
|
126 |
+
def _optionally_disable_offloading(cls, _pipeline):
|
127 |
+
"""
|
128 |
+
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
129 |
+
|
130 |
+
Args:
|
131 |
+
_pipeline (`DiffusionPipeline`):
|
132 |
+
The pipeline to disable offloading for.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
tuple:
|
136 |
+
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
137 |
+
"""
|
138 |
+
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
139 |
+
|
140 |
+
def load_lora_adapter(self, pretrained_model_name_or_path_or_dict, prefix="transformer", **kwargs):
|
141 |
+
r"""
|
142 |
+
Loads a LoRA adapter into the underlying model.
|
143 |
+
|
144 |
+
Parameters:
|
145 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
146 |
+
Can be either:
|
147 |
+
|
148 |
+
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
149 |
+
the Hub.
|
150 |
+
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved
|
151 |
+
with [`ModelMixin.save_pretrained`].
|
152 |
+
- A [torch state
|
153 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
154 |
+
|
155 |
+
prefix (`str`, *optional*): Prefix to filter the state dict.
|
156 |
+
|
157 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
158 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
159 |
+
is not used.
|
160 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
161 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
162 |
+
cached versions if they exist.
|
163 |
+
proxies (`Dict[str, str]`, *optional*):
|
164 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
165 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
166 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
167 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
168 |
+
won't be downloaded from the Hub.
|
169 |
+
token (`str` or *bool*, *optional*):
|
170 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
171 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
172 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
173 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
174 |
+
allowed by Git.
|
175 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
176 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
177 |
+
network_alphas (`Dict[str, float]`):
|
178 |
+
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
179 |
+
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
180 |
+
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
181 |
+
low_cpu_mem_usage (`bool`, *optional*):
|
182 |
+
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
183 |
+
weights.
|
184 |
+
"""
|
185 |
+
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
186 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
187 |
+
|
188 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
189 |
+
force_download = kwargs.pop("force_download", False)
|
190 |
+
proxies = kwargs.pop("proxies", None)
|
191 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
192 |
+
token = kwargs.pop("token", None)
|
193 |
+
revision = kwargs.pop("revision", None)
|
194 |
+
subfolder = kwargs.pop("subfolder", None)
|
195 |
+
weight_name = kwargs.pop("weight_name", None)
|
196 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
197 |
+
adapter_name = kwargs.pop("adapter_name", None)
|
198 |
+
network_alphas = kwargs.pop("network_alphas", None)
|
199 |
+
_pipeline = kwargs.pop("_pipeline", None)
|
200 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
|
201 |
+
allow_pickle = False
|
202 |
+
|
203 |
+
if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"):
|
204 |
+
raise ValueError(
|
205 |
+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
206 |
+
)
|
207 |
+
|
208 |
+
user_agent = {
|
209 |
+
"file_type": "attn_procs_weights",
|
210 |
+
"framework": "pytorch",
|
211 |
+
}
|
212 |
+
|
213 |
+
state_dict = _fetch_state_dict(
|
214 |
+
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
215 |
+
weight_name=weight_name,
|
216 |
+
use_safetensors=use_safetensors,
|
217 |
+
local_files_only=local_files_only,
|
218 |
+
cache_dir=cache_dir,
|
219 |
+
force_download=force_download,
|
220 |
+
proxies=proxies,
|
221 |
+
token=token,
|
222 |
+
revision=revision,
|
223 |
+
subfolder=subfolder,
|
224 |
+
user_agent=user_agent,
|
225 |
+
allow_pickle=allow_pickle,
|
226 |
+
)
|
227 |
+
if network_alphas is not None and prefix is None:
|
228 |
+
raise ValueError("`network_alphas` cannot be None when `prefix` is None.")
|
229 |
+
|
230 |
+
if prefix is not None:
|
231 |
+
keys = list(state_dict.keys())
|
232 |
+
model_keys = [k for k in keys if k.startswith(f"{prefix}.")]
|
233 |
+
if len(model_keys) > 0:
|
234 |
+
state_dict = {k.replace(f"{prefix}.", ""): v for k, v in state_dict.items() if k in model_keys}
|
235 |
+
|
236 |
+
if len(state_dict) > 0:
|
237 |
+
if adapter_name in getattr(self, "peft_config", {}):
|
238 |
+
raise ValueError(
|
239 |
+
f"Adapter name {adapter_name} already in use in the model - please select a new adapter name."
|
240 |
+
)
|
241 |
+
|
242 |
+
# check with first key if is not in peft format
|
243 |
+
first_key = next(iter(state_dict.keys()))
|
244 |
+
if "lora_A" not in first_key:
|
245 |
+
state_dict = convert_unet_state_dict_to_peft(state_dict)
|
246 |
+
|
247 |
+
rank = {}
|
248 |
+
for key, val in state_dict.items():
|
249 |
+
# Cannot figure out rank from lora layers that don't have atleast 2 dimensions.
|
250 |
+
# Bias layers in LoRA only have a single dimension
|
251 |
+
if "lora_B" in key and val.ndim > 1:
|
252 |
+
rank[key] = val.shape[1]
|
253 |
+
|
254 |
+
if network_alphas is not None and len(network_alphas) >= 1:
|
255 |
+
alpha_keys = [k for k in network_alphas.keys() if k.startswith(f"{prefix}.")]
|
256 |
+
network_alphas = {k.replace(f"{prefix}.", ""): v for k, v in network_alphas.items() if k in alpha_keys}
|
257 |
+
|
258 |
+
lora_config_kwargs = get_peft_kwargs(rank, network_alpha_dict=network_alphas, peft_state_dict=state_dict)
|
259 |
+
# lora_config_kwargs = _maybe_adjust_config(lora_config_kwargs) # TODO: remove this for moe
|
260 |
+
|
261 |
+
if "use_dora" in lora_config_kwargs:
|
262 |
+
if lora_config_kwargs["use_dora"]:
|
263 |
+
if is_peft_version("<", "0.9.0"):
|
264 |
+
raise ValueError(
|
265 |
+
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
266 |
+
)
|
267 |
+
else:
|
268 |
+
if is_peft_version("<", "0.9.0"):
|
269 |
+
lora_config_kwargs.pop("use_dora")
|
270 |
+
|
271 |
+
if "lora_bias" in lora_config_kwargs:
|
272 |
+
if lora_config_kwargs["lora_bias"]:
|
273 |
+
if is_peft_version("<=", "0.13.2"):
|
274 |
+
raise ValueError(
|
275 |
+
"You need `peft` 0.14.0 at least to use `lora_bias` in LoRAs. Please upgrade your installation of `peft`."
|
276 |
+
)
|
277 |
+
else:
|
278 |
+
if is_peft_version("<=", "0.13.2"):
|
279 |
+
lora_config_kwargs.pop("lora_bias")
|
280 |
+
|
281 |
+
lora_config = LoraConfig(**lora_config_kwargs)
|
282 |
+
# adapter_name
|
283 |
+
if adapter_name is None:
|
284 |
+
adapter_name = get_adapter_name(self)
|
285 |
+
|
286 |
+
# <Unsafe code
|
287 |
+
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
|
288 |
+
# Now we remove any existing hooks to `_pipeline`.
|
289 |
+
|
290 |
+
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
291 |
+
# otherwise loading LoRA weights will lead to an error
|
292 |
+
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
|
293 |
+
|
294 |
+
peft_kwargs = {}
|
295 |
+
if is_peft_version(">=", "0.13.1"):
|
296 |
+
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
297 |
+
|
298 |
+
# To handle scenarios where we cannot successfully set state dict. If it's unsucessful,
|
299 |
+
# we should also delete the `peft_config` associated to the `adapter_name`.
|
300 |
+
try:
|
301 |
+
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
|
302 |
+
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
|
303 |
+
except RuntimeError as e:
|
304 |
+
for module in self.modules():
|
305 |
+
if isinstance(module, BaseTunerLayer):
|
306 |
+
active_adapters = module.active_adapters
|
307 |
+
for active_adapter in active_adapters:
|
308 |
+
if adapter_name in active_adapter:
|
309 |
+
module.delete_adapter(adapter_name)
|
310 |
+
|
311 |
+
self.peft_config.pop(adapter_name)
|
312 |
+
logger.error(f"Loading {adapter_name} was unsucessful with the following error: \n{e}")
|
313 |
+
raise
|
314 |
+
|
315 |
+
warn_msg = ""
|
316 |
+
if incompatible_keys is not None:
|
317 |
+
# Check only for unexpected keys.
|
318 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
319 |
+
if unexpected_keys:
|
320 |
+
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
321 |
+
if lora_unexpected_keys:
|
322 |
+
warn_msg = (
|
323 |
+
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
324 |
+
f" {', '.join(lora_unexpected_keys)}. "
|
325 |
+
)
|
326 |
+
|
327 |
+
# Filter missing keys specific to the current adapter.
|
328 |
+
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
329 |
+
if missing_keys:
|
330 |
+
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
331 |
+
if lora_missing_keys:
|
332 |
+
warn_msg += (
|
333 |
+
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
334 |
+
f" {', '.join(lora_missing_keys)}."
|
335 |
+
)
|
336 |
+
|
337 |
+
if warn_msg:
|
338 |
+
logger.warning(warn_msg)
|
339 |
+
|
340 |
+
# Offload back.
|
341 |
+
if is_model_cpu_offload:
|
342 |
+
_pipeline.enable_model_cpu_offload()
|
343 |
+
elif is_sequential_cpu_offload:
|
344 |
+
_pipeline.enable_sequential_cpu_offload()
|
345 |
+
# Unsafe code />
|
346 |
+
|
347 |
+
def save_lora_adapter(
|
348 |
+
self,
|
349 |
+
save_directory,
|
350 |
+
adapter_name: str = "default",
|
351 |
+
upcast_before_saving: bool = False,
|
352 |
+
safe_serialization: bool = True,
|
353 |
+
weight_name: Optional[str] = None,
|
354 |
+
):
|
355 |
+
"""
|
356 |
+
Save the LoRA parameters corresponding to the underlying model.
|
357 |
+
|
358 |
+
Arguments:
|
359 |
+
save_directory (`str` or `os.PathLike`):
|
360 |
+
Directory to save LoRA parameters to. Will be created if it doesn't exist.
|
361 |
+
adapter_name: (`str`, defaults to "default"): The name of the adapter to serialize. Useful when the
|
362 |
+
underlying model has multiple adapters loaded.
|
363 |
+
upcast_before_saving (`bool`, defaults to `False`):
|
364 |
+
Whether to cast the underlying model to `torch.float32` before serialization.
|
365 |
+
save_function (`Callable`):
|
366 |
+
The function to use to save the state dictionary. Useful during distributed training when you need to
|
367 |
+
replace `torch.save` with another method. Can be configured with the environment variable
|
368 |
+
`DIFFUSERS_SAVE_MODE`.
|
369 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
370 |
+
Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
|
371 |
+
weight_name: (`str`, *optional*, defaults to `None`): Name of the file to serialize the state dict with.
|
372 |
+
"""
|
373 |
+
from peft.utils import get_peft_model_state_dict
|
374 |
+
|
375 |
+
from .lora_base import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE
|
376 |
+
|
377 |
+
if adapter_name is None:
|
378 |
+
adapter_name = get_adapter_name(self)
|
379 |
+
|
380 |
+
if adapter_name not in getattr(self, "peft_config", {}):
|
381 |
+
raise ValueError(f"Adapter name {adapter_name} not found in the model.")
|
382 |
+
|
383 |
+
lora_layers_to_save = get_peft_model_state_dict(
|
384 |
+
self.to(dtype=torch.float32 if upcast_before_saving else None), adapter_name=adapter_name
|
385 |
+
)
|
386 |
+
if os.path.isfile(save_directory):
|
387 |
+
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
|
388 |
+
|
389 |
+
if safe_serialization:
|
390 |
+
|
391 |
+
def save_function(weights, filename):
|
392 |
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
393 |
+
|
394 |
+
else:
|
395 |
+
save_function = torch.save
|
396 |
+
|
397 |
+
os.makedirs(save_directory, exist_ok=True)
|
398 |
+
|
399 |
+
if weight_name is None:
|
400 |
+
if safe_serialization:
|
401 |
+
weight_name = LORA_WEIGHT_NAME_SAFE
|
402 |
+
else:
|
403 |
+
weight_name = LORA_WEIGHT_NAME
|
404 |
+
|
405 |
+
# TODO: we could consider saving the `peft_config` as well.
|
406 |
+
save_path = Path(save_directory, weight_name).as_posix()
|
407 |
+
save_function(lora_layers_to_save, save_path)
|
408 |
+
logger.info(f"Model weights saved in {save_path}")
|
409 |
+
|
410 |
+
def set_adapters(
|
411 |
+
self,
|
412 |
+
adapter_names: Union[List[str], str],
|
413 |
+
weights: Optional[Union[float, Dict, List[float], List[Dict], List[None]]] = None,
|
414 |
+
):
|
415 |
+
"""
|
416 |
+
Set the currently active adapters for use in the UNet.
|
417 |
+
|
418 |
+
Args:
|
419 |
+
adapter_names (`List[str]` or `str`):
|
420 |
+
The names of the adapters to use.
|
421 |
+
adapter_weights (`Union[List[float], float]`, *optional*):
|
422 |
+
The adapter(s) weights to use with the UNet. If `None`, the weights are set to `1.0` for all the
|
423 |
+
adapters.
|
424 |
+
|
425 |
+
Example:
|
426 |
+
|
427 |
+
```py
|
428 |
+
from diffusers import AutoPipelineForText2Image
|
429 |
+
import torch
|
430 |
+
|
431 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
432 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
433 |
+
).to("cuda")
|
434 |
+
pipeline.load_lora_weights(
|
435 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
436 |
+
)
|
437 |
+
pipeline.load_lora_weights("nerijs/pixel-art-xl", weight_name="pixel-art-xl.safetensors", adapter_name="pixel")
|
438 |
+
pipeline.set_adapters(["cinematic", "pixel"], adapter_weights=[0.5, 0.5])
|
439 |
+
```
|
440 |
+
"""
|
441 |
+
if not USE_PEFT_BACKEND:
|
442 |
+
raise ValueError("PEFT backend is required for `set_adapters()`.")
|
443 |
+
|
444 |
+
adapter_names = [adapter_names] if isinstance(adapter_names, str) else adapter_names
|
445 |
+
|
446 |
+
# Expand weights into a list, one entry per adapter
|
447 |
+
# examples for e.g. 2 adapters: [{...}, 7] -> [7,7] ; None -> [None, None]
|
448 |
+
if not isinstance(weights, list):
|
449 |
+
weights = [weights] * len(adapter_names)
|
450 |
+
|
451 |
+
if len(adapter_names) != len(weights):
|
452 |
+
raise ValueError(
|
453 |
+
f"Length of adapter names {len(adapter_names)} is not equal to the length of their weights {len(weights)}."
|
454 |
+
)
|
455 |
+
|
456 |
+
# Set None values to default of 1.0
|
457 |
+
# e.g. [{...}, 7] -> [{...}, 7] ; [None, None] -> [1.0, 1.0]
|
458 |
+
weights = [w if w is not None else 1.0 for w in weights]
|
459 |
+
|
460 |
+
# e.g. [{...}, 7] -> [{expanded dict...}, 7]
|
461 |
+
scale_expansion_fn = _SET_ADAPTER_SCALE_FN_MAPPING[self.__class__.__name__]
|
462 |
+
weights = scale_expansion_fn(self, weights)
|
463 |
+
|
464 |
+
set_weights_and_activate_adapters(self, adapter_names, weights)
|
465 |
+
|
466 |
+
def add_adapter(self, adapter_config, adapter_name: str = "default") -> None:
|
467 |
+
r"""
|
468 |
+
Adds a new adapter to the current model for training. If no adapter name is passed, a default name is assigned
|
469 |
+
to the adapter to follow the convention of the PEFT library.
|
470 |
+
|
471 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them in the PEFT
|
472 |
+
[documentation](https://huggingface.co/docs/peft).
|
473 |
+
|
474 |
+
Args:
|
475 |
+
adapter_config (`[~peft.PeftConfig]`):
|
476 |
+
The configuration of the adapter to add; supported adapters are non-prefix tuning and adaption prompt
|
477 |
+
methods.
|
478 |
+
adapter_name (`str`, *optional*, defaults to `"default"`):
|
479 |
+
The name of the adapter to add. If no name is passed, a default name is assigned to the adapter.
|
480 |
+
"""
|
481 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
482 |
+
|
483 |
+
if not is_peft_available():
|
484 |
+
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
|
485 |
+
|
486 |
+
from peft import PeftConfig, inject_adapter_in_model
|
487 |
+
|
488 |
+
if not self._hf_peft_config_loaded:
|
489 |
+
self._hf_peft_config_loaded = True
|
490 |
+
elif adapter_name in self.peft_config:
|
491 |
+
raise ValueError(f"Adapter with name {adapter_name} already exists. Please use a different name.")
|
492 |
+
|
493 |
+
if not isinstance(adapter_config, PeftConfig):
|
494 |
+
raise ValueError(
|
495 |
+
f"adapter_config should be an instance of PeftConfig. Got {type(adapter_config)} instead."
|
496 |
+
)
|
497 |
+
|
498 |
+
# Unlike transformers, here we don't need to retrieve the name_or_path of the unet as the loading logic is
|
499 |
+
# handled by the `load_lora_layers` or `StableDiffusionLoraLoaderMixin`. Therefore we set it to `None` here.
|
500 |
+
adapter_config.base_model_name_or_path = None
|
501 |
+
inject_adapter_in_model(adapter_config, self, adapter_name)
|
502 |
+
self.set_adapter(adapter_name)
|
503 |
+
|
504 |
+
def set_adapter(self, adapter_name: Union[str, List[str]]) -> None:
|
505 |
+
"""
|
506 |
+
Sets a specific adapter by forcing the model to only use that adapter and disables the other adapters.
|
507 |
+
|
508 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
509 |
+
[documentation](https://huggingface.co/docs/peft).
|
510 |
+
|
511 |
+
Args:
|
512 |
+
adapter_name (Union[str, List[str]])):
|
513 |
+
The list of adapters to set or the adapter name in the case of a single adapter.
|
514 |
+
"""
|
515 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
516 |
+
|
517 |
+
if not self._hf_peft_config_loaded:
|
518 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
519 |
+
|
520 |
+
if isinstance(adapter_name, str):
|
521 |
+
adapter_name = [adapter_name]
|
522 |
+
|
523 |
+
missing = set(adapter_name) - set(self.peft_config)
|
524 |
+
if len(missing) > 0:
|
525 |
+
raise ValueError(
|
526 |
+
f"Following adapter(s) could not be found: {', '.join(missing)}. Make sure you are passing the correct adapter name(s)."
|
527 |
+
f" current loaded adapters are: {list(self.peft_config.keys())}"
|
528 |
+
)
|
529 |
+
|
530 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
531 |
+
|
532 |
+
_adapters_has_been_set = False
|
533 |
+
|
534 |
+
for _, module in self.named_modules():
|
535 |
+
if isinstance(module, BaseTunerLayer):
|
536 |
+
if hasattr(module, "set_adapter"):
|
537 |
+
module.set_adapter(adapter_name)
|
538 |
+
# Previous versions of PEFT does not support multi-adapter inference
|
539 |
+
elif not hasattr(module, "set_adapter") and len(adapter_name) != 1:
|
540 |
+
raise ValueError(
|
541 |
+
"You are trying to set multiple adapters and you have a PEFT version that does not support multi-adapter inference. Please upgrade to the latest version of PEFT."
|
542 |
+
" `pip install -U peft` or `pip install -U git+https://github.com/huggingface/peft.git`"
|
543 |
+
)
|
544 |
+
else:
|
545 |
+
module.active_adapter = adapter_name
|
546 |
+
_adapters_has_been_set = True
|
547 |
+
|
548 |
+
if not _adapters_has_been_set:
|
549 |
+
raise ValueError(
|
550 |
+
"Did not succeeded in setting the adapter. Please make sure you are using a model that supports adapters."
|
551 |
+
)
|
552 |
+
|
553 |
+
def disable_adapters(self) -> None:
|
554 |
+
r"""
|
555 |
+
Disable all adapters attached to the model and fallback to inference with the base model only.
|
556 |
+
|
557 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
558 |
+
[documentation](https://huggingface.co/docs/peft).
|
559 |
+
"""
|
560 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
561 |
+
|
562 |
+
if not self._hf_peft_config_loaded:
|
563 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
564 |
+
|
565 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
566 |
+
|
567 |
+
for _, module in self.named_modules():
|
568 |
+
if isinstance(module, BaseTunerLayer):
|
569 |
+
if hasattr(module, "enable_adapters"):
|
570 |
+
module.enable_adapters(enabled=False)
|
571 |
+
else:
|
572 |
+
# support for older PEFT versions
|
573 |
+
module.disable_adapters = True
|
574 |
+
|
575 |
+
def enable_adapters(self) -> None:
|
576 |
+
"""
|
577 |
+
Enable adapters that are attached to the model. The model uses `self.active_adapters()` to retrieve the list of
|
578 |
+
adapters to enable.
|
579 |
+
|
580 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
581 |
+
[documentation](https://huggingface.co/docs/peft).
|
582 |
+
"""
|
583 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
584 |
+
|
585 |
+
if not self._hf_peft_config_loaded:
|
586 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
587 |
+
|
588 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
589 |
+
|
590 |
+
for _, module in self.named_modules():
|
591 |
+
if isinstance(module, BaseTunerLayer):
|
592 |
+
if hasattr(module, "enable_adapters"):
|
593 |
+
module.enable_adapters(enabled=True)
|
594 |
+
else:
|
595 |
+
# support for older PEFT versions
|
596 |
+
module.disable_adapters = False
|
597 |
+
|
598 |
+
def active_adapters(self) -> List[str]:
|
599 |
+
"""
|
600 |
+
Gets the current list of active adapters of the model.
|
601 |
+
|
602 |
+
If you are not familiar with adapters and PEFT methods, we invite you to read more about them on the PEFT
|
603 |
+
[documentation](https://huggingface.co/docs/peft).
|
604 |
+
"""
|
605 |
+
check_peft_version(min_version=MIN_PEFT_VERSION)
|
606 |
+
|
607 |
+
if not is_peft_available():
|
608 |
+
raise ImportError("PEFT is not available. Please install PEFT to use this function: `pip install peft`.")
|
609 |
+
|
610 |
+
if not self._hf_peft_config_loaded:
|
611 |
+
raise ValueError("No adapter loaded. Please load an adapter first.")
|
612 |
+
|
613 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
614 |
+
|
615 |
+
for _, module in self.named_modules():
|
616 |
+
if isinstance(module, BaseTunerLayer):
|
617 |
+
return module.active_adapter
|
618 |
+
|
619 |
+
def fuse_lora(self, lora_scale=1.0, safe_fusing=False, adapter_names=None):
|
620 |
+
if not USE_PEFT_BACKEND:
|
621 |
+
raise ValueError("PEFT backend is required for `fuse_lora()`.")
|
622 |
+
|
623 |
+
self.lora_scale = lora_scale
|
624 |
+
self._safe_fusing = safe_fusing
|
625 |
+
self.apply(partial(self._fuse_lora_apply, adapter_names=adapter_names))
|
626 |
+
|
627 |
+
def _fuse_lora_apply(self, module, adapter_names=None):
|
628 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
629 |
+
|
630 |
+
merge_kwargs = {"safe_merge": self._safe_fusing}
|
631 |
+
|
632 |
+
if isinstance(module, BaseTunerLayer):
|
633 |
+
if self.lora_scale != 1.0:
|
634 |
+
module.scale_layer(self.lora_scale)
|
635 |
+
|
636 |
+
# For BC with prevous PEFT versions, we need to check the signature
|
637 |
+
# of the `merge` method to see if it supports the `adapter_names` argument.
|
638 |
+
supported_merge_kwargs = list(inspect.signature(module.merge).parameters)
|
639 |
+
if "adapter_names" in supported_merge_kwargs:
|
640 |
+
merge_kwargs["adapter_names"] = adapter_names
|
641 |
+
elif "adapter_names" not in supported_merge_kwargs and adapter_names is not None:
|
642 |
+
raise ValueError(
|
643 |
+
"The `adapter_names` argument is not supported with your PEFT version. Please upgrade"
|
644 |
+
" to the latest version of PEFT. `pip install -U peft`"
|
645 |
+
)
|
646 |
+
|
647 |
+
module.merge(**merge_kwargs)
|
648 |
+
|
649 |
+
def unfuse_lora(self):
|
650 |
+
if not USE_PEFT_BACKEND:
|
651 |
+
raise ValueError("PEFT backend is required for `unfuse_lora()`.")
|
652 |
+
self.apply(self._unfuse_lora_apply)
|
653 |
+
|
654 |
+
def _unfuse_lora_apply(self, module):
|
655 |
+
from peft.tuners.tuners_utils import BaseTunerLayer
|
656 |
+
|
657 |
+
if isinstance(module, BaseTunerLayer):
|
658 |
+
module.unmerge()
|
659 |
+
|
660 |
+
def unload_lora(self):
|
661 |
+
if not USE_PEFT_BACKEND:
|
662 |
+
raise ValueError("PEFT backend is required for `unload_lora()`.")
|
663 |
+
|
664 |
+
from ..utils import recurse_remove_peft_layers
|
665 |
+
|
666 |
+
recurse_remove_peft_layers(self)
|
667 |
+
if hasattr(self, "peft_config"):
|
668 |
+
del self.peft_config
|
669 |
+
|
670 |
+
def disable_lora(self):
|
671 |
+
"""
|
672 |
+
Disables the active LoRA layers of the underlying model.
|
673 |
+
|
674 |
+
Example:
|
675 |
+
|
676 |
+
```py
|
677 |
+
from diffusers import AutoPipelineForText2Image
|
678 |
+
import torch
|
679 |
+
|
680 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
681 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
682 |
+
).to("cuda")
|
683 |
+
pipeline.load_lora_weights(
|
684 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
685 |
+
)
|
686 |
+
pipeline.disable_lora()
|
687 |
+
```
|
688 |
+
"""
|
689 |
+
if not USE_PEFT_BACKEND:
|
690 |
+
raise ValueError("PEFT backend is required for this method.")
|
691 |
+
set_adapter_layers(self, enabled=False)
|
692 |
+
|
693 |
+
def enable_lora(self):
|
694 |
+
"""
|
695 |
+
Enables the active LoRA layers of the underlying model.
|
696 |
+
|
697 |
+
Example:
|
698 |
+
|
699 |
+
```py
|
700 |
+
from diffusers import AutoPipelineForText2Image
|
701 |
+
import torch
|
702 |
+
|
703 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
704 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
705 |
+
).to("cuda")
|
706 |
+
pipeline.load_lora_weights(
|
707 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
708 |
+
)
|
709 |
+
pipeline.enable_lora()
|
710 |
+
```
|
711 |
+
"""
|
712 |
+
if not USE_PEFT_BACKEND:
|
713 |
+
raise ValueError("PEFT backend is required for this method.")
|
714 |
+
set_adapter_layers(self, enabled=True)
|
715 |
+
|
716 |
+
def delete_adapters(self, adapter_names: Union[List[str], str]):
|
717 |
+
"""
|
718 |
+
Delete an adapter's LoRA layers from the underlying model.
|
719 |
+
|
720 |
+
Args:
|
721 |
+
adapter_names (`Union[List[str], str]`):
|
722 |
+
The names (single string or list of strings) of the adapter to delete.
|
723 |
+
|
724 |
+
Example:
|
725 |
+
|
726 |
+
```py
|
727 |
+
from diffusers import AutoPipelineForText2Image
|
728 |
+
import torch
|
729 |
+
|
730 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
731 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
732 |
+
).to("cuda")
|
733 |
+
pipeline.load_lora_weights(
|
734 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_names="cinematic"
|
735 |
+
)
|
736 |
+
pipeline.delete_adapters("cinematic")
|
737 |
+
```
|
738 |
+
"""
|
739 |
+
if not USE_PEFT_BACKEND:
|
740 |
+
raise ValueError("PEFT backend is required for this method.")
|
741 |
+
|
742 |
+
if isinstance(adapter_names, str):
|
743 |
+
adapter_names = [adapter_names]
|
744 |
+
|
745 |
+
for adapter_name in adapter_names:
|
746 |
+
delete_adapter_layers(self, adapter_name)
|
747 |
+
|
748 |
+
# Pop also the corresponding adapter from the config
|
749 |
+
if hasattr(self, "peft_config"):
|
750 |
+
self.peft_config.pop(adapter_name, None)
|
icedit/diffusers/loaders/single_file.py
ADDED
@@ -0,0 +1,550 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib
|
15 |
+
import inspect
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from huggingface_hub import snapshot_download
|
20 |
+
from huggingface_hub.utils import LocalEntryNotFoundError, validate_hf_hub_args
|
21 |
+
from packaging import version
|
22 |
+
|
23 |
+
from ..utils import deprecate, is_transformers_available, logging
|
24 |
+
from .single_file_utils import (
|
25 |
+
SingleFileComponentError,
|
26 |
+
_is_legacy_scheduler_kwargs,
|
27 |
+
_is_model_weights_in_cached_folder,
|
28 |
+
_legacy_load_clip_tokenizer,
|
29 |
+
_legacy_load_safety_checker,
|
30 |
+
_legacy_load_scheduler,
|
31 |
+
create_diffusers_clip_model_from_ldm,
|
32 |
+
create_diffusers_t5_model_from_checkpoint,
|
33 |
+
fetch_diffusers_config,
|
34 |
+
fetch_original_config,
|
35 |
+
is_clip_model_in_single_file,
|
36 |
+
is_t5_in_single_file,
|
37 |
+
load_single_file_checkpoint,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
# Legacy behaviour. `from_single_file` does not load the safety checker unless explicitly provided
|
44 |
+
SINGLE_FILE_OPTIONAL_COMPONENTS = ["safety_checker"]
|
45 |
+
|
46 |
+
if is_transformers_available():
|
47 |
+
import transformers
|
48 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
49 |
+
|
50 |
+
|
51 |
+
def load_single_file_sub_model(
|
52 |
+
library_name,
|
53 |
+
class_name,
|
54 |
+
name,
|
55 |
+
checkpoint,
|
56 |
+
pipelines,
|
57 |
+
is_pipeline_module,
|
58 |
+
cached_model_config_path,
|
59 |
+
original_config=None,
|
60 |
+
local_files_only=False,
|
61 |
+
torch_dtype=None,
|
62 |
+
is_legacy_loading=False,
|
63 |
+
**kwargs,
|
64 |
+
):
|
65 |
+
if is_pipeline_module:
|
66 |
+
pipeline_module = getattr(pipelines, library_name)
|
67 |
+
class_obj = getattr(pipeline_module, class_name)
|
68 |
+
else:
|
69 |
+
# else we just import it from the library.
|
70 |
+
library = importlib.import_module(library_name)
|
71 |
+
class_obj = getattr(library, class_name)
|
72 |
+
|
73 |
+
if is_transformers_available():
|
74 |
+
transformers_version = version.parse(version.parse(transformers.__version__).base_version)
|
75 |
+
else:
|
76 |
+
transformers_version = "N/A"
|
77 |
+
|
78 |
+
is_transformers_model = (
|
79 |
+
is_transformers_available()
|
80 |
+
and issubclass(class_obj, PreTrainedModel)
|
81 |
+
and transformers_version >= version.parse("4.20.0")
|
82 |
+
)
|
83 |
+
is_tokenizer = (
|
84 |
+
is_transformers_available()
|
85 |
+
and issubclass(class_obj, PreTrainedTokenizer)
|
86 |
+
and transformers_version >= version.parse("4.20.0")
|
87 |
+
)
|
88 |
+
|
89 |
+
diffusers_module = importlib.import_module(__name__.split(".")[0])
|
90 |
+
is_diffusers_single_file_model = issubclass(class_obj, diffusers_module.FromOriginalModelMixin)
|
91 |
+
is_diffusers_model = issubclass(class_obj, diffusers_module.ModelMixin)
|
92 |
+
is_diffusers_scheduler = issubclass(class_obj, diffusers_module.SchedulerMixin)
|
93 |
+
|
94 |
+
if is_diffusers_single_file_model:
|
95 |
+
load_method = getattr(class_obj, "from_single_file")
|
96 |
+
|
97 |
+
# We cannot provide two different config options to the `from_single_file` method
|
98 |
+
# Here we have to ignore loading the config from `cached_model_config_path` if `original_config` is provided
|
99 |
+
if original_config:
|
100 |
+
cached_model_config_path = None
|
101 |
+
|
102 |
+
loaded_sub_model = load_method(
|
103 |
+
pretrained_model_link_or_path_or_dict=checkpoint,
|
104 |
+
original_config=original_config,
|
105 |
+
config=cached_model_config_path,
|
106 |
+
subfolder=name,
|
107 |
+
torch_dtype=torch_dtype,
|
108 |
+
local_files_only=local_files_only,
|
109 |
+
**kwargs,
|
110 |
+
)
|
111 |
+
|
112 |
+
elif is_transformers_model and is_clip_model_in_single_file(class_obj, checkpoint):
|
113 |
+
loaded_sub_model = create_diffusers_clip_model_from_ldm(
|
114 |
+
class_obj,
|
115 |
+
checkpoint=checkpoint,
|
116 |
+
config=cached_model_config_path,
|
117 |
+
subfolder=name,
|
118 |
+
torch_dtype=torch_dtype,
|
119 |
+
local_files_only=local_files_only,
|
120 |
+
is_legacy_loading=is_legacy_loading,
|
121 |
+
)
|
122 |
+
|
123 |
+
elif is_transformers_model and is_t5_in_single_file(checkpoint):
|
124 |
+
loaded_sub_model = create_diffusers_t5_model_from_checkpoint(
|
125 |
+
class_obj,
|
126 |
+
checkpoint=checkpoint,
|
127 |
+
config=cached_model_config_path,
|
128 |
+
subfolder=name,
|
129 |
+
torch_dtype=torch_dtype,
|
130 |
+
local_files_only=local_files_only,
|
131 |
+
)
|
132 |
+
|
133 |
+
elif is_tokenizer and is_legacy_loading:
|
134 |
+
loaded_sub_model = _legacy_load_clip_tokenizer(
|
135 |
+
class_obj, checkpoint=checkpoint, config=cached_model_config_path, local_files_only=local_files_only
|
136 |
+
)
|
137 |
+
|
138 |
+
elif is_diffusers_scheduler and (is_legacy_loading or _is_legacy_scheduler_kwargs(kwargs)):
|
139 |
+
loaded_sub_model = _legacy_load_scheduler(
|
140 |
+
class_obj, checkpoint=checkpoint, component_name=name, original_config=original_config, **kwargs
|
141 |
+
)
|
142 |
+
|
143 |
+
else:
|
144 |
+
if not hasattr(class_obj, "from_pretrained"):
|
145 |
+
raise ValueError(
|
146 |
+
(
|
147 |
+
f"The component {class_obj.__name__} cannot be loaded as it does not seem to have"
|
148 |
+
" a supported loading method."
|
149 |
+
)
|
150 |
+
)
|
151 |
+
|
152 |
+
loading_kwargs = {}
|
153 |
+
loading_kwargs.update(
|
154 |
+
{
|
155 |
+
"pretrained_model_name_or_path": cached_model_config_path,
|
156 |
+
"subfolder": name,
|
157 |
+
"local_files_only": local_files_only,
|
158 |
+
}
|
159 |
+
)
|
160 |
+
|
161 |
+
# Schedulers and Tokenizers don't make use of torch_dtype
|
162 |
+
# Skip passing it to those objects
|
163 |
+
if issubclass(class_obj, torch.nn.Module):
|
164 |
+
loading_kwargs.update({"torch_dtype": torch_dtype})
|
165 |
+
|
166 |
+
if is_diffusers_model or is_transformers_model:
|
167 |
+
if not _is_model_weights_in_cached_folder(cached_model_config_path, name):
|
168 |
+
raise SingleFileComponentError(
|
169 |
+
f"Failed to load {class_name}. Weights for this component appear to be missing in the checkpoint."
|
170 |
+
)
|
171 |
+
|
172 |
+
load_method = getattr(class_obj, "from_pretrained")
|
173 |
+
loaded_sub_model = load_method(**loading_kwargs)
|
174 |
+
|
175 |
+
return loaded_sub_model
|
176 |
+
|
177 |
+
|
178 |
+
def _map_component_types_to_config_dict(component_types):
|
179 |
+
diffusers_module = importlib.import_module(__name__.split(".")[0])
|
180 |
+
config_dict = {}
|
181 |
+
component_types.pop("self", None)
|
182 |
+
|
183 |
+
if is_transformers_available():
|
184 |
+
transformers_version = version.parse(version.parse(transformers.__version__).base_version)
|
185 |
+
else:
|
186 |
+
transformers_version = "N/A"
|
187 |
+
|
188 |
+
for component_name, component_value in component_types.items():
|
189 |
+
is_diffusers_model = issubclass(component_value[0], diffusers_module.ModelMixin)
|
190 |
+
is_scheduler_enum = component_value[0].__name__ == "KarrasDiffusionSchedulers"
|
191 |
+
is_scheduler = issubclass(component_value[0], diffusers_module.SchedulerMixin)
|
192 |
+
|
193 |
+
is_transformers_model = (
|
194 |
+
is_transformers_available()
|
195 |
+
and issubclass(component_value[0], PreTrainedModel)
|
196 |
+
and transformers_version >= version.parse("4.20.0")
|
197 |
+
)
|
198 |
+
is_transformers_tokenizer = (
|
199 |
+
is_transformers_available()
|
200 |
+
and issubclass(component_value[0], PreTrainedTokenizer)
|
201 |
+
and transformers_version >= version.parse("4.20.0")
|
202 |
+
)
|
203 |
+
|
204 |
+
if is_diffusers_model and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS:
|
205 |
+
config_dict[component_name] = ["diffusers", component_value[0].__name__]
|
206 |
+
|
207 |
+
elif is_scheduler_enum or is_scheduler:
|
208 |
+
if is_scheduler_enum:
|
209 |
+
# Since we cannot fetch a scheduler config from the hub, we default to DDIMScheduler
|
210 |
+
# if the type hint is a KarrassDiffusionSchedulers enum
|
211 |
+
config_dict[component_name] = ["diffusers", "DDIMScheduler"]
|
212 |
+
|
213 |
+
elif is_scheduler:
|
214 |
+
config_dict[component_name] = ["diffusers", component_value[0].__name__]
|
215 |
+
|
216 |
+
elif (
|
217 |
+
is_transformers_model or is_transformers_tokenizer
|
218 |
+
) and component_name not in SINGLE_FILE_OPTIONAL_COMPONENTS:
|
219 |
+
config_dict[component_name] = ["transformers", component_value[0].__name__]
|
220 |
+
|
221 |
+
else:
|
222 |
+
config_dict[component_name] = [None, None]
|
223 |
+
|
224 |
+
return config_dict
|
225 |
+
|
226 |
+
|
227 |
+
def _infer_pipeline_config_dict(pipeline_class):
|
228 |
+
parameters = inspect.signature(pipeline_class.__init__).parameters
|
229 |
+
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
|
230 |
+
component_types = pipeline_class._get_signature_types()
|
231 |
+
|
232 |
+
# Ignore parameters that are not required for the pipeline
|
233 |
+
component_types = {k: v for k, v in component_types.items() if k in required_parameters}
|
234 |
+
config_dict = _map_component_types_to_config_dict(component_types)
|
235 |
+
|
236 |
+
return config_dict
|
237 |
+
|
238 |
+
|
239 |
+
def _download_diffusers_model_config_from_hub(
|
240 |
+
pretrained_model_name_or_path,
|
241 |
+
cache_dir,
|
242 |
+
revision,
|
243 |
+
proxies,
|
244 |
+
force_download=None,
|
245 |
+
local_files_only=None,
|
246 |
+
token=None,
|
247 |
+
):
|
248 |
+
allow_patterns = ["**/*.json", "*.json", "*.txt", "**/*.txt", "**/*.model"]
|
249 |
+
cached_model_path = snapshot_download(
|
250 |
+
pretrained_model_name_or_path,
|
251 |
+
cache_dir=cache_dir,
|
252 |
+
revision=revision,
|
253 |
+
proxies=proxies,
|
254 |
+
force_download=force_download,
|
255 |
+
local_files_only=local_files_only,
|
256 |
+
token=token,
|
257 |
+
allow_patterns=allow_patterns,
|
258 |
+
)
|
259 |
+
|
260 |
+
return cached_model_path
|
261 |
+
|
262 |
+
|
263 |
+
class FromSingleFileMixin:
|
264 |
+
"""
|
265 |
+
Load model weights saved in the `.ckpt` format into a [`DiffusionPipeline`].
|
266 |
+
"""
|
267 |
+
|
268 |
+
@classmethod
|
269 |
+
@validate_hf_hub_args
|
270 |
+
def from_single_file(cls, pretrained_model_link_or_path, **kwargs):
|
271 |
+
r"""
|
272 |
+
Instantiate a [`DiffusionPipeline`] from pretrained pipeline weights saved in the `.ckpt` or `.safetensors`
|
273 |
+
format. The pipeline is set in evaluation mode (`model.eval()`) by default.
|
274 |
+
|
275 |
+
Parameters:
|
276 |
+
pretrained_model_link_or_path (`str` or `os.PathLike`, *optional*):
|
277 |
+
Can be either:
|
278 |
+
- A link to the `.ckpt` file (for example
|
279 |
+
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.ckpt"`) on the Hub.
|
280 |
+
- A path to a *file* containing all pipeline weights.
|
281 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
282 |
+
Override the default `torch.dtype` and load the model with another dtype.
|
283 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
284 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
285 |
+
cached versions if they exist.
|
286 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
287 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
288 |
+
is not used.
|
289 |
+
|
290 |
+
proxies (`Dict[str, str]`, *optional*):
|
291 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
292 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
293 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
294 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
295 |
+
won't be downloaded from the Hub.
|
296 |
+
token (`str` or *bool*, *optional*):
|
297 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
298 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
299 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
300 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
301 |
+
allowed by Git.
|
302 |
+
original_config_file (`str`, *optional*):
|
303 |
+
The path to the original config file that was used to train the model. If not provided, the config file
|
304 |
+
will be inferred from the checkpoint file.
|
305 |
+
config (`str`, *optional*):
|
306 |
+
Can be either:
|
307 |
+
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
|
308 |
+
hosted on the Hub.
|
309 |
+
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline
|
310 |
+
component configs in Diffusers format.
|
311 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
312 |
+
Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
|
313 |
+
class). The overwritten components are passed directly to the pipelines `__init__` method. See example
|
314 |
+
below for more information.
|
315 |
+
|
316 |
+
Examples:
|
317 |
+
|
318 |
+
```py
|
319 |
+
>>> from diffusers import StableDiffusionPipeline
|
320 |
+
|
321 |
+
>>> # Download pipeline from huggingface.co and cache.
|
322 |
+
>>> pipeline = StableDiffusionPipeline.from_single_file(
|
323 |
+
... "https://huggingface.co/WarriorMama777/OrangeMixs/blob/main/Models/AbyssOrangeMix/AbyssOrangeMix.safetensors"
|
324 |
+
... )
|
325 |
+
|
326 |
+
>>> # Download pipeline from local file
|
327 |
+
>>> # file is downloaded under ./v1-5-pruned-emaonly.ckpt
|
328 |
+
>>> pipeline = StableDiffusionPipeline.from_single_file("./v1-5-pruned-emaonly.ckpt")
|
329 |
+
|
330 |
+
>>> # Enable float16 and move to GPU
|
331 |
+
>>> pipeline = StableDiffusionPipeline.from_single_file(
|
332 |
+
... "https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt",
|
333 |
+
... torch_dtype=torch.float16,
|
334 |
+
... )
|
335 |
+
>>> pipeline.to("cuda")
|
336 |
+
```
|
337 |
+
|
338 |
+
"""
|
339 |
+
original_config_file = kwargs.pop("original_config_file", None)
|
340 |
+
config = kwargs.pop("config", None)
|
341 |
+
original_config = kwargs.pop("original_config", None)
|
342 |
+
|
343 |
+
if original_config_file is not None:
|
344 |
+
deprecation_message = (
|
345 |
+
"`original_config_file` argument is deprecated and will be removed in future versions."
|
346 |
+
"please use the `original_config` argument instead."
|
347 |
+
)
|
348 |
+
deprecate("original_config_file", "1.0.0", deprecation_message)
|
349 |
+
original_config = original_config_file
|
350 |
+
|
351 |
+
force_download = kwargs.pop("force_download", False)
|
352 |
+
proxies = kwargs.pop("proxies", None)
|
353 |
+
token = kwargs.pop("token", None)
|
354 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
355 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
356 |
+
revision = kwargs.pop("revision", None)
|
357 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
358 |
+
|
359 |
+
is_legacy_loading = False
|
360 |
+
|
361 |
+
# We shouldn't allow configuring individual models components through a Pipeline creation method
|
362 |
+
# These model kwargs should be deprecated
|
363 |
+
scaling_factor = kwargs.get("scaling_factor", None)
|
364 |
+
if scaling_factor is not None:
|
365 |
+
deprecation_message = (
|
366 |
+
"Passing the `scaling_factor` argument to `from_single_file is deprecated "
|
367 |
+
"and will be ignored in future versions."
|
368 |
+
)
|
369 |
+
deprecate("scaling_factor", "1.0.0", deprecation_message)
|
370 |
+
|
371 |
+
if original_config is not None:
|
372 |
+
original_config = fetch_original_config(original_config, local_files_only=local_files_only)
|
373 |
+
|
374 |
+
from ..pipelines.pipeline_utils import _get_pipeline_class
|
375 |
+
|
376 |
+
pipeline_class = _get_pipeline_class(cls, config=None)
|
377 |
+
|
378 |
+
checkpoint = load_single_file_checkpoint(
|
379 |
+
pretrained_model_link_or_path,
|
380 |
+
force_download=force_download,
|
381 |
+
proxies=proxies,
|
382 |
+
token=token,
|
383 |
+
cache_dir=cache_dir,
|
384 |
+
local_files_only=local_files_only,
|
385 |
+
revision=revision,
|
386 |
+
)
|
387 |
+
|
388 |
+
if config is None:
|
389 |
+
config = fetch_diffusers_config(checkpoint)
|
390 |
+
default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
|
391 |
+
else:
|
392 |
+
default_pretrained_model_config_name = config
|
393 |
+
|
394 |
+
if not os.path.isdir(default_pretrained_model_config_name):
|
395 |
+
# Provided config is a repo_id
|
396 |
+
if default_pretrained_model_config_name.count("/") > 1:
|
397 |
+
raise ValueError(
|
398 |
+
f'The provided config "{config}"'
|
399 |
+
" is neither a valid local path nor a valid repo id. Please check the parameter."
|
400 |
+
)
|
401 |
+
try:
|
402 |
+
# Attempt to download the config files for the pipeline
|
403 |
+
cached_model_config_path = _download_diffusers_model_config_from_hub(
|
404 |
+
default_pretrained_model_config_name,
|
405 |
+
cache_dir=cache_dir,
|
406 |
+
revision=revision,
|
407 |
+
proxies=proxies,
|
408 |
+
force_download=force_download,
|
409 |
+
local_files_only=local_files_only,
|
410 |
+
token=token,
|
411 |
+
)
|
412 |
+
config_dict = pipeline_class.load_config(cached_model_config_path)
|
413 |
+
|
414 |
+
except LocalEntryNotFoundError:
|
415 |
+
# `local_files_only=True` but a local diffusers format model config is not available in the cache
|
416 |
+
# If `original_config` is not provided, we need override `local_files_only` to False
|
417 |
+
# to fetch the config files from the hub so that we have a way
|
418 |
+
# to configure the pipeline components.
|
419 |
+
|
420 |
+
if original_config is None:
|
421 |
+
logger.warning(
|
422 |
+
"`local_files_only` is True but no local configs were found for this checkpoint.\n"
|
423 |
+
"Attempting to download the necessary config files for this pipeline.\n"
|
424 |
+
)
|
425 |
+
cached_model_config_path = _download_diffusers_model_config_from_hub(
|
426 |
+
default_pretrained_model_config_name,
|
427 |
+
cache_dir=cache_dir,
|
428 |
+
revision=revision,
|
429 |
+
proxies=proxies,
|
430 |
+
force_download=force_download,
|
431 |
+
local_files_only=False,
|
432 |
+
token=token,
|
433 |
+
)
|
434 |
+
config_dict = pipeline_class.load_config(cached_model_config_path)
|
435 |
+
|
436 |
+
else:
|
437 |
+
# For backwards compatibility
|
438 |
+
# If `original_config` is provided, then we need to assume we are using legacy loading for pipeline components
|
439 |
+
logger.warning(
|
440 |
+
"Detected legacy `from_single_file` loading behavior. Attempting to create the pipeline based on inferred components.\n"
|
441 |
+
"This may lead to errors if the model components are not correctly inferred. \n"
|
442 |
+
"To avoid this warning, please explicity pass the `config` argument to `from_single_file` with a path to a local diffusers model repo \n"
|
443 |
+
"e.g. `from_single_file(<my model checkpoint path>, config=<path to local diffusers model repo>) \n"
|
444 |
+
"or run `from_single_file` with `local_files_only=False` first to update the local cache directory with "
|
445 |
+
"the necessary config files.\n"
|
446 |
+
)
|
447 |
+
is_legacy_loading = True
|
448 |
+
cached_model_config_path = None
|
449 |
+
|
450 |
+
config_dict = _infer_pipeline_config_dict(pipeline_class)
|
451 |
+
config_dict["_class_name"] = pipeline_class.__name__
|
452 |
+
|
453 |
+
else:
|
454 |
+
# Provided config is a path to a local directory attempt to load directly.
|
455 |
+
cached_model_config_path = default_pretrained_model_config_name
|
456 |
+
config_dict = pipeline_class.load_config(cached_model_config_path)
|
457 |
+
|
458 |
+
# pop out "_ignore_files" as it is only needed for download
|
459 |
+
config_dict.pop("_ignore_files", None)
|
460 |
+
|
461 |
+
expected_modules, optional_kwargs = pipeline_class._get_signature_keys(cls)
|
462 |
+
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
|
463 |
+
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
|
464 |
+
|
465 |
+
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)
|
466 |
+
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
|
467 |
+
init_kwargs = {**init_kwargs, **passed_pipe_kwargs}
|
468 |
+
|
469 |
+
from diffusers import pipelines
|
470 |
+
|
471 |
+
# remove `null` components
|
472 |
+
def load_module(name, value):
|
473 |
+
if value[0] is None:
|
474 |
+
return False
|
475 |
+
if name in passed_class_obj and passed_class_obj[name] is None:
|
476 |
+
return False
|
477 |
+
if name in SINGLE_FILE_OPTIONAL_COMPONENTS:
|
478 |
+
return False
|
479 |
+
|
480 |
+
return True
|
481 |
+
|
482 |
+
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}
|
483 |
+
|
484 |
+
for name, (library_name, class_name) in logging.tqdm(
|
485 |
+
sorted(init_dict.items()), desc="Loading pipeline components..."
|
486 |
+
):
|
487 |
+
loaded_sub_model = None
|
488 |
+
is_pipeline_module = hasattr(pipelines, library_name)
|
489 |
+
|
490 |
+
if name in passed_class_obj:
|
491 |
+
loaded_sub_model = passed_class_obj[name]
|
492 |
+
|
493 |
+
else:
|
494 |
+
try:
|
495 |
+
loaded_sub_model = load_single_file_sub_model(
|
496 |
+
library_name=library_name,
|
497 |
+
class_name=class_name,
|
498 |
+
name=name,
|
499 |
+
checkpoint=checkpoint,
|
500 |
+
is_pipeline_module=is_pipeline_module,
|
501 |
+
cached_model_config_path=cached_model_config_path,
|
502 |
+
pipelines=pipelines,
|
503 |
+
torch_dtype=torch_dtype,
|
504 |
+
original_config=original_config,
|
505 |
+
local_files_only=local_files_only,
|
506 |
+
is_legacy_loading=is_legacy_loading,
|
507 |
+
**kwargs,
|
508 |
+
)
|
509 |
+
except SingleFileComponentError as e:
|
510 |
+
raise SingleFileComponentError(
|
511 |
+
(
|
512 |
+
f"{e.message}\n"
|
513 |
+
f"Please load the component before passing it in as an argument to `from_single_file`.\n"
|
514 |
+
f"\n"
|
515 |
+
f"{name} = {class_name}.from_pretrained('...')\n"
|
516 |
+
f"pipe = {pipeline_class.__name__}.from_single_file(<checkpoint path>, {name}={name})\n"
|
517 |
+
f"\n"
|
518 |
+
)
|
519 |
+
)
|
520 |
+
|
521 |
+
init_kwargs[name] = loaded_sub_model
|
522 |
+
|
523 |
+
missing_modules = set(expected_modules) - set(init_kwargs.keys())
|
524 |
+
passed_modules = list(passed_class_obj.keys())
|
525 |
+
optional_modules = pipeline_class._optional_components
|
526 |
+
|
527 |
+
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
|
528 |
+
for module in missing_modules:
|
529 |
+
init_kwargs[module] = passed_class_obj.get(module, None)
|
530 |
+
elif len(missing_modules) > 0:
|
531 |
+
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
|
532 |
+
raise ValueError(
|
533 |
+
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
|
534 |
+
)
|
535 |
+
|
536 |
+
# deprecated kwargs
|
537 |
+
load_safety_checker = kwargs.pop("load_safety_checker", None)
|
538 |
+
if load_safety_checker is not None:
|
539 |
+
deprecation_message = (
|
540 |
+
"Please pass instances of `StableDiffusionSafetyChecker` and `AutoImageProcessor`"
|
541 |
+
"using the `safety_checker` and `feature_extractor` arguments in `from_single_file`"
|
542 |
+
)
|
543 |
+
deprecate("load_safety_checker", "1.0.0", deprecation_message)
|
544 |
+
|
545 |
+
safety_checker_components = _legacy_load_safety_checker(local_files_only, torch_dtype)
|
546 |
+
init_kwargs.update(safety_checker_components)
|
547 |
+
|
548 |
+
pipe = pipeline_class(**init_kwargs)
|
549 |
+
|
550 |
+
return pipe
|
icedit/diffusers/loaders/single_file_model.py
ADDED
@@ -0,0 +1,385 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import importlib
|
15 |
+
import inspect
|
16 |
+
import re
|
17 |
+
from contextlib import nullcontext
|
18 |
+
from typing import Optional
|
19 |
+
|
20 |
+
import torch
|
21 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
22 |
+
|
23 |
+
from ..quantizers import DiffusersAutoQuantizer
|
24 |
+
from ..utils import deprecate, is_accelerate_available, logging
|
25 |
+
from .single_file_utils import (
|
26 |
+
SingleFileComponentError,
|
27 |
+
convert_animatediff_checkpoint_to_diffusers,
|
28 |
+
convert_autoencoder_dc_checkpoint_to_diffusers,
|
29 |
+
convert_controlnet_checkpoint,
|
30 |
+
convert_flux_transformer_checkpoint_to_diffusers,
|
31 |
+
convert_hunyuan_video_transformer_to_diffusers,
|
32 |
+
convert_ldm_unet_checkpoint,
|
33 |
+
convert_ldm_vae_checkpoint,
|
34 |
+
convert_ltx_transformer_checkpoint_to_diffusers,
|
35 |
+
convert_ltx_vae_checkpoint_to_diffusers,
|
36 |
+
convert_mochi_transformer_checkpoint_to_diffusers,
|
37 |
+
convert_sd3_transformer_checkpoint_to_diffusers,
|
38 |
+
convert_stable_cascade_unet_single_file_to_diffusers,
|
39 |
+
create_controlnet_diffusers_config_from_ldm,
|
40 |
+
create_unet_diffusers_config_from_ldm,
|
41 |
+
create_vae_diffusers_config_from_ldm,
|
42 |
+
fetch_diffusers_config,
|
43 |
+
fetch_original_config,
|
44 |
+
load_single_file_checkpoint,
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
|
51 |
+
if is_accelerate_available():
|
52 |
+
from accelerate import init_empty_weights
|
53 |
+
|
54 |
+
from ..models.modeling_utils import load_model_dict_into_meta
|
55 |
+
|
56 |
+
|
57 |
+
SINGLE_FILE_LOADABLE_CLASSES = {
|
58 |
+
"StableCascadeUNet": {
|
59 |
+
"checkpoint_mapping_fn": convert_stable_cascade_unet_single_file_to_diffusers,
|
60 |
+
},
|
61 |
+
"UNet2DConditionModel": {
|
62 |
+
"checkpoint_mapping_fn": convert_ldm_unet_checkpoint,
|
63 |
+
"config_mapping_fn": create_unet_diffusers_config_from_ldm,
|
64 |
+
"default_subfolder": "unet",
|
65 |
+
"legacy_kwargs": {
|
66 |
+
"num_in_channels": "in_channels", # Legacy kwargs supported by `from_single_file` mapped to new args
|
67 |
+
},
|
68 |
+
},
|
69 |
+
"AutoencoderKL": {
|
70 |
+
"checkpoint_mapping_fn": convert_ldm_vae_checkpoint,
|
71 |
+
"config_mapping_fn": create_vae_diffusers_config_from_ldm,
|
72 |
+
"default_subfolder": "vae",
|
73 |
+
},
|
74 |
+
"ControlNetModel": {
|
75 |
+
"checkpoint_mapping_fn": convert_controlnet_checkpoint,
|
76 |
+
"config_mapping_fn": create_controlnet_diffusers_config_from_ldm,
|
77 |
+
},
|
78 |
+
"SD3Transformer2DModel": {
|
79 |
+
"checkpoint_mapping_fn": convert_sd3_transformer_checkpoint_to_diffusers,
|
80 |
+
"default_subfolder": "transformer",
|
81 |
+
},
|
82 |
+
"MotionAdapter": {
|
83 |
+
"checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers,
|
84 |
+
},
|
85 |
+
"SparseControlNetModel": {
|
86 |
+
"checkpoint_mapping_fn": convert_animatediff_checkpoint_to_diffusers,
|
87 |
+
},
|
88 |
+
"FluxTransformer2DModel": {
|
89 |
+
"checkpoint_mapping_fn": convert_flux_transformer_checkpoint_to_diffusers,
|
90 |
+
"default_subfolder": "transformer",
|
91 |
+
},
|
92 |
+
"LTXVideoTransformer3DModel": {
|
93 |
+
"checkpoint_mapping_fn": convert_ltx_transformer_checkpoint_to_diffusers,
|
94 |
+
"default_subfolder": "transformer",
|
95 |
+
},
|
96 |
+
"AutoencoderKLLTXVideo": {
|
97 |
+
"checkpoint_mapping_fn": convert_ltx_vae_checkpoint_to_diffusers,
|
98 |
+
"default_subfolder": "vae",
|
99 |
+
},
|
100 |
+
"AutoencoderDC": {"checkpoint_mapping_fn": convert_autoencoder_dc_checkpoint_to_diffusers},
|
101 |
+
"MochiTransformer3DModel": {
|
102 |
+
"checkpoint_mapping_fn": convert_mochi_transformer_checkpoint_to_diffusers,
|
103 |
+
"default_subfolder": "transformer",
|
104 |
+
},
|
105 |
+
"HunyuanVideoTransformer3DModel": {
|
106 |
+
"checkpoint_mapping_fn": convert_hunyuan_video_transformer_to_diffusers,
|
107 |
+
"default_subfolder": "transformer",
|
108 |
+
},
|
109 |
+
}
|
110 |
+
|
111 |
+
|
112 |
+
def _get_single_file_loadable_mapping_class(cls):
|
113 |
+
diffusers_module = importlib.import_module(__name__.split(".")[0])
|
114 |
+
for loadable_class_str in SINGLE_FILE_LOADABLE_CLASSES:
|
115 |
+
loadable_class = getattr(diffusers_module, loadable_class_str)
|
116 |
+
|
117 |
+
if issubclass(cls, loadable_class):
|
118 |
+
return loadable_class_str
|
119 |
+
|
120 |
+
return None
|
121 |
+
|
122 |
+
|
123 |
+
def _get_mapping_function_kwargs(mapping_fn, **kwargs):
|
124 |
+
parameters = inspect.signature(mapping_fn).parameters
|
125 |
+
|
126 |
+
mapping_kwargs = {}
|
127 |
+
for parameter in parameters:
|
128 |
+
if parameter in kwargs:
|
129 |
+
mapping_kwargs[parameter] = kwargs[parameter]
|
130 |
+
|
131 |
+
return mapping_kwargs
|
132 |
+
|
133 |
+
|
134 |
+
class FromOriginalModelMixin:
|
135 |
+
"""
|
136 |
+
Load pretrained weights saved in the `.ckpt` or `.safetensors` format into a model.
|
137 |
+
"""
|
138 |
+
|
139 |
+
@classmethod
|
140 |
+
@validate_hf_hub_args
|
141 |
+
def from_single_file(cls, pretrained_model_link_or_path_or_dict: Optional[str] = None, **kwargs):
|
142 |
+
r"""
|
143 |
+
Instantiate a model from pretrained weights saved in the original `.ckpt` or `.safetensors` format. The model
|
144 |
+
is set in evaluation mode (`model.eval()`) by default.
|
145 |
+
|
146 |
+
Parameters:
|
147 |
+
pretrained_model_link_or_path_or_dict (`str`, *optional*):
|
148 |
+
Can be either:
|
149 |
+
- A link to the `.safetensors` or `.ckpt` file (for example
|
150 |
+
`"https://huggingface.co/<repo_id>/blob/main/<path_to_file>.safetensors"`) on the Hub.
|
151 |
+
- A path to a local *file* containing the weights of the component model.
|
152 |
+
- A state dict containing the component model weights.
|
153 |
+
config (`str`, *optional*):
|
154 |
+
- A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline hosted
|
155 |
+
on the Hub.
|
156 |
+
- A path to a *directory* (for example `./my_pipeline_directory/`) containing the pipeline component
|
157 |
+
configs in Diffusers format.
|
158 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
159 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
160 |
+
original_config (`str`, *optional*):
|
161 |
+
Dict or path to a yaml file containing the configuration for the model in its original format.
|
162 |
+
If a dict is provided, it will be used to initialize the model configuration.
|
163 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
164 |
+
Override the default `torch.dtype` and load the model with another dtype. If `"auto"` is passed, the
|
165 |
+
dtype is automatically derived from the model's weights.
|
166 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
167 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
168 |
+
cached versions if they exist.
|
169 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
170 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
171 |
+
is not used.
|
172 |
+
|
173 |
+
proxies (`Dict[str, str]`, *optional*):
|
174 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
175 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
176 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
177 |
+
Whether to only load local model weights and configuration files or not. If set to True, the model
|
178 |
+
won't be downloaded from the Hub.
|
179 |
+
token (`str` or *bool*, *optional*):
|
180 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
181 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
182 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
183 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
184 |
+
allowed by Git.
|
185 |
+
kwargs (remaining dictionary of keyword arguments, *optional*):
|
186 |
+
Can be used to overwrite load and saveable variables (for example the pipeline components of the
|
187 |
+
specific pipeline class). The overwritten components are directly passed to the pipelines `__init__`
|
188 |
+
method. See example below for more information.
|
189 |
+
|
190 |
+
```py
|
191 |
+
>>> from diffusers import StableCascadeUNet
|
192 |
+
|
193 |
+
>>> ckpt_path = "https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_lite.safetensors"
|
194 |
+
>>> model = StableCascadeUNet.from_single_file(ckpt_path)
|
195 |
+
```
|
196 |
+
"""
|
197 |
+
|
198 |
+
mapping_class_name = _get_single_file_loadable_mapping_class(cls)
|
199 |
+
# if class_name not in SINGLE_FILE_LOADABLE_CLASSES:
|
200 |
+
if mapping_class_name is None:
|
201 |
+
raise ValueError(
|
202 |
+
f"FromOriginalModelMixin is currently only compatible with {', '.join(SINGLE_FILE_LOADABLE_CLASSES.keys())}"
|
203 |
+
)
|
204 |
+
|
205 |
+
pretrained_model_link_or_path = kwargs.get("pretrained_model_link_or_path", None)
|
206 |
+
if pretrained_model_link_or_path is not None:
|
207 |
+
deprecation_message = (
|
208 |
+
"Please use `pretrained_model_link_or_path_or_dict` argument instead for model classes"
|
209 |
+
)
|
210 |
+
deprecate("pretrained_model_link_or_path", "1.0.0", deprecation_message)
|
211 |
+
pretrained_model_link_or_path_or_dict = pretrained_model_link_or_path
|
212 |
+
|
213 |
+
config = kwargs.pop("config", None)
|
214 |
+
original_config = kwargs.pop("original_config", None)
|
215 |
+
|
216 |
+
if config is not None and original_config is not None:
|
217 |
+
raise ValueError(
|
218 |
+
"`from_single_file` cannot accept both `config` and `original_config` arguments. Please provide only one of these arguments"
|
219 |
+
)
|
220 |
+
|
221 |
+
force_download = kwargs.pop("force_download", False)
|
222 |
+
proxies = kwargs.pop("proxies", None)
|
223 |
+
token = kwargs.pop("token", None)
|
224 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
225 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
226 |
+
subfolder = kwargs.pop("subfolder", None)
|
227 |
+
revision = kwargs.pop("revision", None)
|
228 |
+
config_revision = kwargs.pop("config_revision", None)
|
229 |
+
torch_dtype = kwargs.pop("torch_dtype", None)
|
230 |
+
quantization_config = kwargs.pop("quantization_config", None)
|
231 |
+
device = kwargs.pop("device", None)
|
232 |
+
|
233 |
+
if isinstance(pretrained_model_link_or_path_or_dict, dict):
|
234 |
+
checkpoint = pretrained_model_link_or_path_or_dict
|
235 |
+
else:
|
236 |
+
checkpoint = load_single_file_checkpoint(
|
237 |
+
pretrained_model_link_or_path_or_dict,
|
238 |
+
force_download=force_download,
|
239 |
+
proxies=proxies,
|
240 |
+
token=token,
|
241 |
+
cache_dir=cache_dir,
|
242 |
+
local_files_only=local_files_only,
|
243 |
+
revision=revision,
|
244 |
+
)
|
245 |
+
if quantization_config is not None:
|
246 |
+
hf_quantizer = DiffusersAutoQuantizer.from_config(quantization_config)
|
247 |
+
hf_quantizer.validate_environment()
|
248 |
+
|
249 |
+
else:
|
250 |
+
hf_quantizer = None
|
251 |
+
|
252 |
+
mapping_functions = SINGLE_FILE_LOADABLE_CLASSES[mapping_class_name]
|
253 |
+
|
254 |
+
checkpoint_mapping_fn = mapping_functions["checkpoint_mapping_fn"]
|
255 |
+
if original_config is not None:
|
256 |
+
if "config_mapping_fn" in mapping_functions:
|
257 |
+
config_mapping_fn = mapping_functions["config_mapping_fn"]
|
258 |
+
else:
|
259 |
+
config_mapping_fn = None
|
260 |
+
|
261 |
+
if config_mapping_fn is None:
|
262 |
+
raise ValueError(
|
263 |
+
(
|
264 |
+
f"`original_config` has been provided for {mapping_class_name} but no mapping function"
|
265 |
+
"was found to convert the original config to a Diffusers config in"
|
266 |
+
"`diffusers.loaders.single_file_utils`"
|
267 |
+
)
|
268 |
+
)
|
269 |
+
|
270 |
+
if isinstance(original_config, str):
|
271 |
+
# If original_config is a URL or filepath fetch the original_config dict
|
272 |
+
original_config = fetch_original_config(original_config, local_files_only=local_files_only)
|
273 |
+
|
274 |
+
config_mapping_kwargs = _get_mapping_function_kwargs(config_mapping_fn, **kwargs)
|
275 |
+
diffusers_model_config = config_mapping_fn(
|
276 |
+
original_config=original_config, checkpoint=checkpoint, **config_mapping_kwargs
|
277 |
+
)
|
278 |
+
else:
|
279 |
+
if config is not None:
|
280 |
+
if isinstance(config, str):
|
281 |
+
default_pretrained_model_config_name = config
|
282 |
+
else:
|
283 |
+
raise ValueError(
|
284 |
+
(
|
285 |
+
"Invalid `config` argument. Please provide a string representing a repo id"
|
286 |
+
"or path to a local Diffusers model repo."
|
287 |
+
)
|
288 |
+
)
|
289 |
+
|
290 |
+
else:
|
291 |
+
config = fetch_diffusers_config(checkpoint)
|
292 |
+
default_pretrained_model_config_name = config["pretrained_model_name_or_path"]
|
293 |
+
|
294 |
+
if "default_subfolder" in mapping_functions:
|
295 |
+
subfolder = mapping_functions["default_subfolder"]
|
296 |
+
|
297 |
+
subfolder = subfolder or config.pop(
|
298 |
+
"subfolder", None
|
299 |
+
) # some configs contain a subfolder key, e.g. StableCascadeUNet
|
300 |
+
|
301 |
+
diffusers_model_config = cls.load_config(
|
302 |
+
pretrained_model_name_or_path=default_pretrained_model_config_name,
|
303 |
+
subfolder=subfolder,
|
304 |
+
local_files_only=local_files_only,
|
305 |
+
token=token,
|
306 |
+
revision=config_revision,
|
307 |
+
)
|
308 |
+
expected_kwargs, optional_kwargs = cls._get_signature_keys(cls)
|
309 |
+
|
310 |
+
# Map legacy kwargs to new kwargs
|
311 |
+
if "legacy_kwargs" in mapping_functions:
|
312 |
+
legacy_kwargs = mapping_functions["legacy_kwargs"]
|
313 |
+
for legacy_key, new_key in legacy_kwargs.items():
|
314 |
+
if legacy_key in kwargs:
|
315 |
+
kwargs[new_key] = kwargs.pop(legacy_key)
|
316 |
+
|
317 |
+
model_kwargs = {k: kwargs.get(k) for k in kwargs if k in expected_kwargs or k in optional_kwargs}
|
318 |
+
diffusers_model_config.update(model_kwargs)
|
319 |
+
|
320 |
+
checkpoint_mapping_kwargs = _get_mapping_function_kwargs(checkpoint_mapping_fn, **kwargs)
|
321 |
+
diffusers_format_checkpoint = checkpoint_mapping_fn(
|
322 |
+
config=diffusers_model_config, checkpoint=checkpoint, **checkpoint_mapping_kwargs
|
323 |
+
)
|
324 |
+
if not diffusers_format_checkpoint:
|
325 |
+
raise SingleFileComponentError(
|
326 |
+
f"Failed to load {mapping_class_name}. Weights for this component appear to be missing in the checkpoint."
|
327 |
+
)
|
328 |
+
|
329 |
+
ctx = init_empty_weights if is_accelerate_available() else nullcontext
|
330 |
+
with ctx():
|
331 |
+
model = cls.from_config(diffusers_model_config)
|
332 |
+
|
333 |
+
# Check if `_keep_in_fp32_modules` is not None
|
334 |
+
use_keep_in_fp32_modules = (cls._keep_in_fp32_modules is not None) and (
|
335 |
+
(torch_dtype == torch.float16) or hasattr(hf_quantizer, "use_keep_in_fp32_modules")
|
336 |
+
)
|
337 |
+
if use_keep_in_fp32_modules:
|
338 |
+
keep_in_fp32_modules = cls._keep_in_fp32_modules
|
339 |
+
if not isinstance(keep_in_fp32_modules, list):
|
340 |
+
keep_in_fp32_modules = [keep_in_fp32_modules]
|
341 |
+
|
342 |
+
else:
|
343 |
+
keep_in_fp32_modules = []
|
344 |
+
|
345 |
+
if hf_quantizer is not None:
|
346 |
+
hf_quantizer.preprocess_model(
|
347 |
+
model=model,
|
348 |
+
device_map=None,
|
349 |
+
state_dict=diffusers_format_checkpoint,
|
350 |
+
keep_in_fp32_modules=keep_in_fp32_modules,
|
351 |
+
)
|
352 |
+
|
353 |
+
if is_accelerate_available():
|
354 |
+
param_device = torch.device(device) if device else torch.device("cpu")
|
355 |
+
unexpected_keys = load_model_dict_into_meta(
|
356 |
+
model,
|
357 |
+
diffusers_format_checkpoint,
|
358 |
+
dtype=torch_dtype,
|
359 |
+
device=param_device,
|
360 |
+
hf_quantizer=hf_quantizer,
|
361 |
+
keep_in_fp32_modules=keep_in_fp32_modules,
|
362 |
+
)
|
363 |
+
|
364 |
+
else:
|
365 |
+
_, unexpected_keys = model.load_state_dict(diffusers_format_checkpoint, strict=False)
|
366 |
+
|
367 |
+
if model._keys_to_ignore_on_load_unexpected is not None:
|
368 |
+
for pat in model._keys_to_ignore_on_load_unexpected:
|
369 |
+
unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None]
|
370 |
+
|
371 |
+
if len(unexpected_keys) > 0:
|
372 |
+
logger.warning(
|
373 |
+
f"Some weights of the model checkpoint were not used when initializing {cls.__name__}: \n {[', '.join(unexpected_keys)]}"
|
374 |
+
)
|
375 |
+
|
376 |
+
if hf_quantizer is not None:
|
377 |
+
hf_quantizer.postprocess_model(model)
|
378 |
+
model.hf_quantizer = hf_quantizer
|
379 |
+
|
380 |
+
if torch_dtype is not None and hf_quantizer is None:
|
381 |
+
model.to(torch_dtype)
|
382 |
+
|
383 |
+
model.eval()
|
384 |
+
|
385 |
+
return model
|
icedit/diffusers/loaders/single_file_utils.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
icedit/diffusers/loaders/textual_inversion.py
ADDED
@@ -0,0 +1,580 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, List, Optional, Union
|
15 |
+
|
16 |
+
import safetensors
|
17 |
+
import torch
|
18 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from ..models.modeling_utils import load_state_dict
|
22 |
+
from ..utils import _get_model_file, is_accelerate_available, is_transformers_available, logging
|
23 |
+
|
24 |
+
|
25 |
+
if is_transformers_available():
|
26 |
+
from transformers import PreTrainedModel, PreTrainedTokenizer
|
27 |
+
|
28 |
+
if is_accelerate_available():
|
29 |
+
from accelerate.hooks import AlignDevicesHook, CpuOffload, remove_hook_from_module
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
TEXT_INVERSION_NAME = "learned_embeds.bin"
|
34 |
+
TEXT_INVERSION_NAME_SAFE = "learned_embeds.safetensors"
|
35 |
+
|
36 |
+
|
37 |
+
@validate_hf_hub_args
|
38 |
+
def load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs):
|
39 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
40 |
+
force_download = kwargs.pop("force_download", False)
|
41 |
+
proxies = kwargs.pop("proxies", None)
|
42 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
43 |
+
token = kwargs.pop("token", None)
|
44 |
+
revision = kwargs.pop("revision", None)
|
45 |
+
subfolder = kwargs.pop("subfolder", None)
|
46 |
+
weight_name = kwargs.pop("weight_name", None)
|
47 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
48 |
+
|
49 |
+
allow_pickle = False
|
50 |
+
if use_safetensors is None:
|
51 |
+
use_safetensors = True
|
52 |
+
allow_pickle = True
|
53 |
+
|
54 |
+
user_agent = {
|
55 |
+
"file_type": "text_inversion",
|
56 |
+
"framework": "pytorch",
|
57 |
+
}
|
58 |
+
state_dicts = []
|
59 |
+
for pretrained_model_name_or_path in pretrained_model_name_or_paths:
|
60 |
+
if not isinstance(pretrained_model_name_or_path, (dict, torch.Tensor)):
|
61 |
+
# 3.1. Load textual inversion file
|
62 |
+
model_file = None
|
63 |
+
|
64 |
+
# Let's first try to load .safetensors weights
|
65 |
+
if (use_safetensors and weight_name is None) or (
|
66 |
+
weight_name is not None and weight_name.endswith(".safetensors")
|
67 |
+
):
|
68 |
+
try:
|
69 |
+
model_file = _get_model_file(
|
70 |
+
pretrained_model_name_or_path,
|
71 |
+
weights_name=weight_name or TEXT_INVERSION_NAME_SAFE,
|
72 |
+
cache_dir=cache_dir,
|
73 |
+
force_download=force_download,
|
74 |
+
proxies=proxies,
|
75 |
+
local_files_only=local_files_only,
|
76 |
+
token=token,
|
77 |
+
revision=revision,
|
78 |
+
subfolder=subfolder,
|
79 |
+
user_agent=user_agent,
|
80 |
+
)
|
81 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
82 |
+
except Exception as e:
|
83 |
+
if not allow_pickle:
|
84 |
+
raise e
|
85 |
+
|
86 |
+
model_file = None
|
87 |
+
|
88 |
+
if model_file is None:
|
89 |
+
model_file = _get_model_file(
|
90 |
+
pretrained_model_name_or_path,
|
91 |
+
weights_name=weight_name or TEXT_INVERSION_NAME,
|
92 |
+
cache_dir=cache_dir,
|
93 |
+
force_download=force_download,
|
94 |
+
proxies=proxies,
|
95 |
+
local_files_only=local_files_only,
|
96 |
+
token=token,
|
97 |
+
revision=revision,
|
98 |
+
subfolder=subfolder,
|
99 |
+
user_agent=user_agent,
|
100 |
+
)
|
101 |
+
state_dict = load_state_dict(model_file)
|
102 |
+
else:
|
103 |
+
state_dict = pretrained_model_name_or_path
|
104 |
+
|
105 |
+
state_dicts.append(state_dict)
|
106 |
+
|
107 |
+
return state_dicts
|
108 |
+
|
109 |
+
|
110 |
+
class TextualInversionLoaderMixin:
|
111 |
+
r"""
|
112 |
+
Load Textual Inversion tokens and embeddings to the tokenizer and text encoder.
|
113 |
+
"""
|
114 |
+
|
115 |
+
def maybe_convert_prompt(self, prompt: Union[str, List[str]], tokenizer: "PreTrainedTokenizer"): # noqa: F821
|
116 |
+
r"""
|
117 |
+
Processes prompts that include a special token corresponding to a multi-vector textual inversion embedding to
|
118 |
+
be replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
|
119 |
+
inversion token or if the textual inversion token is a single vector, the input prompt is returned.
|
120 |
+
|
121 |
+
Parameters:
|
122 |
+
prompt (`str` or list of `str`):
|
123 |
+
The prompt or prompts to guide the image generation.
|
124 |
+
tokenizer (`PreTrainedTokenizer`):
|
125 |
+
The tokenizer responsible for encoding the prompt into input tokens.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
`str` or list of `str`: The converted prompt
|
129 |
+
"""
|
130 |
+
if not isinstance(prompt, List):
|
131 |
+
prompts = [prompt]
|
132 |
+
else:
|
133 |
+
prompts = prompt
|
134 |
+
|
135 |
+
prompts = [self._maybe_convert_prompt(p, tokenizer) for p in prompts]
|
136 |
+
|
137 |
+
if not isinstance(prompt, List):
|
138 |
+
return prompts[0]
|
139 |
+
|
140 |
+
return prompts
|
141 |
+
|
142 |
+
def _maybe_convert_prompt(self, prompt: str, tokenizer: "PreTrainedTokenizer"): # noqa: F821
|
143 |
+
r"""
|
144 |
+
Maybe convert a prompt into a "multi vector"-compatible prompt. If the prompt includes a token that corresponds
|
145 |
+
to a multi-vector textual inversion embedding, this function will process the prompt so that the special token
|
146 |
+
is replaced with multiple special tokens each corresponding to one of the vectors. If the prompt has no textual
|
147 |
+
inversion token or a textual inversion token that is a single vector, the input prompt is simply returned.
|
148 |
+
|
149 |
+
Parameters:
|
150 |
+
prompt (`str`):
|
151 |
+
The prompt to guide the image generation.
|
152 |
+
tokenizer (`PreTrainedTokenizer`):
|
153 |
+
The tokenizer responsible for encoding the prompt into input tokens.
|
154 |
+
|
155 |
+
Returns:
|
156 |
+
`str`: The converted prompt
|
157 |
+
"""
|
158 |
+
tokens = tokenizer.tokenize(prompt)
|
159 |
+
unique_tokens = set(tokens)
|
160 |
+
for token in unique_tokens:
|
161 |
+
if token in tokenizer.added_tokens_encoder:
|
162 |
+
replacement = token
|
163 |
+
i = 1
|
164 |
+
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
|
165 |
+
replacement += f" {token}_{i}"
|
166 |
+
i += 1
|
167 |
+
|
168 |
+
prompt = prompt.replace(token, replacement)
|
169 |
+
|
170 |
+
return prompt
|
171 |
+
|
172 |
+
def _check_text_inv_inputs(self, tokenizer, text_encoder, pretrained_model_name_or_paths, tokens):
|
173 |
+
if tokenizer is None:
|
174 |
+
raise ValueError(
|
175 |
+
f"{self.__class__.__name__} requires `self.tokenizer` or passing a `tokenizer` of type `PreTrainedTokenizer` for calling"
|
176 |
+
f" `{self.load_textual_inversion.__name__}`"
|
177 |
+
)
|
178 |
+
|
179 |
+
if text_encoder is None:
|
180 |
+
raise ValueError(
|
181 |
+
f"{self.__class__.__name__} requires `self.text_encoder` or passing a `text_encoder` of type `PreTrainedModel` for calling"
|
182 |
+
f" `{self.load_textual_inversion.__name__}`"
|
183 |
+
)
|
184 |
+
|
185 |
+
if len(pretrained_model_name_or_paths) > 1 and len(pretrained_model_name_or_paths) != len(tokens):
|
186 |
+
raise ValueError(
|
187 |
+
f"You have passed a list of models of length {len(pretrained_model_name_or_paths)}, and list of tokens of length {len(tokens)} "
|
188 |
+
f"Make sure both lists have the same length."
|
189 |
+
)
|
190 |
+
|
191 |
+
valid_tokens = [t for t in tokens if t is not None]
|
192 |
+
if len(set(valid_tokens)) < len(valid_tokens):
|
193 |
+
raise ValueError(f"You have passed a list of tokens that contains duplicates: {tokens}")
|
194 |
+
|
195 |
+
@staticmethod
|
196 |
+
def _retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer):
|
197 |
+
all_tokens = []
|
198 |
+
all_embeddings = []
|
199 |
+
for state_dict, token in zip(state_dicts, tokens):
|
200 |
+
if isinstance(state_dict, torch.Tensor):
|
201 |
+
if token is None:
|
202 |
+
raise ValueError(
|
203 |
+
"You are trying to load a textual inversion embedding that has been saved as a PyTorch tensor. Make sure to pass the name of the corresponding token in this case: `token=...`."
|
204 |
+
)
|
205 |
+
loaded_token = token
|
206 |
+
embedding = state_dict
|
207 |
+
elif len(state_dict) == 1:
|
208 |
+
# diffusers
|
209 |
+
loaded_token, embedding = next(iter(state_dict.items()))
|
210 |
+
elif "string_to_param" in state_dict:
|
211 |
+
# A1111
|
212 |
+
loaded_token = state_dict["name"]
|
213 |
+
embedding = state_dict["string_to_param"]["*"]
|
214 |
+
else:
|
215 |
+
raise ValueError(
|
216 |
+
f"Loaded state dictionary is incorrect: {state_dict}. \n\n"
|
217 |
+
"Please verify that the loaded state dictionary of the textual embedding either only has a single key or includes the `string_to_param`"
|
218 |
+
" input key."
|
219 |
+
)
|
220 |
+
|
221 |
+
if token is not None and loaded_token != token:
|
222 |
+
logger.info(f"The loaded token: {loaded_token} is overwritten by the passed token {token}.")
|
223 |
+
else:
|
224 |
+
token = loaded_token
|
225 |
+
|
226 |
+
if token in tokenizer.get_vocab():
|
227 |
+
raise ValueError(
|
228 |
+
f"Token {token} already in tokenizer vocabulary. Please choose a different token name or remove {token} and embedding from the tokenizer and text encoder."
|
229 |
+
)
|
230 |
+
|
231 |
+
all_tokens.append(token)
|
232 |
+
all_embeddings.append(embedding)
|
233 |
+
|
234 |
+
return all_tokens, all_embeddings
|
235 |
+
|
236 |
+
@staticmethod
|
237 |
+
def _extend_tokens_and_embeddings(tokens, embeddings, tokenizer):
|
238 |
+
all_tokens = []
|
239 |
+
all_embeddings = []
|
240 |
+
|
241 |
+
for embedding, token in zip(embeddings, tokens):
|
242 |
+
if f"{token}_1" in tokenizer.get_vocab():
|
243 |
+
multi_vector_tokens = [token]
|
244 |
+
i = 1
|
245 |
+
while f"{token}_{i}" in tokenizer.added_tokens_encoder:
|
246 |
+
multi_vector_tokens.append(f"{token}_{i}")
|
247 |
+
i += 1
|
248 |
+
|
249 |
+
raise ValueError(
|
250 |
+
f"Multi-vector Token {multi_vector_tokens} already in tokenizer vocabulary. Please choose a different token name or remove the {multi_vector_tokens} and embedding from the tokenizer and text encoder."
|
251 |
+
)
|
252 |
+
|
253 |
+
is_multi_vector = len(embedding.shape) > 1 and embedding.shape[0] > 1
|
254 |
+
if is_multi_vector:
|
255 |
+
all_tokens += [token] + [f"{token}_{i}" for i in range(1, embedding.shape[0])]
|
256 |
+
all_embeddings += [e for e in embedding] # noqa: C416
|
257 |
+
else:
|
258 |
+
all_tokens += [token]
|
259 |
+
all_embeddings += [embedding[0]] if len(embedding.shape) > 1 else [embedding]
|
260 |
+
|
261 |
+
return all_tokens, all_embeddings
|
262 |
+
|
263 |
+
@validate_hf_hub_args
|
264 |
+
def load_textual_inversion(
|
265 |
+
self,
|
266 |
+
pretrained_model_name_or_path: Union[str, List[str], Dict[str, torch.Tensor], List[Dict[str, torch.Tensor]]],
|
267 |
+
token: Optional[Union[str, List[str]]] = None,
|
268 |
+
tokenizer: Optional["PreTrainedTokenizer"] = None, # noqa: F821
|
269 |
+
text_encoder: Optional["PreTrainedModel"] = None, # noqa: F821
|
270 |
+
**kwargs,
|
271 |
+
):
|
272 |
+
r"""
|
273 |
+
Load Textual Inversion embeddings into the text encoder of [`StableDiffusionPipeline`] (both 🤗 Diffusers and
|
274 |
+
Automatic1111 formats are supported).
|
275 |
+
|
276 |
+
Parameters:
|
277 |
+
pretrained_model_name_or_path (`str` or `os.PathLike` or `List[str or os.PathLike]` or `Dict` or `List[Dict]`):
|
278 |
+
Can be either one of the following or a list of them:
|
279 |
+
|
280 |
+
- A string, the *model id* (for example `sd-concepts-library/low-poly-hd-logos-icons`) of a
|
281 |
+
pretrained model hosted on the Hub.
|
282 |
+
- A path to a *directory* (for example `./my_text_inversion_directory/`) containing the textual
|
283 |
+
inversion weights.
|
284 |
+
- A path to a *file* (for example `./my_text_inversions.pt`) containing textual inversion weights.
|
285 |
+
- A [torch state
|
286 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
287 |
+
|
288 |
+
token (`str` or `List[str]`, *optional*):
|
289 |
+
Override the token to use for the textual inversion weights. If `pretrained_model_name_or_path` is a
|
290 |
+
list, then `token` must also be a list of equal length.
|
291 |
+
text_encoder ([`~transformers.CLIPTextModel`], *optional*):
|
292 |
+
Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
|
293 |
+
If not specified, function will take self.tokenizer.
|
294 |
+
tokenizer ([`~transformers.CLIPTokenizer`], *optional*):
|
295 |
+
A `CLIPTokenizer` to tokenize text. If not specified, function will take self.tokenizer.
|
296 |
+
weight_name (`str`, *optional*):
|
297 |
+
Name of a custom weight file. This should be used when:
|
298 |
+
|
299 |
+
- The saved textual inversion file is in 🤗 Diffusers format, but was saved under a specific weight
|
300 |
+
name such as `text_inv.bin`.
|
301 |
+
- The saved textual inversion file is in the Automatic1111 format.
|
302 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
303 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
304 |
+
is not used.
|
305 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
306 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
307 |
+
cached versions if they exist.
|
308 |
+
|
309 |
+
proxies (`Dict[str, str]`, *optional*):
|
310 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
311 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
312 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
313 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
314 |
+
won't be downloaded from the Hub.
|
315 |
+
token (`str` or *bool*, *optional*):
|
316 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
317 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
318 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
319 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
320 |
+
allowed by Git.
|
321 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
322 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
323 |
+
mirror (`str`, *optional*):
|
324 |
+
Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
|
325 |
+
guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
|
326 |
+
information.
|
327 |
+
|
328 |
+
Example:
|
329 |
+
|
330 |
+
To load a Textual Inversion embedding vector in 🤗 Diffusers format:
|
331 |
+
|
332 |
+
```py
|
333 |
+
from diffusers import StableDiffusionPipeline
|
334 |
+
import torch
|
335 |
+
|
336 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
337 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
338 |
+
|
339 |
+
pipe.load_textual_inversion("sd-concepts-library/cat-toy")
|
340 |
+
|
341 |
+
prompt = "A <cat-toy> backpack"
|
342 |
+
|
343 |
+
image = pipe(prompt, num_inference_steps=50).images[0]
|
344 |
+
image.save("cat-backpack.png")
|
345 |
+
```
|
346 |
+
|
347 |
+
To load a Textual Inversion embedding vector in Automatic1111 format, make sure to download the vector first
|
348 |
+
(for example from [civitAI](https://civitai.com/models/3036?modelVersionId=9857)) and then load the vector
|
349 |
+
locally:
|
350 |
+
|
351 |
+
```py
|
352 |
+
from diffusers import StableDiffusionPipeline
|
353 |
+
import torch
|
354 |
+
|
355 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
356 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
357 |
+
|
358 |
+
pipe.load_textual_inversion("./charturnerv2.pt", token="charturnerv2")
|
359 |
+
|
360 |
+
prompt = "charturnerv2, multiple views of the same character in the same outfit, a character turnaround of a woman wearing a black jacket and red shirt, best quality, intricate details."
|
361 |
+
|
362 |
+
image = pipe(prompt, num_inference_steps=50).images[0]
|
363 |
+
image.save("character.png")
|
364 |
+
```
|
365 |
+
|
366 |
+
"""
|
367 |
+
# 1. Set correct tokenizer and text encoder
|
368 |
+
tokenizer = tokenizer or getattr(self, "tokenizer", None)
|
369 |
+
text_encoder = text_encoder or getattr(self, "text_encoder", None)
|
370 |
+
|
371 |
+
# 2. Normalize inputs
|
372 |
+
pretrained_model_name_or_paths = (
|
373 |
+
[pretrained_model_name_or_path]
|
374 |
+
if not isinstance(pretrained_model_name_or_path, list)
|
375 |
+
else pretrained_model_name_or_path
|
376 |
+
)
|
377 |
+
tokens = [token] if not isinstance(token, list) else token
|
378 |
+
if tokens[0] is None:
|
379 |
+
tokens = tokens * len(pretrained_model_name_or_paths)
|
380 |
+
|
381 |
+
# 3. Check inputs
|
382 |
+
self._check_text_inv_inputs(tokenizer, text_encoder, pretrained_model_name_or_paths, tokens)
|
383 |
+
|
384 |
+
# 4. Load state dicts of textual embeddings
|
385 |
+
state_dicts = load_textual_inversion_state_dicts(pretrained_model_name_or_paths, **kwargs)
|
386 |
+
|
387 |
+
# 4.1 Handle the special case when state_dict is a tensor that contains n embeddings for n tokens
|
388 |
+
if len(tokens) > 1 and len(state_dicts) == 1:
|
389 |
+
if isinstance(state_dicts[0], torch.Tensor):
|
390 |
+
state_dicts = list(state_dicts[0])
|
391 |
+
if len(tokens) != len(state_dicts):
|
392 |
+
raise ValueError(
|
393 |
+
f"You have passed a state_dict contains {len(state_dicts)} embeddings, and list of tokens of length {len(tokens)} "
|
394 |
+
f"Make sure both have the same length."
|
395 |
+
)
|
396 |
+
|
397 |
+
# 4. Retrieve tokens and embeddings
|
398 |
+
tokens, embeddings = self._retrieve_tokens_and_embeddings(tokens, state_dicts, tokenizer)
|
399 |
+
|
400 |
+
# 5. Extend tokens and embeddings for multi vector
|
401 |
+
tokens, embeddings = self._extend_tokens_and_embeddings(tokens, embeddings, tokenizer)
|
402 |
+
|
403 |
+
# 6. Make sure all embeddings have the correct size
|
404 |
+
expected_emb_dim = text_encoder.get_input_embeddings().weight.shape[-1]
|
405 |
+
if any(expected_emb_dim != emb.shape[-1] for emb in embeddings):
|
406 |
+
raise ValueError(
|
407 |
+
"Loaded embeddings are of incorrect shape. Expected each textual inversion embedding "
|
408 |
+
"to be of shape {input_embeddings.shape[-1]}, but are {embeddings.shape[-1]} "
|
409 |
+
)
|
410 |
+
|
411 |
+
# 7. Now we can be sure that loading the embedding matrix works
|
412 |
+
# < Unsafe code:
|
413 |
+
|
414 |
+
# 7.1 Offload all hooks in case the pipeline was cpu offloaded before make sure, we offload and onload again
|
415 |
+
is_model_cpu_offload = False
|
416 |
+
is_sequential_cpu_offload = False
|
417 |
+
if self.hf_device_map is None:
|
418 |
+
for _, component in self.components.items():
|
419 |
+
if isinstance(component, nn.Module):
|
420 |
+
if hasattr(component, "_hf_hook"):
|
421 |
+
is_model_cpu_offload = isinstance(getattr(component, "_hf_hook"), CpuOffload)
|
422 |
+
is_sequential_cpu_offload = (
|
423 |
+
isinstance(getattr(component, "_hf_hook"), AlignDevicesHook)
|
424 |
+
or hasattr(component._hf_hook, "hooks")
|
425 |
+
and isinstance(component._hf_hook.hooks[0], AlignDevicesHook)
|
426 |
+
)
|
427 |
+
logger.info(
|
428 |
+
"Accelerate hooks detected. Since you have called `load_textual_inversion()`, the previous hooks will be first removed. Then the textual inversion parameters will be loaded and the hooks will be applied again."
|
429 |
+
)
|
430 |
+
remove_hook_from_module(component, recurse=is_sequential_cpu_offload)
|
431 |
+
|
432 |
+
# 7.2 save expected device and dtype
|
433 |
+
device = text_encoder.device
|
434 |
+
dtype = text_encoder.dtype
|
435 |
+
|
436 |
+
# 7.3 Increase token embedding matrix
|
437 |
+
text_encoder.resize_token_embeddings(len(tokenizer) + len(tokens))
|
438 |
+
input_embeddings = text_encoder.get_input_embeddings().weight
|
439 |
+
|
440 |
+
# 7.4 Load token and embedding
|
441 |
+
for token, embedding in zip(tokens, embeddings):
|
442 |
+
# add tokens and get ids
|
443 |
+
tokenizer.add_tokens(token)
|
444 |
+
token_id = tokenizer.convert_tokens_to_ids(token)
|
445 |
+
input_embeddings.data[token_id] = embedding
|
446 |
+
logger.info(f"Loaded textual inversion embedding for {token}.")
|
447 |
+
|
448 |
+
input_embeddings.to(dtype=dtype, device=device)
|
449 |
+
|
450 |
+
# 7.5 Offload the model again
|
451 |
+
if is_model_cpu_offload:
|
452 |
+
self.enable_model_cpu_offload()
|
453 |
+
elif is_sequential_cpu_offload:
|
454 |
+
self.enable_sequential_cpu_offload()
|
455 |
+
|
456 |
+
# / Unsafe Code >
|
457 |
+
|
458 |
+
def unload_textual_inversion(
|
459 |
+
self,
|
460 |
+
tokens: Optional[Union[str, List[str]]] = None,
|
461 |
+
tokenizer: Optional["PreTrainedTokenizer"] = None,
|
462 |
+
text_encoder: Optional["PreTrainedModel"] = None,
|
463 |
+
):
|
464 |
+
r"""
|
465 |
+
Unload Textual Inversion embeddings from the text encoder of [`StableDiffusionPipeline`]
|
466 |
+
|
467 |
+
Example:
|
468 |
+
```py
|
469 |
+
from diffusers import AutoPipelineForText2Image
|
470 |
+
import torch
|
471 |
+
|
472 |
+
pipeline = AutoPipelineForText2Image.from_pretrained("runwayml/stable-diffusion-v1-5")
|
473 |
+
|
474 |
+
# Example 1
|
475 |
+
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
|
476 |
+
pipeline.load_textual_inversion("sd-concepts-library/moeb-style")
|
477 |
+
|
478 |
+
# Remove all token embeddings
|
479 |
+
pipeline.unload_textual_inversion()
|
480 |
+
|
481 |
+
# Example 2
|
482 |
+
pipeline.load_textual_inversion("sd-concepts-library/moeb-style")
|
483 |
+
pipeline.load_textual_inversion("sd-concepts-library/gta5-artwork")
|
484 |
+
|
485 |
+
# Remove just one token
|
486 |
+
pipeline.unload_textual_inversion("<moe-bius>")
|
487 |
+
|
488 |
+
# Example 3: unload from SDXL
|
489 |
+
pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
|
490 |
+
embedding_path = hf_hub_download(
|
491 |
+
repo_id="linoyts/web_y2k", filename="web_y2k_emb.safetensors", repo_type="model"
|
492 |
+
)
|
493 |
+
|
494 |
+
# load embeddings to the text encoders
|
495 |
+
state_dict = load_file(embedding_path)
|
496 |
+
|
497 |
+
# load embeddings of text_encoder 1 (CLIP ViT-L/14)
|
498 |
+
pipeline.load_textual_inversion(
|
499 |
+
state_dict["clip_l"],
|
500 |
+
tokens=["<s0>", "<s1>"],
|
501 |
+
text_encoder=pipeline.text_encoder,
|
502 |
+
tokenizer=pipeline.tokenizer,
|
503 |
+
)
|
504 |
+
# load embeddings of text_encoder 2 (CLIP ViT-G/14)
|
505 |
+
pipeline.load_textual_inversion(
|
506 |
+
state_dict["clip_g"],
|
507 |
+
tokens=["<s0>", "<s1>"],
|
508 |
+
text_encoder=pipeline.text_encoder_2,
|
509 |
+
tokenizer=pipeline.tokenizer_2,
|
510 |
+
)
|
511 |
+
|
512 |
+
# Unload explicitly from both text encoders and tokenizers
|
513 |
+
pipeline.unload_textual_inversion(
|
514 |
+
tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer
|
515 |
+
)
|
516 |
+
pipeline.unload_textual_inversion(
|
517 |
+
tokens=["<s0>", "<s1>"], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2
|
518 |
+
)
|
519 |
+
```
|
520 |
+
"""
|
521 |
+
|
522 |
+
tokenizer = tokenizer or getattr(self, "tokenizer", None)
|
523 |
+
text_encoder = text_encoder or getattr(self, "text_encoder", None)
|
524 |
+
|
525 |
+
# Get textual inversion tokens and ids
|
526 |
+
token_ids = []
|
527 |
+
last_special_token_id = None
|
528 |
+
|
529 |
+
if tokens:
|
530 |
+
if isinstance(tokens, str):
|
531 |
+
tokens = [tokens]
|
532 |
+
for added_token_id, added_token in tokenizer.added_tokens_decoder.items():
|
533 |
+
if not added_token.special:
|
534 |
+
if added_token.content in tokens:
|
535 |
+
token_ids.append(added_token_id)
|
536 |
+
else:
|
537 |
+
last_special_token_id = added_token_id
|
538 |
+
if len(token_ids) == 0:
|
539 |
+
raise ValueError("No tokens to remove found")
|
540 |
+
else:
|
541 |
+
tokens = []
|
542 |
+
for added_token_id, added_token in tokenizer.added_tokens_decoder.items():
|
543 |
+
if not added_token.special:
|
544 |
+
token_ids.append(added_token_id)
|
545 |
+
tokens.append(added_token.content)
|
546 |
+
else:
|
547 |
+
last_special_token_id = added_token_id
|
548 |
+
|
549 |
+
# Delete from tokenizer
|
550 |
+
for token_id, token_to_remove in zip(token_ids, tokens):
|
551 |
+
del tokenizer._added_tokens_decoder[token_id]
|
552 |
+
del tokenizer._added_tokens_encoder[token_to_remove]
|
553 |
+
|
554 |
+
# Make all token ids sequential in tokenizer
|
555 |
+
key_id = 1
|
556 |
+
for token_id in tokenizer.added_tokens_decoder:
|
557 |
+
if token_id > last_special_token_id and token_id > last_special_token_id + key_id:
|
558 |
+
token = tokenizer._added_tokens_decoder[token_id]
|
559 |
+
tokenizer._added_tokens_decoder[last_special_token_id + key_id] = token
|
560 |
+
del tokenizer._added_tokens_decoder[token_id]
|
561 |
+
tokenizer._added_tokens_encoder[token.content] = last_special_token_id + key_id
|
562 |
+
key_id += 1
|
563 |
+
tokenizer._update_trie()
|
564 |
+
# set correct total vocab size after removing tokens
|
565 |
+
tokenizer._update_total_vocab_size()
|
566 |
+
|
567 |
+
# Delete from text encoder
|
568 |
+
text_embedding_dim = text_encoder.get_input_embeddings().embedding_dim
|
569 |
+
temp_text_embedding_weights = text_encoder.get_input_embeddings().weight
|
570 |
+
text_embedding_weights = temp_text_embedding_weights[: last_special_token_id + 1]
|
571 |
+
to_append = []
|
572 |
+
for i in range(last_special_token_id + 1, temp_text_embedding_weights.shape[0]):
|
573 |
+
if i not in token_ids:
|
574 |
+
to_append.append(temp_text_embedding_weights[i].unsqueeze(0))
|
575 |
+
if len(to_append) > 0:
|
576 |
+
to_append = torch.cat(to_append, dim=0)
|
577 |
+
text_embedding_weights = torch.cat([text_embedding_weights, to_append], dim=0)
|
578 |
+
text_embeddings_filtered = nn.Embedding(text_embedding_weights.shape[0], text_embedding_dim)
|
579 |
+
text_embeddings_filtered.weight.data = text_embedding_weights
|
580 |
+
text_encoder.set_input_embeddings(text_embeddings_filtered)
|
icedit/diffusers/loaders/transformer_flux.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from contextlib import nullcontext
|
15 |
+
|
16 |
+
from ..models.embeddings import (
|
17 |
+
ImageProjection,
|
18 |
+
MultiIPAdapterImageProjection,
|
19 |
+
)
|
20 |
+
from ..models.modeling_utils import load_model_dict_into_meta
|
21 |
+
from ..utils import (
|
22 |
+
is_accelerate_available,
|
23 |
+
is_torch_version,
|
24 |
+
logging,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
if is_accelerate_available():
|
29 |
+
pass
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
class FluxTransformer2DLoadersMixin:
|
35 |
+
"""
|
36 |
+
Load layers into a [`FluxTransformer2DModel`].
|
37 |
+
"""
|
38 |
+
|
39 |
+
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
|
40 |
+
if low_cpu_mem_usage:
|
41 |
+
if is_accelerate_available():
|
42 |
+
from accelerate import init_empty_weights
|
43 |
+
|
44 |
+
else:
|
45 |
+
low_cpu_mem_usage = False
|
46 |
+
logger.warning(
|
47 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
48 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
49 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
50 |
+
" install accelerate\n```\n."
|
51 |
+
)
|
52 |
+
|
53 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
54 |
+
raise NotImplementedError(
|
55 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
56 |
+
" `low_cpu_mem_usage=False`."
|
57 |
+
)
|
58 |
+
|
59 |
+
updated_state_dict = {}
|
60 |
+
image_projection = None
|
61 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
62 |
+
|
63 |
+
if "proj.weight" in state_dict:
|
64 |
+
# IP-Adapter
|
65 |
+
num_image_text_embeds = 4
|
66 |
+
if state_dict["proj.weight"].shape[0] == 65536:
|
67 |
+
num_image_text_embeds = 16
|
68 |
+
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
|
69 |
+
cross_attention_dim = state_dict["proj.weight"].shape[0] // num_image_text_embeds
|
70 |
+
|
71 |
+
with init_context():
|
72 |
+
image_projection = ImageProjection(
|
73 |
+
cross_attention_dim=cross_attention_dim,
|
74 |
+
image_embed_dim=clip_embeddings_dim,
|
75 |
+
num_image_text_embeds=num_image_text_embeds,
|
76 |
+
)
|
77 |
+
|
78 |
+
for key, value in state_dict.items():
|
79 |
+
diffusers_name = key.replace("proj", "image_embeds")
|
80 |
+
updated_state_dict[diffusers_name] = value
|
81 |
+
|
82 |
+
if not low_cpu_mem_usage:
|
83 |
+
image_projection.load_state_dict(updated_state_dict, strict=True)
|
84 |
+
else:
|
85 |
+
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)
|
86 |
+
|
87 |
+
return image_projection
|
88 |
+
|
89 |
+
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
|
90 |
+
from ..models.attention_processor import (
|
91 |
+
FluxIPAdapterJointAttnProcessor2_0,
|
92 |
+
)
|
93 |
+
|
94 |
+
if low_cpu_mem_usage:
|
95 |
+
if is_accelerate_available():
|
96 |
+
from accelerate import init_empty_weights
|
97 |
+
|
98 |
+
else:
|
99 |
+
low_cpu_mem_usage = False
|
100 |
+
logger.warning(
|
101 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
102 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
103 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
104 |
+
" install accelerate\n```\n."
|
105 |
+
)
|
106 |
+
|
107 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
108 |
+
raise NotImplementedError(
|
109 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
110 |
+
" `low_cpu_mem_usage=False`."
|
111 |
+
)
|
112 |
+
|
113 |
+
# set ip-adapter cross-attention processors & load state_dict
|
114 |
+
attn_procs = {}
|
115 |
+
key_id = 0
|
116 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
117 |
+
for name in self.attn_processors.keys():
|
118 |
+
if name.startswith("single_transformer_blocks"):
|
119 |
+
attn_processor_class = self.attn_processors[name].__class__
|
120 |
+
attn_procs[name] = attn_processor_class()
|
121 |
+
else:
|
122 |
+
cross_attention_dim = self.config.joint_attention_dim
|
123 |
+
hidden_size = self.inner_dim
|
124 |
+
attn_processor_class = FluxIPAdapterJointAttnProcessor2_0
|
125 |
+
num_image_text_embeds = []
|
126 |
+
for state_dict in state_dicts:
|
127 |
+
if "proj.weight" in state_dict["image_proj"]:
|
128 |
+
num_image_text_embed = 4
|
129 |
+
if state_dict["image_proj"]["proj.weight"].shape[0] == 65536:
|
130 |
+
num_image_text_embed = 16
|
131 |
+
# IP-Adapter
|
132 |
+
num_image_text_embeds += [num_image_text_embed]
|
133 |
+
|
134 |
+
with init_context():
|
135 |
+
attn_procs[name] = attn_processor_class(
|
136 |
+
hidden_size=hidden_size,
|
137 |
+
cross_attention_dim=cross_attention_dim,
|
138 |
+
scale=1.0,
|
139 |
+
num_tokens=num_image_text_embeds,
|
140 |
+
dtype=self.dtype,
|
141 |
+
device=self.device,
|
142 |
+
)
|
143 |
+
|
144 |
+
value_dict = {}
|
145 |
+
for i, state_dict in enumerate(state_dicts):
|
146 |
+
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
|
147 |
+
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
|
148 |
+
value_dict.update({f"to_k_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_k_ip.bias"]})
|
149 |
+
value_dict.update({f"to_v_ip.{i}.bias": state_dict["ip_adapter"][f"{key_id}.to_v_ip.bias"]})
|
150 |
+
|
151 |
+
if not low_cpu_mem_usage:
|
152 |
+
attn_procs[name].load_state_dict(value_dict)
|
153 |
+
else:
|
154 |
+
device = self.device
|
155 |
+
dtype = self.dtype
|
156 |
+
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
|
157 |
+
|
158 |
+
key_id += 1
|
159 |
+
|
160 |
+
return attn_procs
|
161 |
+
|
162 |
+
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
|
163 |
+
if not isinstance(state_dicts, list):
|
164 |
+
state_dicts = [state_dicts]
|
165 |
+
|
166 |
+
self.encoder_hid_proj = None
|
167 |
+
|
168 |
+
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
169 |
+
self.set_attn_processor(attn_procs)
|
170 |
+
|
171 |
+
image_projection_layers = []
|
172 |
+
for state_dict in state_dicts:
|
173 |
+
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
|
174 |
+
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
|
175 |
+
)
|
176 |
+
image_projection_layers.append(image_projection_layer)
|
177 |
+
|
178 |
+
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
|
179 |
+
self.config.encoder_hid_dim_type = "ip_image_proj"
|
180 |
+
|
181 |
+
self.to(dtype=self.dtype, device=self.device)
|
icedit/diffusers/loaders/transformer_sd3.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict
|
15 |
+
|
16 |
+
from ..models.attention_processor import SD3IPAdapterJointAttnProcessor2_0
|
17 |
+
from ..models.embeddings import IPAdapterTimeImageProjection
|
18 |
+
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
19 |
+
|
20 |
+
|
21 |
+
class SD3Transformer2DLoadersMixin:
|
22 |
+
"""Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`."""
|
23 |
+
|
24 |
+
def _load_ip_adapter_weights(self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT) -> None:
|
25 |
+
"""Sets IP-Adapter attention processors, image projection, and loads state_dict.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
state_dict (`Dict`):
|
29 |
+
State dict with keys "ip_adapter", which contains parameters for attention processors, and
|
30 |
+
"image_proj", which contains parameters for image projection net.
|
31 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
32 |
+
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
33 |
+
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
34 |
+
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
35 |
+
argument to `True` will raise an error.
|
36 |
+
"""
|
37 |
+
# IP-Adapter cross attention parameters
|
38 |
+
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads
|
39 |
+
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads
|
40 |
+
timesteps_emb_dim = state_dict["ip_adapter"]["0.norm_ip.linear.weight"].shape[1]
|
41 |
+
|
42 |
+
# Dict where key is transformer layer index, value is attention processor's state dict
|
43 |
+
# ip_adapter state dict keys example: "0.norm_ip.linear.weight"
|
44 |
+
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))}
|
45 |
+
for key, weights in state_dict["ip_adapter"].items():
|
46 |
+
idx, name = key.split(".", maxsplit=1)
|
47 |
+
layer_state_dict[int(idx)][name] = weights
|
48 |
+
|
49 |
+
# Create IP-Adapter attention processor
|
50 |
+
attn_procs = {}
|
51 |
+
for idx, name in enumerate(self.attn_processors.keys()):
|
52 |
+
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0(
|
53 |
+
hidden_size=hidden_size,
|
54 |
+
ip_hidden_states_dim=ip_hidden_states_dim,
|
55 |
+
head_dim=self.config.attention_head_dim,
|
56 |
+
timesteps_emb_dim=timesteps_emb_dim,
|
57 |
+
).to(self.device, dtype=self.dtype)
|
58 |
+
|
59 |
+
if not low_cpu_mem_usage:
|
60 |
+
attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True)
|
61 |
+
else:
|
62 |
+
load_model_dict_into_meta(
|
63 |
+
attn_procs[name], layer_state_dict[idx], device=self.device, dtype=self.dtype
|
64 |
+
)
|
65 |
+
|
66 |
+
self.set_attn_processor(attn_procs)
|
67 |
+
|
68 |
+
# Image projetion parameters
|
69 |
+
embed_dim = state_dict["image_proj"]["proj_in.weight"].shape[1]
|
70 |
+
output_dim = state_dict["image_proj"]["proj_out.weight"].shape[0]
|
71 |
+
hidden_dim = state_dict["image_proj"]["proj_in.weight"].shape[0]
|
72 |
+
heads = state_dict["image_proj"]["layers.0.attn.to_q.weight"].shape[0] // 64
|
73 |
+
num_queries = state_dict["image_proj"]["latents"].shape[1]
|
74 |
+
timestep_in_dim = state_dict["image_proj"]["time_embedding.linear_1.weight"].shape[1]
|
75 |
+
|
76 |
+
# Image projection
|
77 |
+
self.image_proj = IPAdapterTimeImageProjection(
|
78 |
+
embed_dim=embed_dim,
|
79 |
+
output_dim=output_dim,
|
80 |
+
hidden_dim=hidden_dim,
|
81 |
+
heads=heads,
|
82 |
+
num_queries=num_queries,
|
83 |
+
timestep_in_dim=timestep_in_dim,
|
84 |
+
).to(device=self.device, dtype=self.dtype)
|
85 |
+
|
86 |
+
if not low_cpu_mem_usage:
|
87 |
+
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True)
|
88 |
+
else:
|
89 |
+
load_model_dict_into_meta(self.image_proj, state_dict["image_proj"], device=self.device, dtype=self.dtype)
|
icedit/diffusers/loaders/unet.py
ADDED
@@ -0,0 +1,927 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
from collections import defaultdict
|
16 |
+
from contextlib import nullcontext
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Callable, Dict, Union
|
19 |
+
|
20 |
+
import safetensors
|
21 |
+
import torch
|
22 |
+
import torch.nn.functional as F
|
23 |
+
from huggingface_hub.utils import validate_hf_hub_args
|
24 |
+
|
25 |
+
from ..models.embeddings import (
|
26 |
+
ImageProjection,
|
27 |
+
IPAdapterFaceIDImageProjection,
|
28 |
+
IPAdapterFaceIDPlusImageProjection,
|
29 |
+
IPAdapterFullImageProjection,
|
30 |
+
IPAdapterPlusImageProjection,
|
31 |
+
MultiIPAdapterImageProjection,
|
32 |
+
)
|
33 |
+
from ..models.modeling_utils import load_model_dict_into_meta, load_state_dict
|
34 |
+
from ..utils import (
|
35 |
+
USE_PEFT_BACKEND,
|
36 |
+
_get_model_file,
|
37 |
+
convert_unet_state_dict_to_peft,
|
38 |
+
deprecate,
|
39 |
+
get_adapter_name,
|
40 |
+
get_peft_kwargs,
|
41 |
+
is_accelerate_available,
|
42 |
+
is_peft_version,
|
43 |
+
is_torch_version,
|
44 |
+
logging,
|
45 |
+
)
|
46 |
+
from .lora_base import _func_optionally_disable_offloading
|
47 |
+
from .lora_pipeline import LORA_WEIGHT_NAME, LORA_WEIGHT_NAME_SAFE, TEXT_ENCODER_NAME, UNET_NAME
|
48 |
+
from .utils import AttnProcsLayers
|
49 |
+
|
50 |
+
|
51 |
+
logger = logging.get_logger(__name__)
|
52 |
+
|
53 |
+
|
54 |
+
CUSTOM_DIFFUSION_WEIGHT_NAME = "pytorch_custom_diffusion_weights.bin"
|
55 |
+
CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE = "pytorch_custom_diffusion_weights.safetensors"
|
56 |
+
|
57 |
+
|
58 |
+
class UNet2DConditionLoadersMixin:
|
59 |
+
"""
|
60 |
+
Load LoRA layers into a [`UNet2DCondtionModel`].
|
61 |
+
"""
|
62 |
+
|
63 |
+
text_encoder_name = TEXT_ENCODER_NAME
|
64 |
+
unet_name = UNET_NAME
|
65 |
+
|
66 |
+
@validate_hf_hub_args
|
67 |
+
def load_attn_procs(self, pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], **kwargs):
|
68 |
+
r"""
|
69 |
+
Load pretrained attention processor layers into [`UNet2DConditionModel`]. Attention processor layers have to be
|
70 |
+
defined in
|
71 |
+
[`attention_processor.py`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py)
|
72 |
+
and be a `torch.nn.Module` class. Currently supported: LoRA, Custom Diffusion. For LoRA, one must install
|
73 |
+
`peft`: `pip install -U peft`.
|
74 |
+
|
75 |
+
Parameters:
|
76 |
+
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`):
|
77 |
+
Can be either:
|
78 |
+
|
79 |
+
- A string, the model id (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on
|
80 |
+
the Hub.
|
81 |
+
- A path to a directory (for example `./my_model_directory`) containing the model weights saved
|
82 |
+
with [`ModelMixin.save_pretrained`].
|
83 |
+
- A [torch state
|
84 |
+
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict).
|
85 |
+
|
86 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
87 |
+
Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
|
88 |
+
is not used.
|
89 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
90 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
91 |
+
cached versions if they exist.
|
92 |
+
|
93 |
+
proxies (`Dict[str, str]`, *optional*):
|
94 |
+
A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
|
95 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
96 |
+
local_files_only (`bool`, *optional*, defaults to `False`):
|
97 |
+
Whether to only load local model weights and configuration files or not. If set to `True`, the model
|
98 |
+
won't be downloaded from the Hub.
|
99 |
+
token (`str` or *bool*, *optional*):
|
100 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
|
101 |
+
`diffusers-cli login` (stored in `~/.huggingface`) is used.
|
102 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
103 |
+
The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
|
104 |
+
allowed by Git.
|
105 |
+
subfolder (`str`, *optional*, defaults to `""`):
|
106 |
+
The subfolder location of a model file within a larger model repository on the Hub or locally.
|
107 |
+
network_alphas (`Dict[str, float]`):
|
108 |
+
The value of the network alpha used for stable learning and preventing underflow. This value has the
|
109 |
+
same meaning as the `--network_alpha` option in the kohya-ss trainer script. Refer to [this
|
110 |
+
link](https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning).
|
111 |
+
adapter_name (`str`, *optional*, defaults to None):
|
112 |
+
Adapter name to be used for referencing the loaded adapter model. If not specified, it will use
|
113 |
+
`default_{i}` where i is the total number of adapters being loaded.
|
114 |
+
weight_name (`str`, *optional*, defaults to None):
|
115 |
+
Name of the serialized state dict file.
|
116 |
+
low_cpu_mem_usage (`bool`, *optional*):
|
117 |
+
Speed up model loading by only loading the pretrained LoRA weights and not initializing the random
|
118 |
+
weights.
|
119 |
+
|
120 |
+
Example:
|
121 |
+
|
122 |
+
```py
|
123 |
+
from diffusers import AutoPipelineForText2Image
|
124 |
+
import torch
|
125 |
+
|
126 |
+
pipeline = AutoPipelineForText2Image.from_pretrained(
|
127 |
+
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
128 |
+
).to("cuda")
|
129 |
+
pipeline.unet.load_attn_procs(
|
130 |
+
"jbilcke-hf/sdxl-cinematic-1", weight_name="pytorch_lora_weights.safetensors", adapter_name="cinematic"
|
131 |
+
)
|
132 |
+
```
|
133 |
+
"""
|
134 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
135 |
+
force_download = kwargs.pop("force_download", False)
|
136 |
+
proxies = kwargs.pop("proxies", None)
|
137 |
+
local_files_only = kwargs.pop("local_files_only", None)
|
138 |
+
token = kwargs.pop("token", None)
|
139 |
+
revision = kwargs.pop("revision", None)
|
140 |
+
subfolder = kwargs.pop("subfolder", None)
|
141 |
+
weight_name = kwargs.pop("weight_name", None)
|
142 |
+
use_safetensors = kwargs.pop("use_safetensors", None)
|
143 |
+
adapter_name = kwargs.pop("adapter_name", None)
|
144 |
+
_pipeline = kwargs.pop("_pipeline", None)
|
145 |
+
network_alphas = kwargs.pop("network_alphas", None)
|
146 |
+
low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", False)
|
147 |
+
allow_pickle = False
|
148 |
+
|
149 |
+
if low_cpu_mem_usage and is_peft_version("<=", "0.13.0"):
|
150 |
+
raise ValueError(
|
151 |
+
"`low_cpu_mem_usage=True` is not compatible with this `peft` version. Please update it with `pip install -U peft`."
|
152 |
+
)
|
153 |
+
|
154 |
+
if use_safetensors is None:
|
155 |
+
use_safetensors = True
|
156 |
+
allow_pickle = True
|
157 |
+
|
158 |
+
user_agent = {
|
159 |
+
"file_type": "attn_procs_weights",
|
160 |
+
"framework": "pytorch",
|
161 |
+
}
|
162 |
+
|
163 |
+
model_file = None
|
164 |
+
if not isinstance(pretrained_model_name_or_path_or_dict, dict):
|
165 |
+
# Let's first try to load .safetensors weights
|
166 |
+
if (use_safetensors and weight_name is None) or (
|
167 |
+
weight_name is not None and weight_name.endswith(".safetensors")
|
168 |
+
):
|
169 |
+
try:
|
170 |
+
model_file = _get_model_file(
|
171 |
+
pretrained_model_name_or_path_or_dict,
|
172 |
+
weights_name=weight_name or LORA_WEIGHT_NAME_SAFE,
|
173 |
+
cache_dir=cache_dir,
|
174 |
+
force_download=force_download,
|
175 |
+
proxies=proxies,
|
176 |
+
local_files_only=local_files_only,
|
177 |
+
token=token,
|
178 |
+
revision=revision,
|
179 |
+
subfolder=subfolder,
|
180 |
+
user_agent=user_agent,
|
181 |
+
)
|
182 |
+
state_dict = safetensors.torch.load_file(model_file, device="cpu")
|
183 |
+
except IOError as e:
|
184 |
+
if not allow_pickle:
|
185 |
+
raise e
|
186 |
+
# try loading non-safetensors weights
|
187 |
+
pass
|
188 |
+
if model_file is None:
|
189 |
+
model_file = _get_model_file(
|
190 |
+
pretrained_model_name_or_path_or_dict,
|
191 |
+
weights_name=weight_name or LORA_WEIGHT_NAME,
|
192 |
+
cache_dir=cache_dir,
|
193 |
+
force_download=force_download,
|
194 |
+
proxies=proxies,
|
195 |
+
local_files_only=local_files_only,
|
196 |
+
token=token,
|
197 |
+
revision=revision,
|
198 |
+
subfolder=subfolder,
|
199 |
+
user_agent=user_agent,
|
200 |
+
)
|
201 |
+
state_dict = load_state_dict(model_file)
|
202 |
+
else:
|
203 |
+
state_dict = pretrained_model_name_or_path_or_dict
|
204 |
+
|
205 |
+
is_custom_diffusion = any("custom_diffusion" in k for k in state_dict.keys())
|
206 |
+
is_lora = all(("lora" in k or k.endswith(".alpha")) for k in state_dict.keys())
|
207 |
+
is_model_cpu_offload = False
|
208 |
+
is_sequential_cpu_offload = False
|
209 |
+
|
210 |
+
if is_lora:
|
211 |
+
deprecation_message = "Using the `load_attn_procs()` method has been deprecated and will be removed in a future version. Please use `load_lora_adapter()`."
|
212 |
+
deprecate("load_attn_procs", "0.40.0", deprecation_message)
|
213 |
+
|
214 |
+
if is_custom_diffusion:
|
215 |
+
attn_processors = self._process_custom_diffusion(state_dict=state_dict)
|
216 |
+
elif is_lora:
|
217 |
+
is_model_cpu_offload, is_sequential_cpu_offload = self._process_lora(
|
218 |
+
state_dict=state_dict,
|
219 |
+
unet_identifier_key=self.unet_name,
|
220 |
+
network_alphas=network_alphas,
|
221 |
+
adapter_name=adapter_name,
|
222 |
+
_pipeline=_pipeline,
|
223 |
+
low_cpu_mem_usage=low_cpu_mem_usage,
|
224 |
+
)
|
225 |
+
else:
|
226 |
+
raise ValueError(
|
227 |
+
f"{model_file} does not seem to be in the correct format expected by Custom Diffusion training."
|
228 |
+
)
|
229 |
+
|
230 |
+
# <Unsafe code
|
231 |
+
# We can be sure that the following works as it just sets attention processors, lora layers and puts all in the same dtype
|
232 |
+
# Now we remove any existing hooks to `_pipeline`.
|
233 |
+
|
234 |
+
# For LoRA, the UNet is already offloaded at this stage as it is handled inside `_process_lora`.
|
235 |
+
if is_custom_diffusion and _pipeline is not None:
|
236 |
+
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline=_pipeline)
|
237 |
+
|
238 |
+
# only custom diffusion needs to set attn processors
|
239 |
+
self.set_attn_processor(attn_processors)
|
240 |
+
self.to(dtype=self.dtype, device=self.device)
|
241 |
+
|
242 |
+
# Offload back.
|
243 |
+
if is_model_cpu_offload:
|
244 |
+
_pipeline.enable_model_cpu_offload()
|
245 |
+
elif is_sequential_cpu_offload:
|
246 |
+
_pipeline.enable_sequential_cpu_offload()
|
247 |
+
# Unsafe code />
|
248 |
+
|
249 |
+
def _process_custom_diffusion(self, state_dict):
|
250 |
+
from ..models.attention_processor import CustomDiffusionAttnProcessor
|
251 |
+
|
252 |
+
attn_processors = {}
|
253 |
+
custom_diffusion_grouped_dict = defaultdict(dict)
|
254 |
+
for key, value in state_dict.items():
|
255 |
+
if len(value) == 0:
|
256 |
+
custom_diffusion_grouped_dict[key] = {}
|
257 |
+
else:
|
258 |
+
if "to_out" in key:
|
259 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-3]), ".".join(key.split(".")[-3:])
|
260 |
+
else:
|
261 |
+
attn_processor_key, sub_key = ".".join(key.split(".")[:-2]), ".".join(key.split(".")[-2:])
|
262 |
+
custom_diffusion_grouped_dict[attn_processor_key][sub_key] = value
|
263 |
+
|
264 |
+
for key, value_dict in custom_diffusion_grouped_dict.items():
|
265 |
+
if len(value_dict) == 0:
|
266 |
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
267 |
+
train_kv=False, train_q_out=False, hidden_size=None, cross_attention_dim=None
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
cross_attention_dim = value_dict["to_k_custom_diffusion.weight"].shape[1]
|
271 |
+
hidden_size = value_dict["to_k_custom_diffusion.weight"].shape[0]
|
272 |
+
train_q_out = True if "to_q_custom_diffusion.weight" in value_dict else False
|
273 |
+
attn_processors[key] = CustomDiffusionAttnProcessor(
|
274 |
+
train_kv=True,
|
275 |
+
train_q_out=train_q_out,
|
276 |
+
hidden_size=hidden_size,
|
277 |
+
cross_attention_dim=cross_attention_dim,
|
278 |
+
)
|
279 |
+
attn_processors[key].load_state_dict(value_dict)
|
280 |
+
|
281 |
+
return attn_processors
|
282 |
+
|
283 |
+
def _process_lora(
|
284 |
+
self, state_dict, unet_identifier_key, network_alphas, adapter_name, _pipeline, low_cpu_mem_usage
|
285 |
+
):
|
286 |
+
# This method does the following things:
|
287 |
+
# 1. Filters the `state_dict` with keys matching `unet_identifier_key` when using the non-legacy
|
288 |
+
# format. For legacy format no filtering is applied.
|
289 |
+
# 2. Converts the `state_dict` to the `peft` compatible format.
|
290 |
+
# 3. Creates a `LoraConfig` and then injects the converted `state_dict` into the UNet per the
|
291 |
+
# `LoraConfig` specs.
|
292 |
+
# 4. It also reports if the underlying `_pipeline` has any kind of offloading inside of it.
|
293 |
+
if not USE_PEFT_BACKEND:
|
294 |
+
raise ValueError("PEFT backend is required for this method.")
|
295 |
+
|
296 |
+
from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
|
297 |
+
|
298 |
+
keys = list(state_dict.keys())
|
299 |
+
|
300 |
+
unet_keys = [k for k in keys if k.startswith(unet_identifier_key)]
|
301 |
+
unet_state_dict = {
|
302 |
+
k.replace(f"{unet_identifier_key}.", ""): v for k, v in state_dict.items() if k in unet_keys
|
303 |
+
}
|
304 |
+
|
305 |
+
if network_alphas is not None:
|
306 |
+
alpha_keys = [k for k in network_alphas.keys() if k.startswith(unet_identifier_key)]
|
307 |
+
network_alphas = {
|
308 |
+
k.replace(f"{unet_identifier_key}.", ""): v for k, v in network_alphas.items() if k in alpha_keys
|
309 |
+
}
|
310 |
+
|
311 |
+
is_model_cpu_offload = False
|
312 |
+
is_sequential_cpu_offload = False
|
313 |
+
state_dict_to_be_used = unet_state_dict if len(unet_state_dict) > 0 else state_dict
|
314 |
+
|
315 |
+
if len(state_dict_to_be_used) > 0:
|
316 |
+
if adapter_name in getattr(self, "peft_config", {}):
|
317 |
+
raise ValueError(
|
318 |
+
f"Adapter name {adapter_name} already in use in the Unet - please select a new adapter name."
|
319 |
+
)
|
320 |
+
|
321 |
+
state_dict = convert_unet_state_dict_to_peft(state_dict_to_be_used)
|
322 |
+
|
323 |
+
if network_alphas is not None:
|
324 |
+
# The alphas state dict have the same structure as Unet, thus we convert it to peft format using
|
325 |
+
# `convert_unet_state_dict_to_peft` method.
|
326 |
+
network_alphas = convert_unet_state_dict_to_peft(network_alphas)
|
327 |
+
|
328 |
+
rank = {}
|
329 |
+
for key, val in state_dict.items():
|
330 |
+
if "lora_B" in key:
|
331 |
+
rank[key] = val.shape[1]
|
332 |
+
|
333 |
+
lora_config_kwargs = get_peft_kwargs(rank, network_alphas, state_dict, is_unet=True)
|
334 |
+
if "use_dora" in lora_config_kwargs:
|
335 |
+
if lora_config_kwargs["use_dora"]:
|
336 |
+
if is_peft_version("<", "0.9.0"):
|
337 |
+
raise ValueError(
|
338 |
+
"You need `peft` 0.9.0 at least to use DoRA-enabled LoRAs. Please upgrade your installation of `peft`."
|
339 |
+
)
|
340 |
+
else:
|
341 |
+
if is_peft_version("<", "0.9.0"):
|
342 |
+
lora_config_kwargs.pop("use_dora")
|
343 |
+
lora_config = LoraConfig(**lora_config_kwargs)
|
344 |
+
|
345 |
+
# adapter_name
|
346 |
+
if adapter_name is None:
|
347 |
+
adapter_name = get_adapter_name(self)
|
348 |
+
|
349 |
+
# In case the pipeline has been already offloaded to CPU - temporarily remove the hooks
|
350 |
+
# otherwise loading LoRA weights will lead to an error
|
351 |
+
is_model_cpu_offload, is_sequential_cpu_offload = self._optionally_disable_offloading(_pipeline)
|
352 |
+
peft_kwargs = {}
|
353 |
+
if is_peft_version(">=", "0.13.1"):
|
354 |
+
peft_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
|
355 |
+
|
356 |
+
inject_adapter_in_model(lora_config, self, adapter_name=adapter_name, **peft_kwargs)
|
357 |
+
incompatible_keys = set_peft_model_state_dict(self, state_dict, adapter_name, **peft_kwargs)
|
358 |
+
|
359 |
+
warn_msg = ""
|
360 |
+
if incompatible_keys is not None:
|
361 |
+
# Check only for unexpected keys.
|
362 |
+
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
363 |
+
if unexpected_keys:
|
364 |
+
lora_unexpected_keys = [k for k in unexpected_keys if "lora_" in k and adapter_name in k]
|
365 |
+
if lora_unexpected_keys:
|
366 |
+
warn_msg = (
|
367 |
+
f"Loading adapter weights from state_dict led to unexpected keys found in the model:"
|
368 |
+
f" {', '.join(lora_unexpected_keys)}. "
|
369 |
+
)
|
370 |
+
|
371 |
+
# Filter missing keys specific to the current adapter.
|
372 |
+
missing_keys = getattr(incompatible_keys, "missing_keys", None)
|
373 |
+
if missing_keys:
|
374 |
+
lora_missing_keys = [k for k in missing_keys if "lora_" in k and adapter_name in k]
|
375 |
+
if lora_missing_keys:
|
376 |
+
warn_msg += (
|
377 |
+
f"Loading adapter weights from state_dict led to missing keys in the model:"
|
378 |
+
f" {', '.join(lora_missing_keys)}."
|
379 |
+
)
|
380 |
+
|
381 |
+
if warn_msg:
|
382 |
+
logger.warning(warn_msg)
|
383 |
+
|
384 |
+
return is_model_cpu_offload, is_sequential_cpu_offload
|
385 |
+
|
386 |
+
@classmethod
|
387 |
+
# Copied from diffusers.loaders.lora_base.LoraBaseMixin._optionally_disable_offloading
|
388 |
+
def _optionally_disable_offloading(cls, _pipeline):
|
389 |
+
"""
|
390 |
+
Optionally removes offloading in case the pipeline has been already sequentially offloaded to CPU.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
_pipeline (`DiffusionPipeline`):
|
394 |
+
The pipeline to disable offloading for.
|
395 |
+
|
396 |
+
Returns:
|
397 |
+
tuple:
|
398 |
+
A tuple indicating if `is_model_cpu_offload` or `is_sequential_cpu_offload` is True.
|
399 |
+
"""
|
400 |
+
return _func_optionally_disable_offloading(_pipeline=_pipeline)
|
401 |
+
|
402 |
+
def save_attn_procs(
|
403 |
+
self,
|
404 |
+
save_directory: Union[str, os.PathLike],
|
405 |
+
is_main_process: bool = True,
|
406 |
+
weight_name: str = None,
|
407 |
+
save_function: Callable = None,
|
408 |
+
safe_serialization: bool = True,
|
409 |
+
**kwargs,
|
410 |
+
):
|
411 |
+
r"""
|
412 |
+
Save attention processor layers to a directory so that it can be reloaded with the
|
413 |
+
[`~loaders.UNet2DConditionLoadersMixin.load_attn_procs`] method.
|
414 |
+
|
415 |
+
Arguments:
|
416 |
+
save_directory (`str` or `os.PathLike`):
|
417 |
+
Directory to save an attention processor to (will be created if it doesn't exist).
|
418 |
+
is_main_process (`bool`, *optional*, defaults to `True`):
|
419 |
+
Whether the process calling this is the main process or not. Useful during distributed training and you
|
420 |
+
need to call this function on all processes. In this case, set `is_main_process=True` only on the main
|
421 |
+
process to avoid race conditions.
|
422 |
+
save_function (`Callable`):
|
423 |
+
The function to use to save the state dictionary. Useful during distributed training when you need to
|
424 |
+
replace `torch.save` with another method. Can be configured with the environment variable
|
425 |
+
`DIFFUSERS_SAVE_MODE`.
|
426 |
+
safe_serialization (`bool`, *optional*, defaults to `True`):
|
427 |
+
Whether to save the model using `safetensors` or with `pickle`.
|
428 |
+
|
429 |
+
Example:
|
430 |
+
|
431 |
+
```py
|
432 |
+
import torch
|
433 |
+
from diffusers import DiffusionPipeline
|
434 |
+
|
435 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
436 |
+
"CompVis/stable-diffusion-v1-4",
|
437 |
+
torch_dtype=torch.float16,
|
438 |
+
).to("cuda")
|
439 |
+
pipeline.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
|
440 |
+
pipeline.unet.save_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
|
441 |
+
```
|
442 |
+
"""
|
443 |
+
from ..models.attention_processor import (
|
444 |
+
CustomDiffusionAttnProcessor,
|
445 |
+
CustomDiffusionAttnProcessor2_0,
|
446 |
+
CustomDiffusionXFormersAttnProcessor,
|
447 |
+
)
|
448 |
+
|
449 |
+
if os.path.isfile(save_directory):
|
450 |
+
logger.error(f"Provided path ({save_directory}) should be a directory, not a file")
|
451 |
+
return
|
452 |
+
|
453 |
+
is_custom_diffusion = any(
|
454 |
+
isinstance(
|
455 |
+
x,
|
456 |
+
(CustomDiffusionAttnProcessor, CustomDiffusionAttnProcessor2_0, CustomDiffusionXFormersAttnProcessor),
|
457 |
+
)
|
458 |
+
for (_, x) in self.attn_processors.items()
|
459 |
+
)
|
460 |
+
if is_custom_diffusion:
|
461 |
+
state_dict = self._get_custom_diffusion_state_dict()
|
462 |
+
if save_function is None and safe_serialization:
|
463 |
+
# safetensors does not support saving dicts with non-tensor values
|
464 |
+
empty_state_dict = {k: v for k, v in state_dict.items() if not isinstance(v, torch.Tensor)}
|
465 |
+
if len(empty_state_dict) > 0:
|
466 |
+
logger.warning(
|
467 |
+
f"Safetensors does not support saving dicts with non-tensor values. "
|
468 |
+
f"The following keys will be ignored: {empty_state_dict.keys()}"
|
469 |
+
)
|
470 |
+
state_dict = {k: v for k, v in state_dict.items() if isinstance(v, torch.Tensor)}
|
471 |
+
else:
|
472 |
+
deprecation_message = "Using the `save_attn_procs()` method has been deprecated and will be removed in a future version. Please use `save_lora_adapter()`."
|
473 |
+
deprecate("save_attn_procs", "0.40.0", deprecation_message)
|
474 |
+
|
475 |
+
if not USE_PEFT_BACKEND:
|
476 |
+
raise ValueError("PEFT backend is required for saving LoRAs using the `save_attn_procs()` method.")
|
477 |
+
|
478 |
+
from peft.utils import get_peft_model_state_dict
|
479 |
+
|
480 |
+
state_dict = get_peft_model_state_dict(self)
|
481 |
+
|
482 |
+
if save_function is None:
|
483 |
+
if safe_serialization:
|
484 |
+
|
485 |
+
def save_function(weights, filename):
|
486 |
+
return safetensors.torch.save_file(weights, filename, metadata={"format": "pt"})
|
487 |
+
|
488 |
+
else:
|
489 |
+
save_function = torch.save
|
490 |
+
|
491 |
+
os.makedirs(save_directory, exist_ok=True)
|
492 |
+
|
493 |
+
if weight_name is None:
|
494 |
+
if safe_serialization:
|
495 |
+
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME_SAFE if is_custom_diffusion else LORA_WEIGHT_NAME_SAFE
|
496 |
+
else:
|
497 |
+
weight_name = CUSTOM_DIFFUSION_WEIGHT_NAME if is_custom_diffusion else LORA_WEIGHT_NAME
|
498 |
+
|
499 |
+
# Save the model
|
500 |
+
save_path = Path(save_directory, weight_name).as_posix()
|
501 |
+
save_function(state_dict, save_path)
|
502 |
+
logger.info(f"Model weights saved in {save_path}")
|
503 |
+
|
504 |
+
def _get_custom_diffusion_state_dict(self):
|
505 |
+
from ..models.attention_processor import (
|
506 |
+
CustomDiffusionAttnProcessor,
|
507 |
+
CustomDiffusionAttnProcessor2_0,
|
508 |
+
CustomDiffusionXFormersAttnProcessor,
|
509 |
+
)
|
510 |
+
|
511 |
+
model_to_save = AttnProcsLayers(
|
512 |
+
{
|
513 |
+
y: x
|
514 |
+
for (y, x) in self.attn_processors.items()
|
515 |
+
if isinstance(
|
516 |
+
x,
|
517 |
+
(
|
518 |
+
CustomDiffusionAttnProcessor,
|
519 |
+
CustomDiffusionAttnProcessor2_0,
|
520 |
+
CustomDiffusionXFormersAttnProcessor,
|
521 |
+
),
|
522 |
+
)
|
523 |
+
}
|
524 |
+
)
|
525 |
+
state_dict = model_to_save.state_dict()
|
526 |
+
for name, attn in self.attn_processors.items():
|
527 |
+
if len(attn.state_dict()) == 0:
|
528 |
+
state_dict[name] = {}
|
529 |
+
|
530 |
+
return state_dict
|
531 |
+
|
532 |
+
def _convert_ip_adapter_image_proj_to_diffusers(self, state_dict, low_cpu_mem_usage=False):
|
533 |
+
if low_cpu_mem_usage:
|
534 |
+
if is_accelerate_available():
|
535 |
+
from accelerate import init_empty_weights
|
536 |
+
|
537 |
+
else:
|
538 |
+
low_cpu_mem_usage = False
|
539 |
+
logger.warning(
|
540 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
541 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
542 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
543 |
+
" install accelerate\n```\n."
|
544 |
+
)
|
545 |
+
|
546 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
547 |
+
raise NotImplementedError(
|
548 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
549 |
+
" `low_cpu_mem_usage=False`."
|
550 |
+
)
|
551 |
+
|
552 |
+
updated_state_dict = {}
|
553 |
+
image_projection = None
|
554 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
555 |
+
|
556 |
+
if "proj.weight" in state_dict:
|
557 |
+
# IP-Adapter
|
558 |
+
num_image_text_embeds = 4
|
559 |
+
clip_embeddings_dim = state_dict["proj.weight"].shape[-1]
|
560 |
+
cross_attention_dim = state_dict["proj.weight"].shape[0] // 4
|
561 |
+
|
562 |
+
with init_context():
|
563 |
+
image_projection = ImageProjection(
|
564 |
+
cross_attention_dim=cross_attention_dim,
|
565 |
+
image_embed_dim=clip_embeddings_dim,
|
566 |
+
num_image_text_embeds=num_image_text_embeds,
|
567 |
+
)
|
568 |
+
|
569 |
+
for key, value in state_dict.items():
|
570 |
+
diffusers_name = key.replace("proj", "image_embeds")
|
571 |
+
updated_state_dict[diffusers_name] = value
|
572 |
+
|
573 |
+
elif "proj.3.weight" in state_dict:
|
574 |
+
# IP-Adapter Full
|
575 |
+
clip_embeddings_dim = state_dict["proj.0.weight"].shape[0]
|
576 |
+
cross_attention_dim = state_dict["proj.3.weight"].shape[0]
|
577 |
+
|
578 |
+
with init_context():
|
579 |
+
image_projection = IPAdapterFullImageProjection(
|
580 |
+
cross_attention_dim=cross_attention_dim, image_embed_dim=clip_embeddings_dim
|
581 |
+
)
|
582 |
+
|
583 |
+
for key, value in state_dict.items():
|
584 |
+
diffusers_name = key.replace("proj.0", "ff.net.0.proj")
|
585 |
+
diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
|
586 |
+
diffusers_name = diffusers_name.replace("proj.3", "norm")
|
587 |
+
updated_state_dict[diffusers_name] = value
|
588 |
+
|
589 |
+
elif "perceiver_resampler.proj_in.weight" in state_dict:
|
590 |
+
# IP-Adapter Face ID Plus
|
591 |
+
id_embeddings_dim = state_dict["proj.0.weight"].shape[1]
|
592 |
+
embed_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[0]
|
593 |
+
hidden_dims = state_dict["perceiver_resampler.proj_in.weight"].shape[1]
|
594 |
+
output_dims = state_dict["perceiver_resampler.proj_out.weight"].shape[0]
|
595 |
+
heads = state_dict["perceiver_resampler.layers.0.0.to_q.weight"].shape[0] // 64
|
596 |
+
|
597 |
+
with init_context():
|
598 |
+
image_projection = IPAdapterFaceIDPlusImageProjection(
|
599 |
+
embed_dims=embed_dims,
|
600 |
+
output_dims=output_dims,
|
601 |
+
hidden_dims=hidden_dims,
|
602 |
+
heads=heads,
|
603 |
+
id_embeddings_dim=id_embeddings_dim,
|
604 |
+
)
|
605 |
+
|
606 |
+
for key, value in state_dict.items():
|
607 |
+
diffusers_name = key.replace("perceiver_resampler.", "")
|
608 |
+
diffusers_name = diffusers_name.replace("0.to", "attn.to")
|
609 |
+
diffusers_name = diffusers_name.replace("0.1.0.", "0.ff.0.")
|
610 |
+
diffusers_name = diffusers_name.replace("0.1.1.weight", "0.ff.1.net.0.proj.weight")
|
611 |
+
diffusers_name = diffusers_name.replace("0.1.3.weight", "0.ff.1.net.2.weight")
|
612 |
+
diffusers_name = diffusers_name.replace("1.1.0.", "1.ff.0.")
|
613 |
+
diffusers_name = diffusers_name.replace("1.1.1.weight", "1.ff.1.net.0.proj.weight")
|
614 |
+
diffusers_name = diffusers_name.replace("1.1.3.weight", "1.ff.1.net.2.weight")
|
615 |
+
diffusers_name = diffusers_name.replace("2.1.0.", "2.ff.0.")
|
616 |
+
diffusers_name = diffusers_name.replace("2.1.1.weight", "2.ff.1.net.0.proj.weight")
|
617 |
+
diffusers_name = diffusers_name.replace("2.1.3.weight", "2.ff.1.net.2.weight")
|
618 |
+
diffusers_name = diffusers_name.replace("3.1.0.", "3.ff.0.")
|
619 |
+
diffusers_name = diffusers_name.replace("3.1.1.weight", "3.ff.1.net.0.proj.weight")
|
620 |
+
diffusers_name = diffusers_name.replace("3.1.3.weight", "3.ff.1.net.2.weight")
|
621 |
+
diffusers_name = diffusers_name.replace("layers.0.0", "layers.0.ln0")
|
622 |
+
diffusers_name = diffusers_name.replace("layers.0.1", "layers.0.ln1")
|
623 |
+
diffusers_name = diffusers_name.replace("layers.1.0", "layers.1.ln0")
|
624 |
+
diffusers_name = diffusers_name.replace("layers.1.1", "layers.1.ln1")
|
625 |
+
diffusers_name = diffusers_name.replace("layers.2.0", "layers.2.ln0")
|
626 |
+
diffusers_name = diffusers_name.replace("layers.2.1", "layers.2.ln1")
|
627 |
+
diffusers_name = diffusers_name.replace("layers.3.0", "layers.3.ln0")
|
628 |
+
diffusers_name = diffusers_name.replace("layers.3.1", "layers.3.ln1")
|
629 |
+
|
630 |
+
if "norm1" in diffusers_name:
|
631 |
+
updated_state_dict[diffusers_name.replace("0.norm1", "0")] = value
|
632 |
+
elif "norm2" in diffusers_name:
|
633 |
+
updated_state_dict[diffusers_name.replace("0.norm2", "1")] = value
|
634 |
+
elif "to_kv" in diffusers_name:
|
635 |
+
v_chunk = value.chunk(2, dim=0)
|
636 |
+
updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
|
637 |
+
updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
|
638 |
+
elif "to_out" in diffusers_name:
|
639 |
+
updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
|
640 |
+
elif "proj.0.weight" == diffusers_name:
|
641 |
+
updated_state_dict["proj.net.0.proj.weight"] = value
|
642 |
+
elif "proj.0.bias" == diffusers_name:
|
643 |
+
updated_state_dict["proj.net.0.proj.bias"] = value
|
644 |
+
elif "proj.2.weight" == diffusers_name:
|
645 |
+
updated_state_dict["proj.net.2.weight"] = value
|
646 |
+
elif "proj.2.bias" == diffusers_name:
|
647 |
+
updated_state_dict["proj.net.2.bias"] = value
|
648 |
+
else:
|
649 |
+
updated_state_dict[diffusers_name] = value
|
650 |
+
|
651 |
+
elif "norm.weight" in state_dict:
|
652 |
+
# IP-Adapter Face ID
|
653 |
+
id_embeddings_dim_in = state_dict["proj.0.weight"].shape[1]
|
654 |
+
id_embeddings_dim_out = state_dict["proj.0.weight"].shape[0]
|
655 |
+
multiplier = id_embeddings_dim_out // id_embeddings_dim_in
|
656 |
+
norm_layer = "norm.weight"
|
657 |
+
cross_attention_dim = state_dict[norm_layer].shape[0]
|
658 |
+
num_tokens = state_dict["proj.2.weight"].shape[0] // cross_attention_dim
|
659 |
+
|
660 |
+
with init_context():
|
661 |
+
image_projection = IPAdapterFaceIDImageProjection(
|
662 |
+
cross_attention_dim=cross_attention_dim,
|
663 |
+
image_embed_dim=id_embeddings_dim_in,
|
664 |
+
mult=multiplier,
|
665 |
+
num_tokens=num_tokens,
|
666 |
+
)
|
667 |
+
|
668 |
+
for key, value in state_dict.items():
|
669 |
+
diffusers_name = key.replace("proj.0", "ff.net.0.proj")
|
670 |
+
diffusers_name = diffusers_name.replace("proj.2", "ff.net.2")
|
671 |
+
updated_state_dict[diffusers_name] = value
|
672 |
+
|
673 |
+
else:
|
674 |
+
# IP-Adapter Plus
|
675 |
+
num_image_text_embeds = state_dict["latents"].shape[1]
|
676 |
+
embed_dims = state_dict["proj_in.weight"].shape[1]
|
677 |
+
output_dims = state_dict["proj_out.weight"].shape[0]
|
678 |
+
hidden_dims = state_dict["latents"].shape[2]
|
679 |
+
attn_key_present = any("attn" in k for k in state_dict)
|
680 |
+
heads = (
|
681 |
+
state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
|
682 |
+
if attn_key_present
|
683 |
+
else state_dict["layers.0.0.to_q.weight"].shape[0] // 64
|
684 |
+
)
|
685 |
+
|
686 |
+
with init_context():
|
687 |
+
image_projection = IPAdapterPlusImageProjection(
|
688 |
+
embed_dims=embed_dims,
|
689 |
+
output_dims=output_dims,
|
690 |
+
hidden_dims=hidden_dims,
|
691 |
+
heads=heads,
|
692 |
+
num_queries=num_image_text_embeds,
|
693 |
+
)
|
694 |
+
|
695 |
+
for key, value in state_dict.items():
|
696 |
+
diffusers_name = key.replace("0.to", "2.to")
|
697 |
+
|
698 |
+
diffusers_name = diffusers_name.replace("0.0.norm1", "0.ln0")
|
699 |
+
diffusers_name = diffusers_name.replace("0.0.norm2", "0.ln1")
|
700 |
+
diffusers_name = diffusers_name.replace("1.0.norm1", "1.ln0")
|
701 |
+
diffusers_name = diffusers_name.replace("1.0.norm2", "1.ln1")
|
702 |
+
diffusers_name = diffusers_name.replace("2.0.norm1", "2.ln0")
|
703 |
+
diffusers_name = diffusers_name.replace("2.0.norm2", "2.ln1")
|
704 |
+
diffusers_name = diffusers_name.replace("3.0.norm1", "3.ln0")
|
705 |
+
diffusers_name = diffusers_name.replace("3.0.norm2", "3.ln1")
|
706 |
+
|
707 |
+
if "to_kv" in diffusers_name:
|
708 |
+
parts = diffusers_name.split(".")
|
709 |
+
parts[2] = "attn"
|
710 |
+
diffusers_name = ".".join(parts)
|
711 |
+
v_chunk = value.chunk(2, dim=0)
|
712 |
+
updated_state_dict[diffusers_name.replace("to_kv", "to_k")] = v_chunk[0]
|
713 |
+
updated_state_dict[diffusers_name.replace("to_kv", "to_v")] = v_chunk[1]
|
714 |
+
elif "to_q" in diffusers_name:
|
715 |
+
parts = diffusers_name.split(".")
|
716 |
+
parts[2] = "attn"
|
717 |
+
diffusers_name = ".".join(parts)
|
718 |
+
updated_state_dict[diffusers_name] = value
|
719 |
+
elif "to_out" in diffusers_name:
|
720 |
+
parts = diffusers_name.split(".")
|
721 |
+
parts[2] = "attn"
|
722 |
+
diffusers_name = ".".join(parts)
|
723 |
+
updated_state_dict[diffusers_name.replace("to_out", "to_out.0")] = value
|
724 |
+
else:
|
725 |
+
diffusers_name = diffusers_name.replace("0.1.0", "0.ff.0")
|
726 |
+
diffusers_name = diffusers_name.replace("0.1.1", "0.ff.1.net.0.proj")
|
727 |
+
diffusers_name = diffusers_name.replace("0.1.3", "0.ff.1.net.2")
|
728 |
+
|
729 |
+
diffusers_name = diffusers_name.replace("1.1.0", "1.ff.0")
|
730 |
+
diffusers_name = diffusers_name.replace("1.1.1", "1.ff.1.net.0.proj")
|
731 |
+
diffusers_name = diffusers_name.replace("1.1.3", "1.ff.1.net.2")
|
732 |
+
|
733 |
+
diffusers_name = diffusers_name.replace("2.1.0", "2.ff.0")
|
734 |
+
diffusers_name = diffusers_name.replace("2.1.1", "2.ff.1.net.0.proj")
|
735 |
+
diffusers_name = diffusers_name.replace("2.1.3", "2.ff.1.net.2")
|
736 |
+
|
737 |
+
diffusers_name = diffusers_name.replace("3.1.0", "3.ff.0")
|
738 |
+
diffusers_name = diffusers_name.replace("3.1.1", "3.ff.1.net.0.proj")
|
739 |
+
diffusers_name = diffusers_name.replace("3.1.3", "3.ff.1.net.2")
|
740 |
+
updated_state_dict[diffusers_name] = value
|
741 |
+
|
742 |
+
if not low_cpu_mem_usage:
|
743 |
+
image_projection.load_state_dict(updated_state_dict, strict=True)
|
744 |
+
else:
|
745 |
+
load_model_dict_into_meta(image_projection, updated_state_dict, device=self.device, dtype=self.dtype)
|
746 |
+
|
747 |
+
return image_projection
|
748 |
+
|
749 |
+
def _convert_ip_adapter_attn_to_diffusers(self, state_dicts, low_cpu_mem_usage=False):
|
750 |
+
from ..models.attention_processor import (
|
751 |
+
IPAdapterAttnProcessor,
|
752 |
+
IPAdapterAttnProcessor2_0,
|
753 |
+
IPAdapterXFormersAttnProcessor,
|
754 |
+
)
|
755 |
+
|
756 |
+
if low_cpu_mem_usage:
|
757 |
+
if is_accelerate_available():
|
758 |
+
from accelerate import init_empty_weights
|
759 |
+
|
760 |
+
else:
|
761 |
+
low_cpu_mem_usage = False
|
762 |
+
logger.warning(
|
763 |
+
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
764 |
+
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
765 |
+
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
766 |
+
" install accelerate\n```\n."
|
767 |
+
)
|
768 |
+
|
769 |
+
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
770 |
+
raise NotImplementedError(
|
771 |
+
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
772 |
+
" `low_cpu_mem_usage=False`."
|
773 |
+
)
|
774 |
+
|
775 |
+
# set ip-adapter cross-attention processors & load state_dict
|
776 |
+
attn_procs = {}
|
777 |
+
key_id = 1
|
778 |
+
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
779 |
+
for name in self.attn_processors.keys():
|
780 |
+
cross_attention_dim = None if name.endswith("attn1.processor") else self.config.cross_attention_dim
|
781 |
+
if name.startswith("mid_block"):
|
782 |
+
hidden_size = self.config.block_out_channels[-1]
|
783 |
+
elif name.startswith("up_blocks"):
|
784 |
+
block_id = int(name[len("up_blocks.")])
|
785 |
+
hidden_size = list(reversed(self.config.block_out_channels))[block_id]
|
786 |
+
elif name.startswith("down_blocks"):
|
787 |
+
block_id = int(name[len("down_blocks.")])
|
788 |
+
hidden_size = self.config.block_out_channels[block_id]
|
789 |
+
|
790 |
+
if cross_attention_dim is None or "motion_modules" in name:
|
791 |
+
attn_processor_class = self.attn_processors[name].__class__
|
792 |
+
attn_procs[name] = attn_processor_class()
|
793 |
+
else:
|
794 |
+
if "XFormers" in str(self.attn_processors[name].__class__):
|
795 |
+
attn_processor_class = IPAdapterXFormersAttnProcessor
|
796 |
+
else:
|
797 |
+
attn_processor_class = (
|
798 |
+
IPAdapterAttnProcessor2_0
|
799 |
+
if hasattr(F, "scaled_dot_product_attention")
|
800 |
+
else IPAdapterAttnProcessor
|
801 |
+
)
|
802 |
+
num_image_text_embeds = []
|
803 |
+
for state_dict in state_dicts:
|
804 |
+
if "proj.weight" in state_dict["image_proj"]:
|
805 |
+
# IP-Adapter
|
806 |
+
num_image_text_embeds += [4]
|
807 |
+
elif "proj.3.weight" in state_dict["image_proj"]:
|
808 |
+
# IP-Adapter Full Face
|
809 |
+
num_image_text_embeds += [257] # 256 CLIP tokens + 1 CLS token
|
810 |
+
elif "perceiver_resampler.proj_in.weight" in state_dict["image_proj"]:
|
811 |
+
# IP-Adapter Face ID Plus
|
812 |
+
num_image_text_embeds += [4]
|
813 |
+
elif "norm.weight" in state_dict["image_proj"]:
|
814 |
+
# IP-Adapter Face ID
|
815 |
+
num_image_text_embeds += [4]
|
816 |
+
else:
|
817 |
+
# IP-Adapter Plus
|
818 |
+
num_image_text_embeds += [state_dict["image_proj"]["latents"].shape[1]]
|
819 |
+
|
820 |
+
with init_context():
|
821 |
+
attn_procs[name] = attn_processor_class(
|
822 |
+
hidden_size=hidden_size,
|
823 |
+
cross_attention_dim=cross_attention_dim,
|
824 |
+
scale=1.0,
|
825 |
+
num_tokens=num_image_text_embeds,
|
826 |
+
)
|
827 |
+
|
828 |
+
value_dict = {}
|
829 |
+
for i, state_dict in enumerate(state_dicts):
|
830 |
+
value_dict.update({f"to_k_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_k_ip.weight"]})
|
831 |
+
value_dict.update({f"to_v_ip.{i}.weight": state_dict["ip_adapter"][f"{key_id}.to_v_ip.weight"]})
|
832 |
+
|
833 |
+
if not low_cpu_mem_usage:
|
834 |
+
attn_procs[name].load_state_dict(value_dict)
|
835 |
+
else:
|
836 |
+
device = next(iter(value_dict.values())).device
|
837 |
+
dtype = next(iter(value_dict.values())).dtype
|
838 |
+
load_model_dict_into_meta(attn_procs[name], value_dict, device=device, dtype=dtype)
|
839 |
+
|
840 |
+
key_id += 2
|
841 |
+
|
842 |
+
return attn_procs
|
843 |
+
|
844 |
+
def _load_ip_adapter_weights(self, state_dicts, low_cpu_mem_usage=False):
|
845 |
+
if not isinstance(state_dicts, list):
|
846 |
+
state_dicts = [state_dicts]
|
847 |
+
|
848 |
+
# Kolors Unet already has a `encoder_hid_proj`
|
849 |
+
if (
|
850 |
+
self.encoder_hid_proj is not None
|
851 |
+
and self.config.encoder_hid_dim_type == "text_proj"
|
852 |
+
and not hasattr(self, "text_encoder_hid_proj")
|
853 |
+
):
|
854 |
+
self.text_encoder_hid_proj = self.encoder_hid_proj
|
855 |
+
|
856 |
+
# Set encoder_hid_proj after loading ip_adapter weights,
|
857 |
+
# because `IPAdapterPlusImageProjection` also has `attn_processors`.
|
858 |
+
self.encoder_hid_proj = None
|
859 |
+
|
860 |
+
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dicts, low_cpu_mem_usage=low_cpu_mem_usage)
|
861 |
+
self.set_attn_processor(attn_procs)
|
862 |
+
|
863 |
+
# convert IP-Adapter Image Projection layers to diffusers
|
864 |
+
image_projection_layers = []
|
865 |
+
for state_dict in state_dicts:
|
866 |
+
image_projection_layer = self._convert_ip_adapter_image_proj_to_diffusers(
|
867 |
+
state_dict["image_proj"], low_cpu_mem_usage=low_cpu_mem_usage
|
868 |
+
)
|
869 |
+
image_projection_layers.append(image_projection_layer)
|
870 |
+
|
871 |
+
self.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)
|
872 |
+
self.config.encoder_hid_dim_type = "ip_image_proj"
|
873 |
+
|
874 |
+
self.to(dtype=self.dtype, device=self.device)
|
875 |
+
|
876 |
+
def _load_ip_adapter_loras(self, state_dicts):
|
877 |
+
lora_dicts = {}
|
878 |
+
for key_id, name in enumerate(self.attn_processors.keys()):
|
879 |
+
for i, state_dict in enumerate(state_dicts):
|
880 |
+
if f"{key_id}.to_k_lora.down.weight" in state_dict["ip_adapter"]:
|
881 |
+
if i not in lora_dicts:
|
882 |
+
lora_dicts[i] = {}
|
883 |
+
lora_dicts[i].update(
|
884 |
+
{
|
885 |
+
f"unet.{name}.to_k_lora.down.weight": state_dict["ip_adapter"][
|
886 |
+
f"{key_id}.to_k_lora.down.weight"
|
887 |
+
]
|
888 |
+
}
|
889 |
+
)
|
890 |
+
lora_dicts[i].update(
|
891 |
+
{
|
892 |
+
f"unet.{name}.to_q_lora.down.weight": state_dict["ip_adapter"][
|
893 |
+
f"{key_id}.to_q_lora.down.weight"
|
894 |
+
]
|
895 |
+
}
|
896 |
+
)
|
897 |
+
lora_dicts[i].update(
|
898 |
+
{
|
899 |
+
f"unet.{name}.to_v_lora.down.weight": state_dict["ip_adapter"][
|
900 |
+
f"{key_id}.to_v_lora.down.weight"
|
901 |
+
]
|
902 |
+
}
|
903 |
+
)
|
904 |
+
lora_dicts[i].update(
|
905 |
+
{
|
906 |
+
f"unet.{name}.to_out_lora.down.weight": state_dict["ip_adapter"][
|
907 |
+
f"{key_id}.to_out_lora.down.weight"
|
908 |
+
]
|
909 |
+
}
|
910 |
+
)
|
911 |
+
lora_dicts[i].update(
|
912 |
+
{f"unet.{name}.to_k_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_k_lora.up.weight"]}
|
913 |
+
)
|
914 |
+
lora_dicts[i].update(
|
915 |
+
{f"unet.{name}.to_q_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_q_lora.up.weight"]}
|
916 |
+
)
|
917 |
+
lora_dicts[i].update(
|
918 |
+
{f"unet.{name}.to_v_lora.up.weight": state_dict["ip_adapter"][f"{key_id}.to_v_lora.up.weight"]}
|
919 |
+
)
|
920 |
+
lora_dicts[i].update(
|
921 |
+
{
|
922 |
+
f"unet.{name}.to_out_lora.up.weight": state_dict["ip_adapter"][
|
923 |
+
f"{key_id}.to_out_lora.up.weight"
|
924 |
+
]
|
925 |
+
}
|
926 |
+
)
|
927 |
+
return lora_dicts
|
icedit/diffusers/loaders/unet_loader_utils.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import copy
|
15 |
+
from typing import TYPE_CHECKING, Dict, List, Union
|
16 |
+
|
17 |
+
from ..utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
# import here to avoid circular imports
|
22 |
+
from ..models import UNet2DConditionModel
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
25 |
+
|
26 |
+
|
27 |
+
def _translate_into_actual_layer_name(name):
|
28 |
+
"""Translate user-friendly name (e.g. 'mid') into actual layer name (e.g. 'mid_block.attentions.0')"""
|
29 |
+
if name == "mid":
|
30 |
+
return "mid_block.attentions.0"
|
31 |
+
|
32 |
+
updown, block, attn = name.split(".")
|
33 |
+
|
34 |
+
updown = updown.replace("down", "down_blocks").replace("up", "up_blocks")
|
35 |
+
block = block.replace("block_", "")
|
36 |
+
attn = "attentions." + attn
|
37 |
+
|
38 |
+
return ".".join((updown, block, attn))
|
39 |
+
|
40 |
+
|
41 |
+
def _maybe_expand_lora_scales(
|
42 |
+
unet: "UNet2DConditionModel", weight_scales: List[Union[float, Dict]], default_scale=1.0
|
43 |
+
):
|
44 |
+
blocks_with_transformer = {
|
45 |
+
"down": [i for i, block in enumerate(unet.down_blocks) if hasattr(block, "attentions")],
|
46 |
+
"up": [i for i, block in enumerate(unet.up_blocks) if hasattr(block, "attentions")],
|
47 |
+
}
|
48 |
+
transformer_per_block = {"down": unet.config.layers_per_block, "up": unet.config.layers_per_block + 1}
|
49 |
+
|
50 |
+
expanded_weight_scales = [
|
51 |
+
_maybe_expand_lora_scales_for_one_adapter(
|
52 |
+
weight_for_adapter,
|
53 |
+
blocks_with_transformer,
|
54 |
+
transformer_per_block,
|
55 |
+
unet.state_dict(),
|
56 |
+
default_scale=default_scale,
|
57 |
+
)
|
58 |
+
for weight_for_adapter in weight_scales
|
59 |
+
]
|
60 |
+
|
61 |
+
return expanded_weight_scales
|
62 |
+
|
63 |
+
|
64 |
+
def _maybe_expand_lora_scales_for_one_adapter(
|
65 |
+
scales: Union[float, Dict],
|
66 |
+
blocks_with_transformer: Dict[str, int],
|
67 |
+
transformer_per_block: Dict[str, int],
|
68 |
+
state_dict: None,
|
69 |
+
default_scale: float = 1.0,
|
70 |
+
):
|
71 |
+
"""
|
72 |
+
Expands the inputs into a more granular dictionary. See the example below for more details.
|
73 |
+
|
74 |
+
Parameters:
|
75 |
+
scales (`Union[float, Dict]`):
|
76 |
+
Scales dict to expand.
|
77 |
+
blocks_with_transformer (`Dict[str, int]`):
|
78 |
+
Dict with keys 'up' and 'down', showing which blocks have transformer layers
|
79 |
+
transformer_per_block (`Dict[str, int]`):
|
80 |
+
Dict with keys 'up' and 'down', showing how many transformer layers each block has
|
81 |
+
|
82 |
+
E.g. turns
|
83 |
+
```python
|
84 |
+
scales = {"down": 2, "mid": 3, "up": {"block_0": 4, "block_1": [5, 6, 7]}}
|
85 |
+
blocks_with_transformer = {"down": [1, 2], "up": [0, 1]}
|
86 |
+
transformer_per_block = {"down": 2, "up": 3}
|
87 |
+
```
|
88 |
+
into
|
89 |
+
```python
|
90 |
+
{
|
91 |
+
"down.block_1.0": 2,
|
92 |
+
"down.block_1.1": 2,
|
93 |
+
"down.block_2.0": 2,
|
94 |
+
"down.block_2.1": 2,
|
95 |
+
"mid": 3,
|
96 |
+
"up.block_0.0": 4,
|
97 |
+
"up.block_0.1": 4,
|
98 |
+
"up.block_0.2": 4,
|
99 |
+
"up.block_1.0": 5,
|
100 |
+
"up.block_1.1": 6,
|
101 |
+
"up.block_1.2": 7,
|
102 |
+
}
|
103 |
+
```
|
104 |
+
"""
|
105 |
+
if sorted(blocks_with_transformer.keys()) != ["down", "up"]:
|
106 |
+
raise ValueError("blocks_with_transformer needs to be a dict with keys `'down' and `'up'`")
|
107 |
+
|
108 |
+
if sorted(transformer_per_block.keys()) != ["down", "up"]:
|
109 |
+
raise ValueError("transformer_per_block needs to be a dict with keys `'down' and `'up'`")
|
110 |
+
|
111 |
+
if not isinstance(scales, dict):
|
112 |
+
# don't expand if scales is a single number
|
113 |
+
return scales
|
114 |
+
|
115 |
+
scales = copy.deepcopy(scales)
|
116 |
+
|
117 |
+
if "mid" not in scales:
|
118 |
+
scales["mid"] = default_scale
|
119 |
+
elif isinstance(scales["mid"], list):
|
120 |
+
if len(scales["mid"]) == 1:
|
121 |
+
scales["mid"] = scales["mid"][0]
|
122 |
+
else:
|
123 |
+
raise ValueError(f"Expected 1 scales for mid, got {len(scales['mid'])}.")
|
124 |
+
|
125 |
+
for updown in ["up", "down"]:
|
126 |
+
if updown not in scales:
|
127 |
+
scales[updown] = default_scale
|
128 |
+
|
129 |
+
# eg {"down": 1} to {"down": {"block_1": 1, "block_2": 1}}}
|
130 |
+
if not isinstance(scales[updown], dict):
|
131 |
+
scales[updown] = {f"block_{i}": copy.deepcopy(scales[updown]) for i in blocks_with_transformer[updown]}
|
132 |
+
|
133 |
+
# eg {"down": {"block_1": 1}} to {"down": {"block_1": [1, 1]}}
|
134 |
+
for i in blocks_with_transformer[updown]:
|
135 |
+
block = f"block_{i}"
|
136 |
+
# set not assigned blocks to default scale
|
137 |
+
if block not in scales[updown]:
|
138 |
+
scales[updown][block] = default_scale
|
139 |
+
if not isinstance(scales[updown][block], list):
|
140 |
+
scales[updown][block] = [scales[updown][block] for _ in range(transformer_per_block[updown])]
|
141 |
+
elif len(scales[updown][block]) == 1:
|
142 |
+
# a list specifying scale to each masked IP input
|
143 |
+
scales[updown][block] = scales[updown][block] * transformer_per_block[updown]
|
144 |
+
elif len(scales[updown][block]) != transformer_per_block[updown]:
|
145 |
+
raise ValueError(
|
146 |
+
f"Expected {transformer_per_block[updown]} scales for {updown}.{block}, got {len(scales[updown][block])}."
|
147 |
+
)
|
148 |
+
|
149 |
+
# eg {"down": "block_1": [1, 1]}} to {"down.block_1.0": 1, "down.block_1.1": 1}
|
150 |
+
for i in blocks_with_transformer[updown]:
|
151 |
+
block = f"block_{i}"
|
152 |
+
for tf_idx, value in enumerate(scales[updown][block]):
|
153 |
+
scales[f"{updown}.{block}.{tf_idx}"] = value
|
154 |
+
|
155 |
+
del scales[updown]
|
156 |
+
|
157 |
+
for layer in scales.keys():
|
158 |
+
if not any(_translate_into_actual_layer_name(layer) in module for module in state_dict.keys()):
|
159 |
+
raise ValueError(
|
160 |
+
f"Can't set lora scale for layer {layer}. It either doesn't exist in this unet or it has no attentions."
|
161 |
+
)
|
162 |
+
|
163 |
+
return {_translate_into_actual_layer_name(name): weight for name, weight in scales.items()}
|
icedit/diffusers/loaders/utils.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Dict
|
16 |
+
|
17 |
+
import torch
|
18 |
+
|
19 |
+
|
20 |
+
class AttnProcsLayers(torch.nn.Module):
|
21 |
+
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
22 |
+
super().__init__()
|
23 |
+
self.layers = torch.nn.ModuleList(state_dict.values())
|
24 |
+
self.mapping = dict(enumerate(state_dict.keys()))
|
25 |
+
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
26 |
+
|
27 |
+
# .processor for unet, .self_attn for text encoder
|
28 |
+
self.split_keys = [".processor", ".self_attn"]
|
29 |
+
|
30 |
+
# we add a hook to state_dict() and load_state_dict() so that the
|
31 |
+
# naming fits with `unet.attn_processors`
|
32 |
+
def map_to(module, state_dict, *args, **kwargs):
|
33 |
+
new_state_dict = {}
|
34 |
+
for key, value in state_dict.items():
|
35 |
+
num = int(key.split(".")[1]) # 0 is always "layers"
|
36 |
+
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
37 |
+
new_state_dict[new_key] = value
|
38 |
+
|
39 |
+
return new_state_dict
|
40 |
+
|
41 |
+
def remap_key(key, state_dict):
|
42 |
+
for k in self.split_keys:
|
43 |
+
if k in key:
|
44 |
+
return key.split(k)[0] + k
|
45 |
+
|
46 |
+
raise ValueError(
|
47 |
+
f"There seems to be a problem with the state_dict: {set(state_dict.keys())}. {key} has to have one of {self.split_keys}."
|
48 |
+
)
|
49 |
+
|
50 |
+
def map_from(module, state_dict, *args, **kwargs):
|
51 |
+
all_keys = list(state_dict.keys())
|
52 |
+
for key in all_keys:
|
53 |
+
replace_key = remap_key(key, state_dict)
|
54 |
+
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
|
55 |
+
state_dict[new_key] = state_dict[key]
|
56 |
+
del state_dict[key]
|
57 |
+
|
58 |
+
self._register_state_dict_hook(map_to)
|
59 |
+
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
icedit/diffusers/models/__init__.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ..utils import (
|
18 |
+
DIFFUSERS_SLOW_IMPORT,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {}
|
26 |
+
|
27 |
+
if is_torch_available():
|
28 |
+
_import_structure["adapter"] = ["MultiAdapter", "T2IAdapter"]
|
29 |
+
_import_structure["autoencoders.autoencoder_asym_kl"] = ["AsymmetricAutoencoderKL"]
|
30 |
+
_import_structure["autoencoders.autoencoder_dc"] = ["AutoencoderDC"]
|
31 |
+
_import_structure["autoencoders.autoencoder_kl"] = ["AutoencoderKL"]
|
32 |
+
_import_structure["autoencoders.autoencoder_kl_allegro"] = ["AutoencoderKLAllegro"]
|
33 |
+
_import_structure["autoencoders.autoencoder_kl_cogvideox"] = ["AutoencoderKLCogVideoX"]
|
34 |
+
_import_structure["autoencoders.autoencoder_kl_hunyuan_video"] = ["AutoencoderKLHunyuanVideo"]
|
35 |
+
_import_structure["autoencoders.autoencoder_kl_ltx"] = ["AutoencoderKLLTXVideo"]
|
36 |
+
_import_structure["autoencoders.autoencoder_kl_mochi"] = ["AutoencoderKLMochi"]
|
37 |
+
_import_structure["autoencoders.autoencoder_kl_temporal_decoder"] = ["AutoencoderKLTemporalDecoder"]
|
38 |
+
_import_structure["autoencoders.autoencoder_oobleck"] = ["AutoencoderOobleck"]
|
39 |
+
_import_structure["autoencoders.autoencoder_tiny"] = ["AutoencoderTiny"]
|
40 |
+
_import_structure["autoencoders.consistency_decoder_vae"] = ["ConsistencyDecoderVAE"]
|
41 |
+
_import_structure["autoencoders.vq_model"] = ["VQModel"]
|
42 |
+
_import_structure["controlnets.controlnet"] = ["ControlNetModel"]
|
43 |
+
_import_structure["controlnets.controlnet_flux"] = ["FluxControlNetModel", "FluxMultiControlNetModel"]
|
44 |
+
_import_structure["controlnets.controlnet_hunyuan"] = [
|
45 |
+
"HunyuanDiT2DControlNetModel",
|
46 |
+
"HunyuanDiT2DMultiControlNetModel",
|
47 |
+
]
|
48 |
+
_import_structure["controlnets.controlnet_sd3"] = ["SD3ControlNetModel", "SD3MultiControlNetModel"]
|
49 |
+
_import_structure["controlnets.controlnet_sparsectrl"] = ["SparseControlNetModel"]
|
50 |
+
_import_structure["controlnets.controlnet_union"] = ["ControlNetUnionModel"]
|
51 |
+
_import_structure["controlnets.controlnet_xs"] = ["ControlNetXSAdapter", "UNetControlNetXSModel"]
|
52 |
+
_import_structure["controlnets.multicontrolnet"] = ["MultiControlNetModel"]
|
53 |
+
_import_structure["embeddings"] = ["ImageProjection"]
|
54 |
+
_import_structure["modeling_utils"] = ["ModelMixin"]
|
55 |
+
_import_structure["transformers.auraflow_transformer_2d"] = ["AuraFlowTransformer2DModel"]
|
56 |
+
_import_structure["transformers.cogvideox_transformer_3d"] = ["CogVideoXTransformer3DModel"]
|
57 |
+
_import_structure["transformers.dit_transformer_2d"] = ["DiTTransformer2DModel"]
|
58 |
+
_import_structure["transformers.dual_transformer_2d"] = ["DualTransformer2DModel"]
|
59 |
+
_import_structure["transformers.hunyuan_transformer_2d"] = ["HunyuanDiT2DModel"]
|
60 |
+
_import_structure["transformers.latte_transformer_3d"] = ["LatteTransformer3DModel"]
|
61 |
+
_import_structure["transformers.lumina_nextdit2d"] = ["LuminaNextDiT2DModel"]
|
62 |
+
_import_structure["transformers.pixart_transformer_2d"] = ["PixArtTransformer2DModel"]
|
63 |
+
_import_structure["transformers.prior_transformer"] = ["PriorTransformer"]
|
64 |
+
_import_structure["transformers.sana_transformer"] = ["SanaTransformer2DModel"]
|
65 |
+
_import_structure["transformers.stable_audio_transformer"] = ["StableAudioDiTModel"]
|
66 |
+
_import_structure["transformers.t5_film_transformer"] = ["T5FilmDecoder"]
|
67 |
+
_import_structure["transformers.transformer_2d"] = ["Transformer2DModel"]
|
68 |
+
_import_structure["transformers.transformer_allegro"] = ["AllegroTransformer3DModel"]
|
69 |
+
_import_structure["transformers.transformer_cogview3plus"] = ["CogView3PlusTransformer2DModel"]
|
70 |
+
_import_structure["transformers.transformer_flux"] = ["FluxTransformer2DModel"]
|
71 |
+
_import_structure["transformers.transformer_hunyuan_video"] = ["HunyuanVideoTransformer3DModel"]
|
72 |
+
_import_structure["transformers.transformer_ltx"] = ["LTXVideoTransformer3DModel"]
|
73 |
+
_import_structure["transformers.transformer_mochi"] = ["MochiTransformer3DModel"]
|
74 |
+
_import_structure["transformers.transformer_sd3"] = ["SD3Transformer2DModel"]
|
75 |
+
_import_structure["transformers.transformer_temporal"] = ["TransformerTemporalModel"]
|
76 |
+
_import_structure["unets.unet_1d"] = ["UNet1DModel"]
|
77 |
+
_import_structure["unets.unet_2d"] = ["UNet2DModel"]
|
78 |
+
_import_structure["unets.unet_2d_condition"] = ["UNet2DConditionModel"]
|
79 |
+
_import_structure["unets.unet_3d_condition"] = ["UNet3DConditionModel"]
|
80 |
+
_import_structure["unets.unet_i2vgen_xl"] = ["I2VGenXLUNet"]
|
81 |
+
_import_structure["unets.unet_kandinsky3"] = ["Kandinsky3UNet"]
|
82 |
+
_import_structure["unets.unet_motion_model"] = ["MotionAdapter", "UNetMotionModel"]
|
83 |
+
_import_structure["unets.unet_spatio_temporal_condition"] = ["UNetSpatioTemporalConditionModel"]
|
84 |
+
_import_structure["unets.unet_stable_cascade"] = ["StableCascadeUNet"]
|
85 |
+
_import_structure["unets.uvit_2d"] = ["UVit2DModel"]
|
86 |
+
|
87 |
+
if is_flax_available():
|
88 |
+
_import_structure["controlnets.controlnet_flax"] = ["FlaxControlNetModel"]
|
89 |
+
_import_structure["unets.unet_2d_condition_flax"] = ["FlaxUNet2DConditionModel"]
|
90 |
+
_import_structure["vae_flax"] = ["FlaxAutoencoderKL"]
|
91 |
+
|
92 |
+
|
93 |
+
if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
|
94 |
+
if is_torch_available():
|
95 |
+
from .adapter import MultiAdapter, T2IAdapter
|
96 |
+
from .autoencoders import (
|
97 |
+
AsymmetricAutoencoderKL,
|
98 |
+
AutoencoderDC,
|
99 |
+
AutoencoderKL,
|
100 |
+
AutoencoderKLAllegro,
|
101 |
+
AutoencoderKLCogVideoX,
|
102 |
+
AutoencoderKLHunyuanVideo,
|
103 |
+
AutoencoderKLLTXVideo,
|
104 |
+
AutoencoderKLMochi,
|
105 |
+
AutoencoderKLTemporalDecoder,
|
106 |
+
AutoencoderOobleck,
|
107 |
+
AutoencoderTiny,
|
108 |
+
ConsistencyDecoderVAE,
|
109 |
+
VQModel,
|
110 |
+
)
|
111 |
+
from .controlnets import (
|
112 |
+
ControlNetModel,
|
113 |
+
ControlNetUnionModel,
|
114 |
+
ControlNetXSAdapter,
|
115 |
+
FluxControlNetModel,
|
116 |
+
FluxMultiControlNetModel,
|
117 |
+
HunyuanDiT2DControlNetModel,
|
118 |
+
HunyuanDiT2DMultiControlNetModel,
|
119 |
+
MultiControlNetModel,
|
120 |
+
SD3ControlNetModel,
|
121 |
+
SD3MultiControlNetModel,
|
122 |
+
SparseControlNetModel,
|
123 |
+
UNetControlNetXSModel,
|
124 |
+
)
|
125 |
+
from .embeddings import ImageProjection
|
126 |
+
from .modeling_utils import ModelMixin
|
127 |
+
from .transformers import (
|
128 |
+
AllegroTransformer3DModel,
|
129 |
+
AuraFlowTransformer2DModel,
|
130 |
+
CogVideoXTransformer3DModel,
|
131 |
+
CogView3PlusTransformer2DModel,
|
132 |
+
DiTTransformer2DModel,
|
133 |
+
DualTransformer2DModel,
|
134 |
+
FluxTransformer2DModel,
|
135 |
+
HunyuanDiT2DModel,
|
136 |
+
HunyuanVideoTransformer3DModel,
|
137 |
+
LatteTransformer3DModel,
|
138 |
+
LTXVideoTransformer3DModel,
|
139 |
+
LuminaNextDiT2DModel,
|
140 |
+
MochiTransformer3DModel,
|
141 |
+
PixArtTransformer2DModel,
|
142 |
+
PriorTransformer,
|
143 |
+
SanaTransformer2DModel,
|
144 |
+
SD3Transformer2DModel,
|
145 |
+
StableAudioDiTModel,
|
146 |
+
T5FilmDecoder,
|
147 |
+
Transformer2DModel,
|
148 |
+
TransformerTemporalModel,
|
149 |
+
)
|
150 |
+
from .unets import (
|
151 |
+
I2VGenXLUNet,
|
152 |
+
Kandinsky3UNet,
|
153 |
+
MotionAdapter,
|
154 |
+
StableCascadeUNet,
|
155 |
+
UNet1DModel,
|
156 |
+
UNet2DConditionModel,
|
157 |
+
UNet2DModel,
|
158 |
+
UNet3DConditionModel,
|
159 |
+
UNetMotionModel,
|
160 |
+
UNetSpatioTemporalConditionModel,
|
161 |
+
UVit2DModel,
|
162 |
+
)
|
163 |
+
|
164 |
+
if is_flax_available():
|
165 |
+
from .controlnets import FlaxControlNetModel
|
166 |
+
from .unets import FlaxUNet2DConditionModel
|
167 |
+
from .vae_flax import FlaxAutoencoderKL
|
168 |
+
|
169 |
+
else:
|
170 |
+
import sys
|
171 |
+
|
172 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
icedit/diffusers/models/activations.py
ADDED
@@ -0,0 +1,178 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 HuggingFace Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from ..utils import deprecate
|
21 |
+
from ..utils.import_utils import is_torch_npu_available, is_torch_version
|
22 |
+
|
23 |
+
|
24 |
+
if is_torch_npu_available():
|
25 |
+
import torch_npu
|
26 |
+
|
27 |
+
ACTIVATION_FUNCTIONS = {
|
28 |
+
"swish": nn.SiLU(),
|
29 |
+
"silu": nn.SiLU(),
|
30 |
+
"mish": nn.Mish(),
|
31 |
+
"gelu": nn.GELU(),
|
32 |
+
"relu": nn.ReLU(),
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def get_activation(act_fn: str) -> nn.Module:
|
37 |
+
"""Helper function to get activation function from string.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
act_fn (str): Name of activation function.
|
41 |
+
|
42 |
+
Returns:
|
43 |
+
nn.Module: Activation function.
|
44 |
+
"""
|
45 |
+
|
46 |
+
act_fn = act_fn.lower()
|
47 |
+
if act_fn in ACTIVATION_FUNCTIONS:
|
48 |
+
return ACTIVATION_FUNCTIONS[act_fn]
|
49 |
+
else:
|
50 |
+
raise ValueError(f"Unsupported activation function: {act_fn}")
|
51 |
+
|
52 |
+
|
53 |
+
class FP32SiLU(nn.Module):
|
54 |
+
r"""
|
55 |
+
SiLU activation function with input upcasted to torch.float32.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
62 |
+
return F.silu(inputs.float(), inplace=False).to(inputs.dtype)
|
63 |
+
|
64 |
+
|
65 |
+
class GELU(nn.Module):
|
66 |
+
r"""
|
67 |
+
GELU activation function with tanh approximation support with `approximate="tanh"`.
|
68 |
+
|
69 |
+
Parameters:
|
70 |
+
dim_in (`int`): The number of channels in the input.
|
71 |
+
dim_out (`int`): The number of channels in the output.
|
72 |
+
approximate (`str`, *optional*, defaults to `"none"`): If `"tanh"`, use tanh approximation.
|
73 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
74 |
+
"""
|
75 |
+
|
76 |
+
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True):
|
77 |
+
super().__init__()
|
78 |
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
79 |
+
self.approximate = approximate
|
80 |
+
|
81 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
82 |
+
if gate.device.type == "mps" and is_torch_version("<", "2.0.0"):
|
83 |
+
# fp16 gelu not supported on mps before torch 2.0
|
84 |
+
return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype)
|
85 |
+
return F.gelu(gate, approximate=self.approximate)
|
86 |
+
|
87 |
+
def forward(self, hidden_states):
|
88 |
+
hidden_states = self.proj(hidden_states)
|
89 |
+
hidden_states = self.gelu(hidden_states)
|
90 |
+
return hidden_states
|
91 |
+
|
92 |
+
|
93 |
+
class GEGLU(nn.Module):
|
94 |
+
r"""
|
95 |
+
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function.
|
96 |
+
|
97 |
+
Parameters:
|
98 |
+
dim_in (`int`): The number of channels in the input.
|
99 |
+
dim_out (`int`): The number of channels in the output.
|
100 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
104 |
+
super().__init__()
|
105 |
+
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
106 |
+
|
107 |
+
def gelu(self, gate: torch.Tensor) -> torch.Tensor:
|
108 |
+
if gate.device.type == "mps" and is_torch_version("<", "2.0.0"):
|
109 |
+
# fp16 gelu not supported on mps before torch 2.0
|
110 |
+
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)
|
111 |
+
return F.gelu(gate)
|
112 |
+
|
113 |
+
def forward(self, hidden_states, *args, **kwargs):
|
114 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
115 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
116 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
117 |
+
hidden_states = self.proj(hidden_states)
|
118 |
+
if is_torch_npu_available():
|
119 |
+
# using torch_npu.npu_geglu can run faster and save memory on NPU.
|
120 |
+
return torch_npu.npu_geglu(hidden_states, dim=-1, approximate=1)[0]
|
121 |
+
else:
|
122 |
+
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
123 |
+
return hidden_states * self.gelu(gate)
|
124 |
+
|
125 |
+
|
126 |
+
class SwiGLU(nn.Module):
|
127 |
+
r"""
|
128 |
+
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU`
|
129 |
+
but uses SiLU / Swish instead of GeLU.
|
130 |
+
|
131 |
+
Parameters:
|
132 |
+
dim_in (`int`): The number of channels in the input.
|
133 |
+
dim_out (`int`): The number of channels in the output.
|
134 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
135 |
+
"""
|
136 |
+
|
137 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
138 |
+
super().__init__()
|
139 |
+
|
140 |
+
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
|
141 |
+
self.activation = nn.SiLU()
|
142 |
+
|
143 |
+
def forward(self, hidden_states):
|
144 |
+
hidden_states = self.proj(hidden_states)
|
145 |
+
hidden_states, gate = hidden_states.chunk(2, dim=-1)
|
146 |
+
return hidden_states * self.activation(gate)
|
147 |
+
|
148 |
+
|
149 |
+
class ApproximateGELU(nn.Module):
|
150 |
+
r"""
|
151 |
+
The approximate form of the Gaussian Error Linear Unit (GELU). For more details, see section 2 of this
|
152 |
+
[paper](https://arxiv.org/abs/1606.08415).
|
153 |
+
|
154 |
+
Parameters:
|
155 |
+
dim_in (`int`): The number of channels in the input.
|
156 |
+
dim_out (`int`): The number of channels in the output.
|
157 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
158 |
+
"""
|
159 |
+
|
160 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
|
161 |
+
super().__init__()
|
162 |
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
163 |
+
|
164 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
165 |
+
x = self.proj(x)
|
166 |
+
return x * torch.sigmoid(1.702 * x)
|
167 |
+
|
168 |
+
|
169 |
+
class LinearActivation(nn.Module):
|
170 |
+
def __init__(self, dim_in: int, dim_out: int, bias: bool = True, activation: str = "silu"):
|
171 |
+
super().__init__()
|
172 |
+
|
173 |
+
self.proj = nn.Linear(dim_in, dim_out, bias=bias)
|
174 |
+
self.activation = get_activation(activation)
|
175 |
+
|
176 |
+
def forward(self, hidden_states):
|
177 |
+
hidden_states = self.proj(hidden_states)
|
178 |
+
return self.activation(hidden_states)
|
icedit/diffusers/models/adapter.py
ADDED
@@ -0,0 +1,584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import os
|
15 |
+
from typing import Callable, List, Optional, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from ..configuration_utils import ConfigMixin, register_to_config
|
21 |
+
from ..utils import logging
|
22 |
+
from .modeling_utils import ModelMixin
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
class MultiAdapter(ModelMixin):
|
29 |
+
r"""
|
30 |
+
MultiAdapter is a wrapper model that contains multiple adapter models and merges their outputs according to
|
31 |
+
user-assigned weighting.
|
32 |
+
|
33 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for common methods such as downloading
|
34 |
+
or saving.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
adapters (`List[T2IAdapter]`, *optional*, defaults to None):
|
38 |
+
A list of `T2IAdapter` model instances.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, adapters: List["T2IAdapter"]):
|
42 |
+
super(MultiAdapter, self).__init__()
|
43 |
+
|
44 |
+
self.num_adapter = len(adapters)
|
45 |
+
self.adapters = nn.ModuleList(adapters)
|
46 |
+
|
47 |
+
if len(adapters) == 0:
|
48 |
+
raise ValueError("Expecting at least one adapter")
|
49 |
+
|
50 |
+
if len(adapters) == 1:
|
51 |
+
raise ValueError("For a single adapter, please use the `T2IAdapter` class instead of `MultiAdapter`")
|
52 |
+
|
53 |
+
# The outputs from each adapter are added together with a weight.
|
54 |
+
# This means that the change in dimensions from downsampling must
|
55 |
+
# be the same for all adapters. Inductively, it also means the
|
56 |
+
# downscale_factor and total_downscale_factor must be the same for all
|
57 |
+
# adapters.
|
58 |
+
first_adapter_total_downscale_factor = adapters[0].total_downscale_factor
|
59 |
+
first_adapter_downscale_factor = adapters[0].downscale_factor
|
60 |
+
for idx in range(1, len(adapters)):
|
61 |
+
if (
|
62 |
+
adapters[idx].total_downscale_factor != first_adapter_total_downscale_factor
|
63 |
+
or adapters[idx].downscale_factor != first_adapter_downscale_factor
|
64 |
+
):
|
65 |
+
raise ValueError(
|
66 |
+
f"Expecting all adapters to have the same downscaling behavior, but got:\n"
|
67 |
+
f"adapters[0].total_downscale_factor={first_adapter_total_downscale_factor}\n"
|
68 |
+
f"adapters[0].downscale_factor={first_adapter_downscale_factor}\n"
|
69 |
+
f"adapter[`{idx}`].total_downscale_factor={adapters[idx].total_downscale_factor}\n"
|
70 |
+
f"adapter[`{idx}`].downscale_factor={adapters[idx].downscale_factor}"
|
71 |
+
)
|
72 |
+
|
73 |
+
self.total_downscale_factor = first_adapter_total_downscale_factor
|
74 |
+
self.downscale_factor = first_adapter_downscale_factor
|
75 |
+
|
76 |
+
def forward(self, xs: torch.Tensor, adapter_weights: Optional[List[float]] = None) -> List[torch.Tensor]:
|
77 |
+
r"""
|
78 |
+
Args:
|
79 |
+
xs (`torch.Tensor`):
|
80 |
+
A tensor of shape (batch, channel, height, width) representing input images for multiple adapter
|
81 |
+
models, concatenated along dimension 1(channel dimension). The `channel` dimension should be equal to
|
82 |
+
`num_adapter` * number of channel per image.
|
83 |
+
|
84 |
+
adapter_weights (`List[float]`, *optional*, defaults to None):
|
85 |
+
A list of floats representing the weights which will be multiplied by each adapter's output before
|
86 |
+
summing them together. If `None`, equal weights will be used for all adapters.
|
87 |
+
"""
|
88 |
+
if adapter_weights is None:
|
89 |
+
adapter_weights = torch.tensor([1 / self.num_adapter] * self.num_adapter)
|
90 |
+
else:
|
91 |
+
adapter_weights = torch.tensor(adapter_weights)
|
92 |
+
|
93 |
+
accume_state = None
|
94 |
+
for x, w, adapter in zip(xs, adapter_weights, self.adapters):
|
95 |
+
features = adapter(x)
|
96 |
+
if accume_state is None:
|
97 |
+
accume_state = features
|
98 |
+
for i in range(len(accume_state)):
|
99 |
+
accume_state[i] = w * accume_state[i]
|
100 |
+
else:
|
101 |
+
for i in range(len(features)):
|
102 |
+
accume_state[i] += w * features[i]
|
103 |
+
return accume_state
|
104 |
+
|
105 |
+
def save_pretrained(
|
106 |
+
self,
|
107 |
+
save_directory: Union[str, os.PathLike],
|
108 |
+
is_main_process: bool = True,
|
109 |
+
save_function: Callable = None,
|
110 |
+
safe_serialization: bool = True,
|
111 |
+
variant: Optional[str] = None,
|
112 |
+
):
|
113 |
+
"""
|
114 |
+
Save a model and its configuration file to a specified directory, allowing it to be re-loaded with the
|
115 |
+
`[`~models.adapter.MultiAdapter.from_pretrained`]` class method.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
save_directory (`str` or `os.PathLike`):
|
119 |
+
The directory where the model will be saved. If the directory does not exist, it will be created.
|
120 |
+
is_main_process (`bool`, optional, defaults=True):
|
121 |
+
Indicates whether current process is the main process or not. Useful for distributed training (e.g.,
|
122 |
+
TPUs) and need to call this function on all processes. In this case, set `is_main_process=True` only
|
123 |
+
for the main process to avoid race conditions.
|
124 |
+
save_function (`Callable`):
|
125 |
+
Function used to save the state dictionary. Useful for distributed training (e.g., TPUs) to replace
|
126 |
+
`torch.save` with another method. Can also be configured using`DIFFUSERS_SAVE_MODE` environment
|
127 |
+
variable.
|
128 |
+
safe_serialization (`bool`, optional, defaults=True):
|
129 |
+
If `True`, save the model using `safetensors`. If `False`, save the model with `pickle`.
|
130 |
+
variant (`str`, *optional*):
|
131 |
+
If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
|
132 |
+
"""
|
133 |
+
idx = 0
|
134 |
+
model_path_to_save = save_directory
|
135 |
+
for adapter in self.adapters:
|
136 |
+
adapter.save_pretrained(
|
137 |
+
model_path_to_save,
|
138 |
+
is_main_process=is_main_process,
|
139 |
+
save_function=save_function,
|
140 |
+
safe_serialization=safe_serialization,
|
141 |
+
variant=variant,
|
142 |
+
)
|
143 |
+
|
144 |
+
idx += 1
|
145 |
+
model_path_to_save = model_path_to_save + f"_{idx}"
|
146 |
+
|
147 |
+
@classmethod
|
148 |
+
def from_pretrained(cls, pretrained_model_path: Optional[Union[str, os.PathLike]], **kwargs):
|
149 |
+
r"""
|
150 |
+
Instantiate a pretrained `MultiAdapter` model from multiple pre-trained adapter models.
|
151 |
+
|
152 |
+
The model is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). To train
|
153 |
+
the model, set it back to training mode using `model.train()`.
|
154 |
+
|
155 |
+
Warnings:
|
156 |
+
*Weights from XXX not initialized from pretrained model* means that the weights of XXX are not pretrained
|
157 |
+
with the rest of the model. It is up to you to train those weights with a downstream fine-tuning. *Weights
|
158 |
+
from XXX not used in YYY* means that the layer XXX is not used by YYY, so those weights are discarded.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
pretrained_model_path (`os.PathLike`):
|
162 |
+
A path to a *directory* containing model weights saved using
|
163 |
+
[`~diffusers.models.adapter.MultiAdapter.save_pretrained`], e.g., `./my_model_directory/adapter`.
|
164 |
+
torch_dtype (`str` or `torch.dtype`, *optional*):
|
165 |
+
Override the default `torch.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
|
166 |
+
will be automatically derived from the model's weights.
|
167 |
+
output_loading_info(`bool`, *optional*, defaults to `False`):
|
168 |
+
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
|
169 |
+
device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
|
170 |
+
A map that specifies where each submodule should go. It doesn't need to be refined to each
|
171 |
+
parameter/buffer name, once a given module name is inside, every submodule of it will be sent to the
|
172 |
+
same device.
|
173 |
+
|
174 |
+
To have Accelerate compute the most optimized `device_map` automatically, set `device_map="auto"`. For
|
175 |
+
more information about each option see [designing a device
|
176 |
+
map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
|
177 |
+
max_memory (`Dict`, *optional*):
|
178 |
+
A dictionary mapping device identifiers to their maximum memory. Default to the maximum memory
|
179 |
+
available for each GPU and the available CPU RAM if unset.
|
180 |
+
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
181 |
+
Speed up model loading by not initializing the weights and only loading the pre-trained weights. This
|
182 |
+
also tries to not use more than 1x model size in CPU memory (including peak memory) while loading the
|
183 |
+
model. This is only supported when torch version >= 1.9.0. If you are using an older version of torch,
|
184 |
+
setting this argument to `True` will raise an error.
|
185 |
+
variant (`str`, *optional*):
|
186 |
+
If specified, load weights from a `variant` file (*e.g.* pytorch_model.<variant>.bin). `variant` will
|
187 |
+
be ignored when using `from_flax`.
|
188 |
+
use_safetensors (`bool`, *optional*, defaults to `None`):
|
189 |
+
If `None`, the `safetensors` weights will be downloaded if available **and** if`safetensors` library is
|
190 |
+
installed. If `True`, the model will be forcibly loaded from`safetensors` weights. If `False`,
|
191 |
+
`safetensors` is not used.
|
192 |
+
"""
|
193 |
+
idx = 0
|
194 |
+
adapters = []
|
195 |
+
|
196 |
+
# load adapter and append to list until no adapter directory exists anymore
|
197 |
+
# first adapter has to be saved under `./mydirectory/adapter` to be compliant with `DiffusionPipeline.from_pretrained`
|
198 |
+
# second, third, ... adapters have to be saved under `./mydirectory/adapter_1`, `./mydirectory/adapter_2`, ...
|
199 |
+
model_path_to_load = pretrained_model_path
|
200 |
+
while os.path.isdir(model_path_to_load):
|
201 |
+
adapter = T2IAdapter.from_pretrained(model_path_to_load, **kwargs)
|
202 |
+
adapters.append(adapter)
|
203 |
+
|
204 |
+
idx += 1
|
205 |
+
model_path_to_load = pretrained_model_path + f"_{idx}"
|
206 |
+
|
207 |
+
logger.info(f"{len(adapters)} adapters loaded from {pretrained_model_path}.")
|
208 |
+
|
209 |
+
if len(adapters) == 0:
|
210 |
+
raise ValueError(
|
211 |
+
f"No T2IAdapters found under {os.path.dirname(pretrained_model_path)}. Expected at least {pretrained_model_path + '_0'}."
|
212 |
+
)
|
213 |
+
|
214 |
+
return cls(adapters)
|
215 |
+
|
216 |
+
|
217 |
+
class T2IAdapter(ModelMixin, ConfigMixin):
|
218 |
+
r"""
|
219 |
+
A simple ResNet-like model that accepts images containing control signals such as keyposes and depth. The model
|
220 |
+
generates multiple feature maps that are used as additional conditioning in [`UNet2DConditionModel`]. The model's
|
221 |
+
architecture follows the original implementation of
|
222 |
+
[Adapter](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L97)
|
223 |
+
and
|
224 |
+
[AdapterLight](https://github.com/TencentARC/T2I-Adapter/blob/686de4681515662c0ac2ffa07bf5dda83af1038a/ldm/modules/encoders/adapter.py#L235).
|
225 |
+
|
226 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for the common methods, such as
|
227 |
+
downloading or saving.
|
228 |
+
|
229 |
+
Args:
|
230 |
+
in_channels (`int`, *optional*, defaults to `3`):
|
231 |
+
The number of channels in the adapter's input (*control image*). Set it to 1 if you're using a gray scale
|
232 |
+
image.
|
233 |
+
channels (`List[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
234 |
+
The number of channels in each downsample block's output hidden state. The `len(block_out_channels)`
|
235 |
+
determines the number of downsample blocks in the adapter.
|
236 |
+
num_res_blocks (`int`, *optional*, defaults to `2`):
|
237 |
+
Number of ResNet blocks in each downsample block.
|
238 |
+
downscale_factor (`int`, *optional*, defaults to `8`):
|
239 |
+
A factor that determines the total downscale factor of the Adapter.
|
240 |
+
adapter_type (`str`, *optional*, defaults to `full_adapter`):
|
241 |
+
Adapter type (`full_adapter` or `full_adapter_xl` or `light_adapter`) to use.
|
242 |
+
"""
|
243 |
+
|
244 |
+
@register_to_config
|
245 |
+
def __init__(
|
246 |
+
self,
|
247 |
+
in_channels: int = 3,
|
248 |
+
channels: List[int] = [320, 640, 1280, 1280],
|
249 |
+
num_res_blocks: int = 2,
|
250 |
+
downscale_factor: int = 8,
|
251 |
+
adapter_type: str = "full_adapter",
|
252 |
+
):
|
253 |
+
super().__init__()
|
254 |
+
|
255 |
+
if adapter_type == "full_adapter":
|
256 |
+
self.adapter = FullAdapter(in_channels, channels, num_res_blocks, downscale_factor)
|
257 |
+
elif adapter_type == "full_adapter_xl":
|
258 |
+
self.adapter = FullAdapterXL(in_channels, channels, num_res_blocks, downscale_factor)
|
259 |
+
elif adapter_type == "light_adapter":
|
260 |
+
self.adapter = LightAdapter(in_channels, channels, num_res_blocks, downscale_factor)
|
261 |
+
else:
|
262 |
+
raise ValueError(
|
263 |
+
f"Unsupported adapter_type: '{adapter_type}'. Choose either 'full_adapter' or "
|
264 |
+
"'full_adapter_xl' or 'light_adapter'."
|
265 |
+
)
|
266 |
+
|
267 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
268 |
+
r"""
|
269 |
+
This function processes the input tensor `x` through the adapter model and returns a list of feature tensors,
|
270 |
+
each representing information extracted at a different scale from the input. The length of the list is
|
271 |
+
determined by the number of downsample blocks in the Adapter, as specified by the `channels` and
|
272 |
+
`num_res_blocks` parameters during initialization.
|
273 |
+
"""
|
274 |
+
return self.adapter(x)
|
275 |
+
|
276 |
+
@property
|
277 |
+
def total_downscale_factor(self):
|
278 |
+
return self.adapter.total_downscale_factor
|
279 |
+
|
280 |
+
@property
|
281 |
+
def downscale_factor(self):
|
282 |
+
"""The downscale factor applied in the T2I-Adapter's initial pixel unshuffle operation. If an input image's dimensions are
|
283 |
+
not evenly divisible by the downscale_factor then an exception will be raised.
|
284 |
+
"""
|
285 |
+
return self.adapter.unshuffle.downscale_factor
|
286 |
+
|
287 |
+
|
288 |
+
# full adapter
|
289 |
+
|
290 |
+
|
291 |
+
class FullAdapter(nn.Module):
|
292 |
+
r"""
|
293 |
+
See [`T2IAdapter`] for more information.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(
|
297 |
+
self,
|
298 |
+
in_channels: int = 3,
|
299 |
+
channels: List[int] = [320, 640, 1280, 1280],
|
300 |
+
num_res_blocks: int = 2,
|
301 |
+
downscale_factor: int = 8,
|
302 |
+
):
|
303 |
+
super().__init__()
|
304 |
+
|
305 |
+
in_channels = in_channels * downscale_factor**2
|
306 |
+
|
307 |
+
self.unshuffle = nn.PixelUnshuffle(downscale_factor)
|
308 |
+
self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1)
|
309 |
+
|
310 |
+
self.body = nn.ModuleList(
|
311 |
+
[
|
312 |
+
AdapterBlock(channels[0], channels[0], num_res_blocks),
|
313 |
+
*[
|
314 |
+
AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True)
|
315 |
+
for i in range(1, len(channels))
|
316 |
+
],
|
317 |
+
]
|
318 |
+
)
|
319 |
+
|
320 |
+
self.total_downscale_factor = downscale_factor * 2 ** (len(channels) - 1)
|
321 |
+
|
322 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
323 |
+
r"""
|
324 |
+
This method processes the input tensor `x` through the FullAdapter model and performs operations including
|
325 |
+
pixel unshuffling, convolution, and a stack of AdapterBlocks. It returns a list of feature tensors, each
|
326 |
+
capturing information at a different stage of processing within the FullAdapter model. The number of feature
|
327 |
+
tensors in the list is determined by the number of downsample blocks specified during initialization.
|
328 |
+
"""
|
329 |
+
x = self.unshuffle(x)
|
330 |
+
x = self.conv_in(x)
|
331 |
+
|
332 |
+
features = []
|
333 |
+
|
334 |
+
for block in self.body:
|
335 |
+
x = block(x)
|
336 |
+
features.append(x)
|
337 |
+
|
338 |
+
return features
|
339 |
+
|
340 |
+
|
341 |
+
class FullAdapterXL(nn.Module):
|
342 |
+
r"""
|
343 |
+
See [`T2IAdapter`] for more information.
|
344 |
+
"""
|
345 |
+
|
346 |
+
def __init__(
|
347 |
+
self,
|
348 |
+
in_channels: int = 3,
|
349 |
+
channels: List[int] = [320, 640, 1280, 1280],
|
350 |
+
num_res_blocks: int = 2,
|
351 |
+
downscale_factor: int = 16,
|
352 |
+
):
|
353 |
+
super().__init__()
|
354 |
+
|
355 |
+
in_channels = in_channels * downscale_factor**2
|
356 |
+
|
357 |
+
self.unshuffle = nn.PixelUnshuffle(downscale_factor)
|
358 |
+
self.conv_in = nn.Conv2d(in_channels, channels[0], kernel_size=3, padding=1)
|
359 |
+
|
360 |
+
self.body = []
|
361 |
+
# blocks to extract XL features with dimensions of [320, 64, 64], [640, 64, 64], [1280, 32, 32], [1280, 32, 32]
|
362 |
+
for i in range(len(channels)):
|
363 |
+
if i == 1:
|
364 |
+
self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks))
|
365 |
+
elif i == 2:
|
366 |
+
self.body.append(AdapterBlock(channels[i - 1], channels[i], num_res_blocks, down=True))
|
367 |
+
else:
|
368 |
+
self.body.append(AdapterBlock(channels[i], channels[i], num_res_blocks))
|
369 |
+
|
370 |
+
self.body = nn.ModuleList(self.body)
|
371 |
+
# XL has only one downsampling AdapterBlock.
|
372 |
+
self.total_downscale_factor = downscale_factor * 2
|
373 |
+
|
374 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
375 |
+
r"""
|
376 |
+
This method takes the tensor x as input and processes it through FullAdapterXL model. It consists of operations
|
377 |
+
including unshuffling pixels, applying convolution layer and appending each block into list of feature tensors.
|
378 |
+
"""
|
379 |
+
x = self.unshuffle(x)
|
380 |
+
x = self.conv_in(x)
|
381 |
+
|
382 |
+
features = []
|
383 |
+
|
384 |
+
for block in self.body:
|
385 |
+
x = block(x)
|
386 |
+
features.append(x)
|
387 |
+
|
388 |
+
return features
|
389 |
+
|
390 |
+
|
391 |
+
class AdapterBlock(nn.Module):
|
392 |
+
r"""
|
393 |
+
An AdapterBlock is a helper model that contains multiple ResNet-like blocks. It is used in the `FullAdapter` and
|
394 |
+
`FullAdapterXL` models.
|
395 |
+
|
396 |
+
Args:
|
397 |
+
in_channels (`int`):
|
398 |
+
Number of channels of AdapterBlock's input.
|
399 |
+
out_channels (`int`):
|
400 |
+
Number of channels of AdapterBlock's output.
|
401 |
+
num_res_blocks (`int`):
|
402 |
+
Number of ResNet blocks in the AdapterBlock.
|
403 |
+
down (`bool`, *optional*, defaults to `False`):
|
404 |
+
If `True`, perform downsampling on AdapterBlock's input.
|
405 |
+
"""
|
406 |
+
|
407 |
+
def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False):
|
408 |
+
super().__init__()
|
409 |
+
|
410 |
+
self.downsample = None
|
411 |
+
if down:
|
412 |
+
self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True)
|
413 |
+
|
414 |
+
self.in_conv = None
|
415 |
+
if in_channels != out_channels:
|
416 |
+
self.in_conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
|
417 |
+
|
418 |
+
self.resnets = nn.Sequential(
|
419 |
+
*[AdapterResnetBlock(out_channels) for _ in range(num_res_blocks)],
|
420 |
+
)
|
421 |
+
|
422 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
423 |
+
r"""
|
424 |
+
This method takes tensor x as input and performs operations downsampling and convolutional layers if the
|
425 |
+
self.downsample and self.in_conv properties of AdapterBlock model are specified. Then it applies a series of
|
426 |
+
residual blocks to the input tensor.
|
427 |
+
"""
|
428 |
+
if self.downsample is not None:
|
429 |
+
x = self.downsample(x)
|
430 |
+
|
431 |
+
if self.in_conv is not None:
|
432 |
+
x = self.in_conv(x)
|
433 |
+
|
434 |
+
x = self.resnets(x)
|
435 |
+
|
436 |
+
return x
|
437 |
+
|
438 |
+
|
439 |
+
class AdapterResnetBlock(nn.Module):
|
440 |
+
r"""
|
441 |
+
An `AdapterResnetBlock` is a helper model that implements a ResNet-like block.
|
442 |
+
|
443 |
+
Args:
|
444 |
+
channels (`int`):
|
445 |
+
Number of channels of AdapterResnetBlock's input and output.
|
446 |
+
"""
|
447 |
+
|
448 |
+
def __init__(self, channels: int):
|
449 |
+
super().__init__()
|
450 |
+
self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
451 |
+
self.act = nn.ReLU()
|
452 |
+
self.block2 = nn.Conv2d(channels, channels, kernel_size=1)
|
453 |
+
|
454 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
455 |
+
r"""
|
456 |
+
This method takes input tensor x and applies a convolutional layer, ReLU activation, and another convolutional
|
457 |
+
layer on the input tensor. It returns addition with the input tensor.
|
458 |
+
"""
|
459 |
+
|
460 |
+
h = self.act(self.block1(x))
|
461 |
+
h = self.block2(h)
|
462 |
+
|
463 |
+
return h + x
|
464 |
+
|
465 |
+
|
466 |
+
# light adapter
|
467 |
+
|
468 |
+
|
469 |
+
class LightAdapter(nn.Module):
|
470 |
+
r"""
|
471 |
+
See [`T2IAdapter`] for more information.
|
472 |
+
"""
|
473 |
+
|
474 |
+
def __init__(
|
475 |
+
self,
|
476 |
+
in_channels: int = 3,
|
477 |
+
channels: List[int] = [320, 640, 1280],
|
478 |
+
num_res_blocks: int = 4,
|
479 |
+
downscale_factor: int = 8,
|
480 |
+
):
|
481 |
+
super().__init__()
|
482 |
+
|
483 |
+
in_channels = in_channels * downscale_factor**2
|
484 |
+
|
485 |
+
self.unshuffle = nn.PixelUnshuffle(downscale_factor)
|
486 |
+
|
487 |
+
self.body = nn.ModuleList(
|
488 |
+
[
|
489 |
+
LightAdapterBlock(in_channels, channels[0], num_res_blocks),
|
490 |
+
*[
|
491 |
+
LightAdapterBlock(channels[i], channels[i + 1], num_res_blocks, down=True)
|
492 |
+
for i in range(len(channels) - 1)
|
493 |
+
],
|
494 |
+
LightAdapterBlock(channels[-1], channels[-1], num_res_blocks, down=True),
|
495 |
+
]
|
496 |
+
)
|
497 |
+
|
498 |
+
self.total_downscale_factor = downscale_factor * (2 ** len(channels))
|
499 |
+
|
500 |
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
501 |
+
r"""
|
502 |
+
This method takes the input tensor x and performs downscaling and appends it in list of feature tensors. Each
|
503 |
+
feature tensor corresponds to a different level of processing within the LightAdapter.
|
504 |
+
"""
|
505 |
+
x = self.unshuffle(x)
|
506 |
+
|
507 |
+
features = []
|
508 |
+
|
509 |
+
for block in self.body:
|
510 |
+
x = block(x)
|
511 |
+
features.append(x)
|
512 |
+
|
513 |
+
return features
|
514 |
+
|
515 |
+
|
516 |
+
class LightAdapterBlock(nn.Module):
|
517 |
+
r"""
|
518 |
+
A `LightAdapterBlock` is a helper model that contains multiple `LightAdapterResnetBlocks`. It is used in the
|
519 |
+
`LightAdapter` model.
|
520 |
+
|
521 |
+
Args:
|
522 |
+
in_channels (`int`):
|
523 |
+
Number of channels of LightAdapterBlock's input.
|
524 |
+
out_channels (`int`):
|
525 |
+
Number of channels of LightAdapterBlock's output.
|
526 |
+
num_res_blocks (`int`):
|
527 |
+
Number of LightAdapterResnetBlocks in the LightAdapterBlock.
|
528 |
+
down (`bool`, *optional*, defaults to `False`):
|
529 |
+
If `True`, perform downsampling on LightAdapterBlock's input.
|
530 |
+
"""
|
531 |
+
|
532 |
+
def __init__(self, in_channels: int, out_channels: int, num_res_blocks: int, down: bool = False):
|
533 |
+
super().__init__()
|
534 |
+
mid_channels = out_channels // 4
|
535 |
+
|
536 |
+
self.downsample = None
|
537 |
+
if down:
|
538 |
+
self.downsample = nn.AvgPool2d(kernel_size=2, stride=2, ceil_mode=True)
|
539 |
+
|
540 |
+
self.in_conv = nn.Conv2d(in_channels, mid_channels, kernel_size=1)
|
541 |
+
self.resnets = nn.Sequential(*[LightAdapterResnetBlock(mid_channels) for _ in range(num_res_blocks)])
|
542 |
+
self.out_conv = nn.Conv2d(mid_channels, out_channels, kernel_size=1)
|
543 |
+
|
544 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
545 |
+
r"""
|
546 |
+
This method takes tensor x as input and performs downsampling if required. Then it applies in convolution
|
547 |
+
layer, a sequence of residual blocks, and out convolutional layer.
|
548 |
+
"""
|
549 |
+
if self.downsample is not None:
|
550 |
+
x = self.downsample(x)
|
551 |
+
|
552 |
+
x = self.in_conv(x)
|
553 |
+
x = self.resnets(x)
|
554 |
+
x = self.out_conv(x)
|
555 |
+
|
556 |
+
return x
|
557 |
+
|
558 |
+
|
559 |
+
class LightAdapterResnetBlock(nn.Module):
|
560 |
+
"""
|
561 |
+
A `LightAdapterResnetBlock` is a helper model that implements a ResNet-like block with a slightly different
|
562 |
+
architecture than `AdapterResnetBlock`.
|
563 |
+
|
564 |
+
Args:
|
565 |
+
channels (`int`):
|
566 |
+
Number of channels of LightAdapterResnetBlock's input and output.
|
567 |
+
"""
|
568 |
+
|
569 |
+
def __init__(self, channels: int):
|
570 |
+
super().__init__()
|
571 |
+
self.block1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
572 |
+
self.act = nn.ReLU()
|
573 |
+
self.block2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)
|
574 |
+
|
575 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
576 |
+
r"""
|
577 |
+
This function takes input tensor x and processes it through one convolutional layer, ReLU activation, and
|
578 |
+
another convolutional layer and adds it to input tensor.
|
579 |
+
"""
|
580 |
+
|
581 |
+
h = self.act(self.block1(x))
|
582 |
+
h = self.block2(h)
|
583 |
+
|
584 |
+
return h + x
|
icedit/diffusers/models/attention.py
ADDED
@@ -0,0 +1,1252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Any, Dict, List, Optional, Tuple
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from ..utils import deprecate, logging
|
21 |
+
from ..utils.torch_utils import maybe_allow_in_graph
|
22 |
+
from .activations import GEGLU, GELU, ApproximateGELU, FP32SiLU, LinearActivation, SwiGLU
|
23 |
+
from .attention_processor import Attention, JointAttnProcessor2_0
|
24 |
+
from .embeddings import SinusoidalPositionalEmbedding
|
25 |
+
from .normalization import AdaLayerNorm, AdaLayerNormContinuous, AdaLayerNormZero, RMSNorm, SD35AdaLayerNormZeroX
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
32 |
+
# "feed_forward_chunk_size" can be used to save memory
|
33 |
+
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
34 |
+
raise ValueError(
|
35 |
+
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
36 |
+
)
|
37 |
+
|
38 |
+
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
39 |
+
ff_output = torch.cat(
|
40 |
+
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
41 |
+
dim=chunk_dim,
|
42 |
+
)
|
43 |
+
return ff_output
|
44 |
+
|
45 |
+
|
46 |
+
@maybe_allow_in_graph
|
47 |
+
class GatedSelfAttentionDense(nn.Module):
|
48 |
+
r"""
|
49 |
+
A gated self-attention dense layer that combines visual features and object features.
|
50 |
+
|
51 |
+
Parameters:
|
52 |
+
query_dim (`int`): The number of channels in the query.
|
53 |
+
context_dim (`int`): The number of channels in the context.
|
54 |
+
n_heads (`int`): The number of heads to use for attention.
|
55 |
+
d_head (`int`): The number of channels in each head.
|
56 |
+
"""
|
57 |
+
|
58 |
+
def __init__(self, query_dim: int, context_dim: int, n_heads: int, d_head: int):
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
# we need a linear projection since we need cat visual feature and obj feature
|
62 |
+
self.linear = nn.Linear(context_dim, query_dim)
|
63 |
+
|
64 |
+
self.attn = Attention(query_dim=query_dim, heads=n_heads, dim_head=d_head)
|
65 |
+
self.ff = FeedForward(query_dim, activation_fn="geglu")
|
66 |
+
|
67 |
+
self.norm1 = nn.LayerNorm(query_dim)
|
68 |
+
self.norm2 = nn.LayerNorm(query_dim)
|
69 |
+
|
70 |
+
self.register_parameter("alpha_attn", nn.Parameter(torch.tensor(0.0)))
|
71 |
+
self.register_parameter("alpha_dense", nn.Parameter(torch.tensor(0.0)))
|
72 |
+
|
73 |
+
self.enabled = True
|
74 |
+
|
75 |
+
def forward(self, x: torch.Tensor, objs: torch.Tensor) -> torch.Tensor:
|
76 |
+
if not self.enabled:
|
77 |
+
return x
|
78 |
+
|
79 |
+
n_visual = x.shape[1]
|
80 |
+
objs = self.linear(objs)
|
81 |
+
|
82 |
+
x = x + self.alpha_attn.tanh() * self.attn(self.norm1(torch.cat([x, objs], dim=1)))[:, :n_visual, :]
|
83 |
+
x = x + self.alpha_dense.tanh() * self.ff(self.norm2(x))
|
84 |
+
|
85 |
+
return x
|
86 |
+
|
87 |
+
|
88 |
+
@maybe_allow_in_graph
|
89 |
+
class JointTransformerBlock(nn.Module):
|
90 |
+
r"""
|
91 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
92 |
+
|
93 |
+
Reference: https://arxiv.org/abs/2403.03206
|
94 |
+
|
95 |
+
Parameters:
|
96 |
+
dim (`int`): The number of channels in the input and output.
|
97 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
98 |
+
attention_head_dim (`int`): The number of channels in each head.
|
99 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
100 |
+
processing of `context` conditions.
|
101 |
+
"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
dim: int,
|
106 |
+
num_attention_heads: int,
|
107 |
+
attention_head_dim: int,
|
108 |
+
context_pre_only: bool = False,
|
109 |
+
qk_norm: Optional[str] = None,
|
110 |
+
use_dual_attention: bool = False,
|
111 |
+
):
|
112 |
+
super().__init__()
|
113 |
+
|
114 |
+
self.use_dual_attention = use_dual_attention
|
115 |
+
self.context_pre_only = context_pre_only
|
116 |
+
context_norm_type = "ada_norm_continous" if context_pre_only else "ada_norm_zero"
|
117 |
+
|
118 |
+
if use_dual_attention:
|
119 |
+
self.norm1 = SD35AdaLayerNormZeroX(dim)
|
120 |
+
else:
|
121 |
+
self.norm1 = AdaLayerNormZero(dim)
|
122 |
+
|
123 |
+
if context_norm_type == "ada_norm_continous":
|
124 |
+
self.norm1_context = AdaLayerNormContinuous(
|
125 |
+
dim, dim, elementwise_affine=False, eps=1e-6, bias=True, norm_type="layer_norm"
|
126 |
+
)
|
127 |
+
elif context_norm_type == "ada_norm_zero":
|
128 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
129 |
+
else:
|
130 |
+
raise ValueError(
|
131 |
+
f"Unknown context_norm_type: {context_norm_type}, currently only support `ada_norm_continous`, `ada_norm_zero`"
|
132 |
+
)
|
133 |
+
|
134 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
135 |
+
processor = JointAttnProcessor2_0()
|
136 |
+
else:
|
137 |
+
raise ValueError(
|
138 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
139 |
+
)
|
140 |
+
|
141 |
+
self.attn = Attention(
|
142 |
+
query_dim=dim,
|
143 |
+
cross_attention_dim=None,
|
144 |
+
added_kv_proj_dim=dim,
|
145 |
+
dim_head=attention_head_dim,
|
146 |
+
heads=num_attention_heads,
|
147 |
+
out_dim=dim,
|
148 |
+
context_pre_only=context_pre_only,
|
149 |
+
bias=True,
|
150 |
+
processor=processor,
|
151 |
+
qk_norm=qk_norm,
|
152 |
+
eps=1e-6,
|
153 |
+
)
|
154 |
+
|
155 |
+
if use_dual_attention:
|
156 |
+
self.attn2 = Attention(
|
157 |
+
query_dim=dim,
|
158 |
+
cross_attention_dim=None,
|
159 |
+
dim_head=attention_head_dim,
|
160 |
+
heads=num_attention_heads,
|
161 |
+
out_dim=dim,
|
162 |
+
bias=True,
|
163 |
+
processor=processor,
|
164 |
+
qk_norm=qk_norm,
|
165 |
+
eps=1e-6,
|
166 |
+
)
|
167 |
+
else:
|
168 |
+
self.attn2 = None
|
169 |
+
|
170 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
171 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
172 |
+
|
173 |
+
if not context_pre_only:
|
174 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
175 |
+
self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
176 |
+
else:
|
177 |
+
self.norm2_context = None
|
178 |
+
self.ff_context = None
|
179 |
+
|
180 |
+
# let chunk size default to None
|
181 |
+
self._chunk_size = None
|
182 |
+
self._chunk_dim = 0
|
183 |
+
|
184 |
+
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
185 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
186 |
+
# Sets chunk feed-forward
|
187 |
+
self._chunk_size = chunk_size
|
188 |
+
self._chunk_dim = dim
|
189 |
+
|
190 |
+
def forward(
|
191 |
+
self,
|
192 |
+
hidden_states: torch.FloatTensor,
|
193 |
+
encoder_hidden_states: torch.FloatTensor,
|
194 |
+
temb: torch.FloatTensor,
|
195 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
196 |
+
):
|
197 |
+
joint_attention_kwargs = joint_attention_kwargs or {}
|
198 |
+
if self.use_dual_attention:
|
199 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, norm_hidden_states2, gate_msa2 = self.norm1(
|
200 |
+
hidden_states, emb=temb
|
201 |
+
)
|
202 |
+
else:
|
203 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
204 |
+
|
205 |
+
if self.context_pre_only:
|
206 |
+
norm_encoder_hidden_states = self.norm1_context(encoder_hidden_states, temb)
|
207 |
+
else:
|
208 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
|
209 |
+
encoder_hidden_states, emb=temb
|
210 |
+
)
|
211 |
+
|
212 |
+
# Attention.
|
213 |
+
attn_output, context_attn_output = self.attn(
|
214 |
+
hidden_states=norm_hidden_states,
|
215 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
216 |
+
**joint_attention_kwargs,
|
217 |
+
)
|
218 |
+
|
219 |
+
# Process attention outputs for the `hidden_states`.
|
220 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
221 |
+
hidden_states = hidden_states + attn_output
|
222 |
+
|
223 |
+
if self.use_dual_attention:
|
224 |
+
attn_output2 = self.attn2(hidden_states=norm_hidden_states2, **joint_attention_kwargs)
|
225 |
+
attn_output2 = gate_msa2.unsqueeze(1) * attn_output2
|
226 |
+
hidden_states = hidden_states + attn_output2
|
227 |
+
|
228 |
+
norm_hidden_states = self.norm2(hidden_states)
|
229 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
230 |
+
if self._chunk_size is not None:
|
231 |
+
# "feed_forward_chunk_size" can be used to save memory
|
232 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
233 |
+
else:
|
234 |
+
ff_output = self.ff(norm_hidden_states)
|
235 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
236 |
+
|
237 |
+
hidden_states = hidden_states + ff_output
|
238 |
+
|
239 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
240 |
+
if self.context_pre_only:
|
241 |
+
encoder_hidden_states = None
|
242 |
+
else:
|
243 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
244 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
245 |
+
|
246 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
247 |
+
norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]
|
248 |
+
if self._chunk_size is not None:
|
249 |
+
# "feed_forward_chunk_size" can be used to save memory
|
250 |
+
context_ff_output = _chunked_feed_forward(
|
251 |
+
self.ff_context, norm_encoder_hidden_states, self._chunk_dim, self._chunk_size
|
252 |
+
)
|
253 |
+
else:
|
254 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
255 |
+
encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
256 |
+
|
257 |
+
return encoder_hidden_states, hidden_states
|
258 |
+
|
259 |
+
|
260 |
+
@maybe_allow_in_graph
|
261 |
+
class BasicTransformerBlock(nn.Module):
|
262 |
+
r"""
|
263 |
+
A basic Transformer block.
|
264 |
+
|
265 |
+
Parameters:
|
266 |
+
dim (`int`): The number of channels in the input and output.
|
267 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
268 |
+
attention_head_dim (`int`): The number of channels in each head.
|
269 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
270 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
271 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
272 |
+
num_embeds_ada_norm (:
|
273 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
274 |
+
attention_bias (:
|
275 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
276 |
+
only_cross_attention (`bool`, *optional*):
|
277 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
278 |
+
double_self_attention (`bool`, *optional*):
|
279 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
280 |
+
upcast_attention (`bool`, *optional*):
|
281 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
282 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
283 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
284 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
285 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
286 |
+
final_dropout (`bool` *optional*, defaults to False):
|
287 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
288 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
289 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
290 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
291 |
+
The type of positional embeddings to apply to.
|
292 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
293 |
+
The maximum number of positional embeddings to apply.
|
294 |
+
"""
|
295 |
+
|
296 |
+
def __init__(
|
297 |
+
self,
|
298 |
+
dim: int,
|
299 |
+
num_attention_heads: int,
|
300 |
+
attention_head_dim: int,
|
301 |
+
dropout=0.0,
|
302 |
+
cross_attention_dim: Optional[int] = None,
|
303 |
+
activation_fn: str = "geglu",
|
304 |
+
num_embeds_ada_norm: Optional[int] = None,
|
305 |
+
attention_bias: bool = False,
|
306 |
+
only_cross_attention: bool = False,
|
307 |
+
double_self_attention: bool = False,
|
308 |
+
upcast_attention: bool = False,
|
309 |
+
norm_elementwise_affine: bool = True,
|
310 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single', 'ada_norm_continuous', 'layer_norm_i2vgen'
|
311 |
+
norm_eps: float = 1e-5,
|
312 |
+
final_dropout: bool = False,
|
313 |
+
attention_type: str = "default",
|
314 |
+
positional_embeddings: Optional[str] = None,
|
315 |
+
num_positional_embeddings: Optional[int] = None,
|
316 |
+
ada_norm_continous_conditioning_embedding_dim: Optional[int] = None,
|
317 |
+
ada_norm_bias: Optional[int] = None,
|
318 |
+
ff_inner_dim: Optional[int] = None,
|
319 |
+
ff_bias: bool = True,
|
320 |
+
attention_out_bias: bool = True,
|
321 |
+
):
|
322 |
+
super().__init__()
|
323 |
+
self.dim = dim
|
324 |
+
self.num_attention_heads = num_attention_heads
|
325 |
+
self.attention_head_dim = attention_head_dim
|
326 |
+
self.dropout = dropout
|
327 |
+
self.cross_attention_dim = cross_attention_dim
|
328 |
+
self.activation_fn = activation_fn
|
329 |
+
self.attention_bias = attention_bias
|
330 |
+
self.double_self_attention = double_self_attention
|
331 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
332 |
+
self.positional_embeddings = positional_embeddings
|
333 |
+
self.num_positional_embeddings = num_positional_embeddings
|
334 |
+
self.only_cross_attention = only_cross_attention
|
335 |
+
|
336 |
+
# We keep these boolean flags for backward-compatibility.
|
337 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
338 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
339 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
340 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
341 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
342 |
+
|
343 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
344 |
+
raise ValueError(
|
345 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
346 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
347 |
+
)
|
348 |
+
|
349 |
+
self.norm_type = norm_type
|
350 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
351 |
+
|
352 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
353 |
+
raise ValueError(
|
354 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
355 |
+
)
|
356 |
+
|
357 |
+
if positional_embeddings == "sinusoidal":
|
358 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
359 |
+
else:
|
360 |
+
self.pos_embed = None
|
361 |
+
|
362 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
363 |
+
# 1. Self-Attn
|
364 |
+
if norm_type == "ada_norm":
|
365 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
366 |
+
elif norm_type == "ada_norm_zero":
|
367 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
368 |
+
elif norm_type == "ada_norm_continuous":
|
369 |
+
self.norm1 = AdaLayerNormContinuous(
|
370 |
+
dim,
|
371 |
+
ada_norm_continous_conditioning_embedding_dim,
|
372 |
+
norm_elementwise_affine,
|
373 |
+
norm_eps,
|
374 |
+
ada_norm_bias,
|
375 |
+
"rms_norm",
|
376 |
+
)
|
377 |
+
else:
|
378 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
379 |
+
|
380 |
+
self.attn1 = Attention(
|
381 |
+
query_dim=dim,
|
382 |
+
heads=num_attention_heads,
|
383 |
+
dim_head=attention_head_dim,
|
384 |
+
dropout=dropout,
|
385 |
+
bias=attention_bias,
|
386 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
387 |
+
upcast_attention=upcast_attention,
|
388 |
+
out_bias=attention_out_bias,
|
389 |
+
)
|
390 |
+
|
391 |
+
# 2. Cross-Attn
|
392 |
+
if cross_attention_dim is not None or double_self_attention:
|
393 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
394 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
395 |
+
# the second cross attention block.
|
396 |
+
if norm_type == "ada_norm":
|
397 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
398 |
+
elif norm_type == "ada_norm_continuous":
|
399 |
+
self.norm2 = AdaLayerNormContinuous(
|
400 |
+
dim,
|
401 |
+
ada_norm_continous_conditioning_embedding_dim,
|
402 |
+
norm_elementwise_affine,
|
403 |
+
norm_eps,
|
404 |
+
ada_norm_bias,
|
405 |
+
"rms_norm",
|
406 |
+
)
|
407 |
+
else:
|
408 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
409 |
+
|
410 |
+
self.attn2 = Attention(
|
411 |
+
query_dim=dim,
|
412 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
413 |
+
heads=num_attention_heads,
|
414 |
+
dim_head=attention_head_dim,
|
415 |
+
dropout=dropout,
|
416 |
+
bias=attention_bias,
|
417 |
+
upcast_attention=upcast_attention,
|
418 |
+
out_bias=attention_out_bias,
|
419 |
+
) # is self-attn if encoder_hidden_states is none
|
420 |
+
else:
|
421 |
+
if norm_type == "ada_norm_single": # For Latte
|
422 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
423 |
+
else:
|
424 |
+
self.norm2 = None
|
425 |
+
self.attn2 = None
|
426 |
+
|
427 |
+
# 3. Feed-forward
|
428 |
+
if norm_type == "ada_norm_continuous":
|
429 |
+
self.norm3 = AdaLayerNormContinuous(
|
430 |
+
dim,
|
431 |
+
ada_norm_continous_conditioning_embedding_dim,
|
432 |
+
norm_elementwise_affine,
|
433 |
+
norm_eps,
|
434 |
+
ada_norm_bias,
|
435 |
+
"layer_norm",
|
436 |
+
)
|
437 |
+
|
438 |
+
elif norm_type in ["ada_norm_zero", "ada_norm", "layer_norm"]:
|
439 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
440 |
+
elif norm_type == "layer_norm_i2vgen":
|
441 |
+
self.norm3 = None
|
442 |
+
|
443 |
+
self.ff = FeedForward(
|
444 |
+
dim,
|
445 |
+
dropout=dropout,
|
446 |
+
activation_fn=activation_fn,
|
447 |
+
final_dropout=final_dropout,
|
448 |
+
inner_dim=ff_inner_dim,
|
449 |
+
bias=ff_bias,
|
450 |
+
)
|
451 |
+
|
452 |
+
# 4. Fuser
|
453 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
454 |
+
self.fuser = GatedSelfAttentionDense(dim, cross_attention_dim, num_attention_heads, attention_head_dim)
|
455 |
+
|
456 |
+
# 5. Scale-shift for PixArt-Alpha.
|
457 |
+
if norm_type == "ada_norm_single":
|
458 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
459 |
+
|
460 |
+
# let chunk size default to None
|
461 |
+
self._chunk_size = None
|
462 |
+
self._chunk_dim = 0
|
463 |
+
|
464 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
465 |
+
# Sets chunk feed-forward
|
466 |
+
self._chunk_size = chunk_size
|
467 |
+
self._chunk_dim = dim
|
468 |
+
|
469 |
+
def forward(
|
470 |
+
self,
|
471 |
+
hidden_states: torch.Tensor,
|
472 |
+
attention_mask: Optional[torch.Tensor] = None,
|
473 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
474 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
475 |
+
timestep: Optional[torch.LongTensor] = None,
|
476 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
477 |
+
class_labels: Optional[torch.LongTensor] = None,
|
478 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
479 |
+
) -> torch.Tensor:
|
480 |
+
if cross_attention_kwargs is not None:
|
481 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
482 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
483 |
+
|
484 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
485 |
+
# 0. Self-Attention
|
486 |
+
batch_size = hidden_states.shape[0]
|
487 |
+
|
488 |
+
if self.norm_type == "ada_norm":
|
489 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
490 |
+
elif self.norm_type == "ada_norm_zero":
|
491 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
492 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
493 |
+
)
|
494 |
+
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
|
495 |
+
norm_hidden_states = self.norm1(hidden_states)
|
496 |
+
elif self.norm_type == "ada_norm_continuous":
|
497 |
+
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
498 |
+
elif self.norm_type == "ada_norm_single":
|
499 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
500 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
501 |
+
).chunk(6, dim=1)
|
502 |
+
norm_hidden_states = self.norm1(hidden_states)
|
503 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
504 |
+
else:
|
505 |
+
raise ValueError("Incorrect norm used")
|
506 |
+
|
507 |
+
if self.pos_embed is not None:
|
508 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
509 |
+
|
510 |
+
# 1. Prepare GLIGEN inputs
|
511 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
512 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
513 |
+
|
514 |
+
attn_output = self.attn1(
|
515 |
+
norm_hidden_states,
|
516 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
517 |
+
attention_mask=attention_mask,
|
518 |
+
**cross_attention_kwargs,
|
519 |
+
)
|
520 |
+
|
521 |
+
if self.norm_type == "ada_norm_zero":
|
522 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
523 |
+
elif self.norm_type == "ada_norm_single":
|
524 |
+
attn_output = gate_msa * attn_output
|
525 |
+
|
526 |
+
hidden_states = attn_output + hidden_states
|
527 |
+
if hidden_states.ndim == 4:
|
528 |
+
hidden_states = hidden_states.squeeze(1)
|
529 |
+
|
530 |
+
# 1.2 GLIGEN Control
|
531 |
+
if gligen_kwargs is not None:
|
532 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
533 |
+
|
534 |
+
# 3. Cross-Attention
|
535 |
+
if self.attn2 is not None:
|
536 |
+
if self.norm_type == "ada_norm":
|
537 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
538 |
+
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
|
539 |
+
norm_hidden_states = self.norm2(hidden_states)
|
540 |
+
elif self.norm_type == "ada_norm_single":
|
541 |
+
# For PixArt norm2 isn't applied here:
|
542 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
543 |
+
norm_hidden_states = hidden_states
|
544 |
+
elif self.norm_type == "ada_norm_continuous":
|
545 |
+
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
546 |
+
else:
|
547 |
+
raise ValueError("Incorrect norm")
|
548 |
+
|
549 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
550 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
551 |
+
|
552 |
+
attn_output = self.attn2(
|
553 |
+
norm_hidden_states,
|
554 |
+
encoder_hidden_states=encoder_hidden_states,
|
555 |
+
attention_mask=encoder_attention_mask,
|
556 |
+
**cross_attention_kwargs,
|
557 |
+
)
|
558 |
+
hidden_states = attn_output + hidden_states
|
559 |
+
|
560 |
+
# 4. Feed-forward
|
561 |
+
# i2vgen doesn't have this norm 🤷♂️
|
562 |
+
if self.norm_type == "ada_norm_continuous":
|
563 |
+
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
|
564 |
+
elif not self.norm_type == "ada_norm_single":
|
565 |
+
norm_hidden_states = self.norm3(hidden_states)
|
566 |
+
|
567 |
+
if self.norm_type == "ada_norm_zero":
|
568 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
569 |
+
|
570 |
+
if self.norm_type == "ada_norm_single":
|
571 |
+
norm_hidden_states = self.norm2(hidden_states)
|
572 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
573 |
+
|
574 |
+
if self._chunk_size is not None:
|
575 |
+
# "feed_forward_chunk_size" can be used to save memory
|
576 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
577 |
+
else:
|
578 |
+
ff_output = self.ff(norm_hidden_states)
|
579 |
+
|
580 |
+
if self.norm_type == "ada_norm_zero":
|
581 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
582 |
+
elif self.norm_type == "ada_norm_single":
|
583 |
+
ff_output = gate_mlp * ff_output
|
584 |
+
|
585 |
+
hidden_states = ff_output + hidden_states
|
586 |
+
if hidden_states.ndim == 4:
|
587 |
+
hidden_states = hidden_states.squeeze(1)
|
588 |
+
|
589 |
+
return hidden_states
|
590 |
+
|
591 |
+
|
592 |
+
class LuminaFeedForward(nn.Module):
|
593 |
+
r"""
|
594 |
+
A feed-forward layer.
|
595 |
+
|
596 |
+
Parameters:
|
597 |
+
hidden_size (`int`):
|
598 |
+
The dimensionality of the hidden layers in the model. This parameter determines the width of the model's
|
599 |
+
hidden representations.
|
600 |
+
intermediate_size (`int`): The intermediate dimension of the feedforward layer.
|
601 |
+
multiple_of (`int`, *optional*): Value to ensure hidden dimension is a multiple
|
602 |
+
of this value.
|
603 |
+
ffn_dim_multiplier (float, *optional*): Custom multiplier for hidden
|
604 |
+
dimension. Defaults to None.
|
605 |
+
"""
|
606 |
+
|
607 |
+
def __init__(
|
608 |
+
self,
|
609 |
+
dim: int,
|
610 |
+
inner_dim: int,
|
611 |
+
multiple_of: Optional[int] = 256,
|
612 |
+
ffn_dim_multiplier: Optional[float] = None,
|
613 |
+
):
|
614 |
+
super().__init__()
|
615 |
+
inner_dim = int(2 * inner_dim / 3)
|
616 |
+
# custom hidden_size factor multiplier
|
617 |
+
if ffn_dim_multiplier is not None:
|
618 |
+
inner_dim = int(ffn_dim_multiplier * inner_dim)
|
619 |
+
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
|
620 |
+
|
621 |
+
self.linear_1 = nn.Linear(
|
622 |
+
dim,
|
623 |
+
inner_dim,
|
624 |
+
bias=False,
|
625 |
+
)
|
626 |
+
self.linear_2 = nn.Linear(
|
627 |
+
inner_dim,
|
628 |
+
dim,
|
629 |
+
bias=False,
|
630 |
+
)
|
631 |
+
self.linear_3 = nn.Linear(
|
632 |
+
dim,
|
633 |
+
inner_dim,
|
634 |
+
bias=False,
|
635 |
+
)
|
636 |
+
self.silu = FP32SiLU()
|
637 |
+
|
638 |
+
def forward(self, x):
|
639 |
+
return self.linear_2(self.silu(self.linear_1(x)) * self.linear_3(x))
|
640 |
+
|
641 |
+
|
642 |
+
@maybe_allow_in_graph
|
643 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
644 |
+
r"""
|
645 |
+
A basic Transformer block for video like data.
|
646 |
+
|
647 |
+
Parameters:
|
648 |
+
dim (`int`): The number of channels in the input and output.
|
649 |
+
time_mix_inner_dim (`int`): The number of channels for temporal attention.
|
650 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
651 |
+
attention_head_dim (`int`): The number of channels in each head.
|
652 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
653 |
+
"""
|
654 |
+
|
655 |
+
def __init__(
|
656 |
+
self,
|
657 |
+
dim: int,
|
658 |
+
time_mix_inner_dim: int,
|
659 |
+
num_attention_heads: int,
|
660 |
+
attention_head_dim: int,
|
661 |
+
cross_attention_dim: Optional[int] = None,
|
662 |
+
):
|
663 |
+
super().__init__()
|
664 |
+
self.is_res = dim == time_mix_inner_dim
|
665 |
+
|
666 |
+
self.norm_in = nn.LayerNorm(dim)
|
667 |
+
|
668 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
669 |
+
# 1. Self-Attn
|
670 |
+
self.ff_in = FeedForward(
|
671 |
+
dim,
|
672 |
+
dim_out=time_mix_inner_dim,
|
673 |
+
activation_fn="geglu",
|
674 |
+
)
|
675 |
+
|
676 |
+
self.norm1 = nn.LayerNorm(time_mix_inner_dim)
|
677 |
+
self.attn1 = Attention(
|
678 |
+
query_dim=time_mix_inner_dim,
|
679 |
+
heads=num_attention_heads,
|
680 |
+
dim_head=attention_head_dim,
|
681 |
+
cross_attention_dim=None,
|
682 |
+
)
|
683 |
+
|
684 |
+
# 2. Cross-Attn
|
685 |
+
if cross_attention_dim is not None:
|
686 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
687 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
688 |
+
# the second cross attention block.
|
689 |
+
self.norm2 = nn.LayerNorm(time_mix_inner_dim)
|
690 |
+
self.attn2 = Attention(
|
691 |
+
query_dim=time_mix_inner_dim,
|
692 |
+
cross_attention_dim=cross_attention_dim,
|
693 |
+
heads=num_attention_heads,
|
694 |
+
dim_head=attention_head_dim,
|
695 |
+
) # is self-attn if encoder_hidden_states is none
|
696 |
+
else:
|
697 |
+
self.norm2 = None
|
698 |
+
self.attn2 = None
|
699 |
+
|
700 |
+
# 3. Feed-forward
|
701 |
+
self.norm3 = nn.LayerNorm(time_mix_inner_dim)
|
702 |
+
self.ff = FeedForward(time_mix_inner_dim, activation_fn="geglu")
|
703 |
+
|
704 |
+
# let chunk size default to None
|
705 |
+
self._chunk_size = None
|
706 |
+
self._chunk_dim = None
|
707 |
+
|
708 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], **kwargs):
|
709 |
+
# Sets chunk feed-forward
|
710 |
+
self._chunk_size = chunk_size
|
711 |
+
# chunk dim should be hardcoded to 1 to have better speed vs. memory trade-off
|
712 |
+
self._chunk_dim = 1
|
713 |
+
|
714 |
+
def forward(
|
715 |
+
self,
|
716 |
+
hidden_states: torch.Tensor,
|
717 |
+
num_frames: int,
|
718 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
719 |
+
) -> torch.Tensor:
|
720 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
721 |
+
# 0. Self-Attention
|
722 |
+
batch_size = hidden_states.shape[0]
|
723 |
+
|
724 |
+
batch_frames, seq_length, channels = hidden_states.shape
|
725 |
+
batch_size = batch_frames // num_frames
|
726 |
+
|
727 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, num_frames, seq_length, channels)
|
728 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
729 |
+
hidden_states = hidden_states.reshape(batch_size * seq_length, num_frames, channels)
|
730 |
+
|
731 |
+
residual = hidden_states
|
732 |
+
hidden_states = self.norm_in(hidden_states)
|
733 |
+
|
734 |
+
if self._chunk_size is not None:
|
735 |
+
hidden_states = _chunked_feed_forward(self.ff_in, hidden_states, self._chunk_dim, self._chunk_size)
|
736 |
+
else:
|
737 |
+
hidden_states = self.ff_in(hidden_states)
|
738 |
+
|
739 |
+
if self.is_res:
|
740 |
+
hidden_states = hidden_states + residual
|
741 |
+
|
742 |
+
norm_hidden_states = self.norm1(hidden_states)
|
743 |
+
attn_output = self.attn1(norm_hidden_states, encoder_hidden_states=None)
|
744 |
+
hidden_states = attn_output + hidden_states
|
745 |
+
|
746 |
+
# 3. Cross-Attention
|
747 |
+
if self.attn2 is not None:
|
748 |
+
norm_hidden_states = self.norm2(hidden_states)
|
749 |
+
attn_output = self.attn2(norm_hidden_states, encoder_hidden_states=encoder_hidden_states)
|
750 |
+
hidden_states = attn_output + hidden_states
|
751 |
+
|
752 |
+
# 4. Feed-forward
|
753 |
+
norm_hidden_states = self.norm3(hidden_states)
|
754 |
+
|
755 |
+
if self._chunk_size is not None:
|
756 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
757 |
+
else:
|
758 |
+
ff_output = self.ff(norm_hidden_states)
|
759 |
+
|
760 |
+
if self.is_res:
|
761 |
+
hidden_states = ff_output + hidden_states
|
762 |
+
else:
|
763 |
+
hidden_states = ff_output
|
764 |
+
|
765 |
+
hidden_states = hidden_states[None, :].reshape(batch_size, seq_length, num_frames, channels)
|
766 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3)
|
767 |
+
hidden_states = hidden_states.reshape(batch_size * num_frames, seq_length, channels)
|
768 |
+
|
769 |
+
return hidden_states
|
770 |
+
|
771 |
+
|
772 |
+
class SkipFFTransformerBlock(nn.Module):
|
773 |
+
def __init__(
|
774 |
+
self,
|
775 |
+
dim: int,
|
776 |
+
num_attention_heads: int,
|
777 |
+
attention_head_dim: int,
|
778 |
+
kv_input_dim: int,
|
779 |
+
kv_input_dim_proj_use_bias: bool,
|
780 |
+
dropout=0.0,
|
781 |
+
cross_attention_dim: Optional[int] = None,
|
782 |
+
attention_bias: bool = False,
|
783 |
+
attention_out_bias: bool = True,
|
784 |
+
):
|
785 |
+
super().__init__()
|
786 |
+
if kv_input_dim != dim:
|
787 |
+
self.kv_mapper = nn.Linear(kv_input_dim, dim, kv_input_dim_proj_use_bias)
|
788 |
+
else:
|
789 |
+
self.kv_mapper = None
|
790 |
+
|
791 |
+
self.norm1 = RMSNorm(dim, 1e-06)
|
792 |
+
|
793 |
+
self.attn1 = Attention(
|
794 |
+
query_dim=dim,
|
795 |
+
heads=num_attention_heads,
|
796 |
+
dim_head=attention_head_dim,
|
797 |
+
dropout=dropout,
|
798 |
+
bias=attention_bias,
|
799 |
+
cross_attention_dim=cross_attention_dim,
|
800 |
+
out_bias=attention_out_bias,
|
801 |
+
)
|
802 |
+
|
803 |
+
self.norm2 = RMSNorm(dim, 1e-06)
|
804 |
+
|
805 |
+
self.attn2 = Attention(
|
806 |
+
query_dim=dim,
|
807 |
+
cross_attention_dim=cross_attention_dim,
|
808 |
+
heads=num_attention_heads,
|
809 |
+
dim_head=attention_head_dim,
|
810 |
+
dropout=dropout,
|
811 |
+
bias=attention_bias,
|
812 |
+
out_bias=attention_out_bias,
|
813 |
+
)
|
814 |
+
|
815 |
+
def forward(self, hidden_states, encoder_hidden_states, cross_attention_kwargs):
|
816 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
817 |
+
|
818 |
+
if self.kv_mapper is not None:
|
819 |
+
encoder_hidden_states = self.kv_mapper(F.silu(encoder_hidden_states))
|
820 |
+
|
821 |
+
norm_hidden_states = self.norm1(hidden_states)
|
822 |
+
|
823 |
+
attn_output = self.attn1(
|
824 |
+
norm_hidden_states,
|
825 |
+
encoder_hidden_states=encoder_hidden_states,
|
826 |
+
**cross_attention_kwargs,
|
827 |
+
)
|
828 |
+
|
829 |
+
hidden_states = attn_output + hidden_states
|
830 |
+
|
831 |
+
norm_hidden_states = self.norm2(hidden_states)
|
832 |
+
|
833 |
+
attn_output = self.attn2(
|
834 |
+
norm_hidden_states,
|
835 |
+
encoder_hidden_states=encoder_hidden_states,
|
836 |
+
**cross_attention_kwargs,
|
837 |
+
)
|
838 |
+
|
839 |
+
hidden_states = attn_output + hidden_states
|
840 |
+
|
841 |
+
return hidden_states
|
842 |
+
|
843 |
+
|
844 |
+
@maybe_allow_in_graph
|
845 |
+
class FreeNoiseTransformerBlock(nn.Module):
|
846 |
+
r"""
|
847 |
+
A FreeNoise Transformer block.
|
848 |
+
|
849 |
+
Parameters:
|
850 |
+
dim (`int`):
|
851 |
+
The number of channels in the input and output.
|
852 |
+
num_attention_heads (`int`):
|
853 |
+
The number of heads to use for multi-head attention.
|
854 |
+
attention_head_dim (`int`):
|
855 |
+
The number of channels in each head.
|
856 |
+
dropout (`float`, *optional*, defaults to 0.0):
|
857 |
+
The dropout probability to use.
|
858 |
+
cross_attention_dim (`int`, *optional*):
|
859 |
+
The size of the encoder_hidden_states vector for cross attention.
|
860 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`):
|
861 |
+
Activation function to be used in feed-forward.
|
862 |
+
num_embeds_ada_norm (`int`, *optional*):
|
863 |
+
The number of diffusion steps used during training. See `Transformer2DModel`.
|
864 |
+
attention_bias (`bool`, defaults to `False`):
|
865 |
+
Configure if the attentions should contain a bias parameter.
|
866 |
+
only_cross_attention (`bool`, defaults to `False`):
|
867 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
868 |
+
double_self_attention (`bool`, defaults to `False`):
|
869 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
870 |
+
upcast_attention (`bool`, defaults to `False`):
|
871 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
872 |
+
norm_elementwise_affine (`bool`, defaults to `True`):
|
873 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
874 |
+
norm_type (`str`, defaults to `"layer_norm"`):
|
875 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
876 |
+
final_dropout (`bool` defaults to `False`):
|
877 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
878 |
+
attention_type (`str`, defaults to `"default"`):
|
879 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
880 |
+
positional_embeddings (`str`, *optional*):
|
881 |
+
The type of positional embeddings to apply to.
|
882 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
883 |
+
The maximum number of positional embeddings to apply.
|
884 |
+
ff_inner_dim (`int`, *optional*):
|
885 |
+
Hidden dimension of feed-forward MLP.
|
886 |
+
ff_bias (`bool`, defaults to `True`):
|
887 |
+
Whether or not to use bias in feed-forward MLP.
|
888 |
+
attention_out_bias (`bool`, defaults to `True`):
|
889 |
+
Whether or not to use bias in attention output project layer.
|
890 |
+
context_length (`int`, defaults to `16`):
|
891 |
+
The maximum number of frames that the FreeNoise block processes at once.
|
892 |
+
context_stride (`int`, defaults to `4`):
|
893 |
+
The number of frames to be skipped before starting to process a new batch of `context_length` frames.
|
894 |
+
weighting_scheme (`str`, defaults to `"pyramid"`):
|
895 |
+
The weighting scheme to use for weighting averaging of processed latent frames. As described in the
|
896 |
+
Equation 9. of the [FreeNoise](https://arxiv.org/abs/2310.15169) paper, "pyramid" is the default setting
|
897 |
+
used.
|
898 |
+
"""
|
899 |
+
|
900 |
+
def __init__(
|
901 |
+
self,
|
902 |
+
dim: int,
|
903 |
+
num_attention_heads: int,
|
904 |
+
attention_head_dim: int,
|
905 |
+
dropout: float = 0.0,
|
906 |
+
cross_attention_dim: Optional[int] = None,
|
907 |
+
activation_fn: str = "geglu",
|
908 |
+
num_embeds_ada_norm: Optional[int] = None,
|
909 |
+
attention_bias: bool = False,
|
910 |
+
only_cross_attention: bool = False,
|
911 |
+
double_self_attention: bool = False,
|
912 |
+
upcast_attention: bool = False,
|
913 |
+
norm_elementwise_affine: bool = True,
|
914 |
+
norm_type: str = "layer_norm",
|
915 |
+
norm_eps: float = 1e-5,
|
916 |
+
final_dropout: bool = False,
|
917 |
+
positional_embeddings: Optional[str] = None,
|
918 |
+
num_positional_embeddings: Optional[int] = None,
|
919 |
+
ff_inner_dim: Optional[int] = None,
|
920 |
+
ff_bias: bool = True,
|
921 |
+
attention_out_bias: bool = True,
|
922 |
+
context_length: int = 16,
|
923 |
+
context_stride: int = 4,
|
924 |
+
weighting_scheme: str = "pyramid",
|
925 |
+
):
|
926 |
+
super().__init__()
|
927 |
+
self.dim = dim
|
928 |
+
self.num_attention_heads = num_attention_heads
|
929 |
+
self.attention_head_dim = attention_head_dim
|
930 |
+
self.dropout = dropout
|
931 |
+
self.cross_attention_dim = cross_attention_dim
|
932 |
+
self.activation_fn = activation_fn
|
933 |
+
self.attention_bias = attention_bias
|
934 |
+
self.double_self_attention = double_self_attention
|
935 |
+
self.norm_elementwise_affine = norm_elementwise_affine
|
936 |
+
self.positional_embeddings = positional_embeddings
|
937 |
+
self.num_positional_embeddings = num_positional_embeddings
|
938 |
+
self.only_cross_attention = only_cross_attention
|
939 |
+
|
940 |
+
self.set_free_noise_properties(context_length, context_stride, weighting_scheme)
|
941 |
+
|
942 |
+
# We keep these boolean flags for backward-compatibility.
|
943 |
+
self.use_ada_layer_norm_zero = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero"
|
944 |
+
self.use_ada_layer_norm = (num_embeds_ada_norm is not None) and norm_type == "ada_norm"
|
945 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
946 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
947 |
+
self.use_ada_layer_norm_continuous = norm_type == "ada_norm_continuous"
|
948 |
+
|
949 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
950 |
+
raise ValueError(
|
951 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
952 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
953 |
+
)
|
954 |
+
|
955 |
+
self.norm_type = norm_type
|
956 |
+
self.num_embeds_ada_norm = num_embeds_ada_norm
|
957 |
+
|
958 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
959 |
+
raise ValueError(
|
960 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
961 |
+
)
|
962 |
+
|
963 |
+
if positional_embeddings == "sinusoidal":
|
964 |
+
self.pos_embed = SinusoidalPositionalEmbedding(dim, max_seq_length=num_positional_embeddings)
|
965 |
+
else:
|
966 |
+
self.pos_embed = None
|
967 |
+
|
968 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
969 |
+
# 1. Self-Attn
|
970 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps)
|
971 |
+
|
972 |
+
self.attn1 = Attention(
|
973 |
+
query_dim=dim,
|
974 |
+
heads=num_attention_heads,
|
975 |
+
dim_head=attention_head_dim,
|
976 |
+
dropout=dropout,
|
977 |
+
bias=attention_bias,
|
978 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
979 |
+
upcast_attention=upcast_attention,
|
980 |
+
out_bias=attention_out_bias,
|
981 |
+
)
|
982 |
+
|
983 |
+
# 2. Cross-Attn
|
984 |
+
if cross_attention_dim is not None or double_self_attention:
|
985 |
+
self.norm2 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
986 |
+
|
987 |
+
self.attn2 = Attention(
|
988 |
+
query_dim=dim,
|
989 |
+
cross_attention_dim=cross_attention_dim if not double_self_attention else None,
|
990 |
+
heads=num_attention_heads,
|
991 |
+
dim_head=attention_head_dim,
|
992 |
+
dropout=dropout,
|
993 |
+
bias=attention_bias,
|
994 |
+
upcast_attention=upcast_attention,
|
995 |
+
out_bias=attention_out_bias,
|
996 |
+
) # is self-attn if encoder_hidden_states is none
|
997 |
+
|
998 |
+
# 3. Feed-forward
|
999 |
+
self.ff = FeedForward(
|
1000 |
+
dim,
|
1001 |
+
dropout=dropout,
|
1002 |
+
activation_fn=activation_fn,
|
1003 |
+
final_dropout=final_dropout,
|
1004 |
+
inner_dim=ff_inner_dim,
|
1005 |
+
bias=ff_bias,
|
1006 |
+
)
|
1007 |
+
|
1008 |
+
self.norm3 = nn.LayerNorm(dim, norm_eps, norm_elementwise_affine)
|
1009 |
+
|
1010 |
+
# let chunk size default to None
|
1011 |
+
self._chunk_size = None
|
1012 |
+
self._chunk_dim = 0
|
1013 |
+
|
1014 |
+
def _get_frame_indices(self, num_frames: int) -> List[Tuple[int, int]]:
|
1015 |
+
frame_indices = []
|
1016 |
+
for i in range(0, num_frames - self.context_length + 1, self.context_stride):
|
1017 |
+
window_start = i
|
1018 |
+
window_end = min(num_frames, i + self.context_length)
|
1019 |
+
frame_indices.append((window_start, window_end))
|
1020 |
+
return frame_indices
|
1021 |
+
|
1022 |
+
def _get_frame_weights(self, num_frames: int, weighting_scheme: str = "pyramid") -> List[float]:
|
1023 |
+
if weighting_scheme == "flat":
|
1024 |
+
weights = [1.0] * num_frames
|
1025 |
+
|
1026 |
+
elif weighting_scheme == "pyramid":
|
1027 |
+
if num_frames % 2 == 0:
|
1028 |
+
# num_frames = 4 => [1, 2, 2, 1]
|
1029 |
+
mid = num_frames // 2
|
1030 |
+
weights = list(range(1, mid + 1))
|
1031 |
+
weights = weights + weights[::-1]
|
1032 |
+
else:
|
1033 |
+
# num_frames = 5 => [1, 2, 3, 2, 1]
|
1034 |
+
mid = (num_frames + 1) // 2
|
1035 |
+
weights = list(range(1, mid))
|
1036 |
+
weights = weights + [mid] + weights[::-1]
|
1037 |
+
|
1038 |
+
elif weighting_scheme == "delayed_reverse_sawtooth":
|
1039 |
+
if num_frames % 2 == 0:
|
1040 |
+
# num_frames = 4 => [0.01, 2, 2, 1]
|
1041 |
+
mid = num_frames // 2
|
1042 |
+
weights = [0.01] * (mid - 1) + [mid]
|
1043 |
+
weights = weights + list(range(mid, 0, -1))
|
1044 |
+
else:
|
1045 |
+
# num_frames = 5 => [0.01, 0.01, 3, 2, 1]
|
1046 |
+
mid = (num_frames + 1) // 2
|
1047 |
+
weights = [0.01] * mid
|
1048 |
+
weights = weights + list(range(mid, 0, -1))
|
1049 |
+
else:
|
1050 |
+
raise ValueError(f"Unsupported value for weighting_scheme={weighting_scheme}")
|
1051 |
+
|
1052 |
+
return weights
|
1053 |
+
|
1054 |
+
def set_free_noise_properties(
|
1055 |
+
self, context_length: int, context_stride: int, weighting_scheme: str = "pyramid"
|
1056 |
+
) -> None:
|
1057 |
+
self.context_length = context_length
|
1058 |
+
self.context_stride = context_stride
|
1059 |
+
self.weighting_scheme = weighting_scheme
|
1060 |
+
|
1061 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0) -> None:
|
1062 |
+
# Sets chunk feed-forward
|
1063 |
+
self._chunk_size = chunk_size
|
1064 |
+
self._chunk_dim = dim
|
1065 |
+
|
1066 |
+
def forward(
|
1067 |
+
self,
|
1068 |
+
hidden_states: torch.Tensor,
|
1069 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1070 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1071 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1072 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
1073 |
+
*args,
|
1074 |
+
**kwargs,
|
1075 |
+
) -> torch.Tensor:
|
1076 |
+
if cross_attention_kwargs is not None:
|
1077 |
+
if cross_attention_kwargs.get("scale", None) is not None:
|
1078 |
+
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
1079 |
+
|
1080 |
+
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
1081 |
+
|
1082 |
+
# hidden_states: [B x H x W, F, C]
|
1083 |
+
device = hidden_states.device
|
1084 |
+
dtype = hidden_states.dtype
|
1085 |
+
|
1086 |
+
num_frames = hidden_states.size(1)
|
1087 |
+
frame_indices = self._get_frame_indices(num_frames)
|
1088 |
+
frame_weights = self._get_frame_weights(self.context_length, self.weighting_scheme)
|
1089 |
+
frame_weights = torch.tensor(frame_weights, device=device, dtype=dtype).unsqueeze(0).unsqueeze(-1)
|
1090 |
+
is_last_frame_batch_complete = frame_indices[-1][1] == num_frames
|
1091 |
+
|
1092 |
+
# Handle out-of-bounds case if num_frames isn't perfectly divisible by context_length
|
1093 |
+
# For example, num_frames=25, context_length=16, context_stride=4, then we expect the ranges:
|
1094 |
+
# [(0, 16), (4, 20), (8, 24), (10, 26)]
|
1095 |
+
if not is_last_frame_batch_complete:
|
1096 |
+
if num_frames < self.context_length:
|
1097 |
+
raise ValueError(f"Expected {num_frames=} to be greater or equal than {self.context_length=}")
|
1098 |
+
last_frame_batch_length = num_frames - frame_indices[-1][1]
|
1099 |
+
frame_indices.append((num_frames - self.context_length, num_frames))
|
1100 |
+
|
1101 |
+
num_times_accumulated = torch.zeros((1, num_frames, 1), device=device)
|
1102 |
+
accumulated_values = torch.zeros_like(hidden_states)
|
1103 |
+
|
1104 |
+
for i, (frame_start, frame_end) in enumerate(frame_indices):
|
1105 |
+
# The reason for slicing here is to ensure that if (frame_end - frame_start) is to handle
|
1106 |
+
# cases like frame_indices=[(0, 16), (16, 20)], if the user provided a video with 19 frames, or
|
1107 |
+
# essentially a non-multiple of `context_length`.
|
1108 |
+
weights = torch.ones_like(num_times_accumulated[:, frame_start:frame_end])
|
1109 |
+
weights *= frame_weights
|
1110 |
+
|
1111 |
+
hidden_states_chunk = hidden_states[:, frame_start:frame_end]
|
1112 |
+
|
1113 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
1114 |
+
# 1. Self-Attention
|
1115 |
+
norm_hidden_states = self.norm1(hidden_states_chunk)
|
1116 |
+
|
1117 |
+
if self.pos_embed is not None:
|
1118 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1119 |
+
|
1120 |
+
attn_output = self.attn1(
|
1121 |
+
norm_hidden_states,
|
1122 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
1123 |
+
attention_mask=attention_mask,
|
1124 |
+
**cross_attention_kwargs,
|
1125 |
+
)
|
1126 |
+
|
1127 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1128 |
+
if hidden_states_chunk.ndim == 4:
|
1129 |
+
hidden_states_chunk = hidden_states_chunk.squeeze(1)
|
1130 |
+
|
1131 |
+
# 2. Cross-Attention
|
1132 |
+
if self.attn2 is not None:
|
1133 |
+
norm_hidden_states = self.norm2(hidden_states_chunk)
|
1134 |
+
|
1135 |
+
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
|
1136 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
1137 |
+
|
1138 |
+
attn_output = self.attn2(
|
1139 |
+
norm_hidden_states,
|
1140 |
+
encoder_hidden_states=encoder_hidden_states,
|
1141 |
+
attention_mask=encoder_attention_mask,
|
1142 |
+
**cross_attention_kwargs,
|
1143 |
+
)
|
1144 |
+
hidden_states_chunk = attn_output + hidden_states_chunk
|
1145 |
+
|
1146 |
+
if i == len(frame_indices) - 1 and not is_last_frame_batch_complete:
|
1147 |
+
accumulated_values[:, -last_frame_batch_length:] += (
|
1148 |
+
hidden_states_chunk[:, -last_frame_batch_length:] * weights[:, -last_frame_batch_length:]
|
1149 |
+
)
|
1150 |
+
num_times_accumulated[:, -last_frame_batch_length:] += weights[:, -last_frame_batch_length]
|
1151 |
+
else:
|
1152 |
+
accumulated_values[:, frame_start:frame_end] += hidden_states_chunk * weights
|
1153 |
+
num_times_accumulated[:, frame_start:frame_end] += weights
|
1154 |
+
|
1155 |
+
# TODO(aryan): Maybe this could be done in a better way.
|
1156 |
+
#
|
1157 |
+
# Previously, this was:
|
1158 |
+
# hidden_states = torch.where(
|
1159 |
+
# num_times_accumulated > 0, accumulated_values / num_times_accumulated, accumulated_values
|
1160 |
+
# )
|
1161 |
+
#
|
1162 |
+
# The reasoning for the change here is `torch.where` became a bottleneck at some point when golfing memory
|
1163 |
+
# spikes. It is particularly noticeable when the number of frames is high. My understanding is that this comes
|
1164 |
+
# from tensors being copied - which is why we resort to spliting and concatenating here. I've not particularly
|
1165 |
+
# looked into this deeply because other memory optimizations led to more pronounced reductions.
|
1166 |
+
hidden_states = torch.cat(
|
1167 |
+
[
|
1168 |
+
torch.where(num_times_split > 0, accumulated_split / num_times_split, accumulated_split)
|
1169 |
+
for accumulated_split, num_times_split in zip(
|
1170 |
+
accumulated_values.split(self.context_length, dim=1),
|
1171 |
+
num_times_accumulated.split(self.context_length, dim=1),
|
1172 |
+
)
|
1173 |
+
],
|
1174 |
+
dim=1,
|
1175 |
+
).to(dtype)
|
1176 |
+
|
1177 |
+
# 3. Feed-forward
|
1178 |
+
norm_hidden_states = self.norm3(hidden_states)
|
1179 |
+
|
1180 |
+
if self._chunk_size is not None:
|
1181 |
+
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size)
|
1182 |
+
else:
|
1183 |
+
ff_output = self.ff(norm_hidden_states)
|
1184 |
+
|
1185 |
+
hidden_states = ff_output + hidden_states
|
1186 |
+
if hidden_states.ndim == 4:
|
1187 |
+
hidden_states = hidden_states.squeeze(1)
|
1188 |
+
|
1189 |
+
return hidden_states
|
1190 |
+
|
1191 |
+
|
1192 |
+
class FeedForward(nn.Module):
|
1193 |
+
r"""
|
1194 |
+
A feed-forward layer.
|
1195 |
+
|
1196 |
+
Parameters:
|
1197 |
+
dim (`int`): The number of channels in the input.
|
1198 |
+
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
1199 |
+
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
1200 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
1201 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
1202 |
+
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout.
|
1203 |
+
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
|
1204 |
+
"""
|
1205 |
+
|
1206 |
+
def __init__(
|
1207 |
+
self,
|
1208 |
+
dim: int,
|
1209 |
+
dim_out: Optional[int] = None,
|
1210 |
+
mult: int = 4,
|
1211 |
+
dropout: float = 0.0,
|
1212 |
+
activation_fn: str = "geglu",
|
1213 |
+
final_dropout: bool = False,
|
1214 |
+
inner_dim=None,
|
1215 |
+
bias: bool = True,
|
1216 |
+
):
|
1217 |
+
super().__init__()
|
1218 |
+
if inner_dim is None:
|
1219 |
+
inner_dim = int(dim * mult)
|
1220 |
+
dim_out = dim_out if dim_out is not None else dim
|
1221 |
+
|
1222 |
+
if activation_fn == "gelu":
|
1223 |
+
act_fn = GELU(dim, inner_dim, bias=bias)
|
1224 |
+
if activation_fn == "gelu-approximate":
|
1225 |
+
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
|
1226 |
+
elif activation_fn == "geglu":
|
1227 |
+
act_fn = GEGLU(dim, inner_dim, bias=bias)
|
1228 |
+
elif activation_fn == "geglu-approximate":
|
1229 |
+
act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
|
1230 |
+
elif activation_fn == "swiglu":
|
1231 |
+
act_fn = SwiGLU(dim, inner_dim, bias=bias)
|
1232 |
+
elif activation_fn == "linear-silu":
|
1233 |
+
act_fn = LinearActivation(dim, inner_dim, bias=bias, activation="silu")
|
1234 |
+
|
1235 |
+
self.net = nn.ModuleList([])
|
1236 |
+
# project in
|
1237 |
+
self.net.append(act_fn)
|
1238 |
+
# project dropout
|
1239 |
+
self.net.append(nn.Dropout(dropout))
|
1240 |
+
# project out
|
1241 |
+
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
|
1242 |
+
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
|
1243 |
+
if final_dropout:
|
1244 |
+
self.net.append(nn.Dropout(dropout))
|
1245 |
+
|
1246 |
+
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
1247 |
+
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
1248 |
+
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
1249 |
+
deprecate("scale", "1.0.0", deprecation_message)
|
1250 |
+
for module in self.net:
|
1251 |
+
hidden_states = module(hidden_states)
|
1252 |
+
return hidden_states
|
icedit/diffusers/models/attention_flax.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import functools
|
16 |
+
import math
|
17 |
+
|
18 |
+
import flax.linen as nn
|
19 |
+
import jax
|
20 |
+
import jax.numpy as jnp
|
21 |
+
|
22 |
+
|
23 |
+
def _query_chunk_attention(query, key, value, precision, key_chunk_size: int = 4096):
|
24 |
+
"""Multi-head dot product attention with a limited number of queries."""
|
25 |
+
num_kv, num_heads, k_features = key.shape[-3:]
|
26 |
+
v_features = value.shape[-1]
|
27 |
+
key_chunk_size = min(key_chunk_size, num_kv)
|
28 |
+
query = query / jnp.sqrt(k_features)
|
29 |
+
|
30 |
+
@functools.partial(jax.checkpoint, prevent_cse=False)
|
31 |
+
def summarize_chunk(query, key, value):
|
32 |
+
attn_weights = jnp.einsum("...qhd,...khd->...qhk", query, key, precision=precision)
|
33 |
+
|
34 |
+
max_score = jnp.max(attn_weights, axis=-1, keepdims=True)
|
35 |
+
max_score = jax.lax.stop_gradient(max_score)
|
36 |
+
exp_weights = jnp.exp(attn_weights - max_score)
|
37 |
+
|
38 |
+
exp_values = jnp.einsum("...vhf,...qhv->...qhf", value, exp_weights, precision=precision)
|
39 |
+
max_score = jnp.einsum("...qhk->...qh", max_score)
|
40 |
+
|
41 |
+
return (exp_values, exp_weights.sum(axis=-1), max_score)
|
42 |
+
|
43 |
+
def chunk_scanner(chunk_idx):
|
44 |
+
# julienne key array
|
45 |
+
key_chunk = jax.lax.dynamic_slice(
|
46 |
+
operand=key,
|
47 |
+
start_indices=[0] * (key.ndim - 3) + [chunk_idx, 0, 0], # [...,k,h,d]
|
48 |
+
slice_sizes=list(key.shape[:-3]) + [key_chunk_size, num_heads, k_features], # [...,k,h,d]
|
49 |
+
)
|
50 |
+
|
51 |
+
# julienne value array
|
52 |
+
value_chunk = jax.lax.dynamic_slice(
|
53 |
+
operand=value,
|
54 |
+
start_indices=[0] * (value.ndim - 3) + [chunk_idx, 0, 0], # [...,v,h,d]
|
55 |
+
slice_sizes=list(value.shape[:-3]) + [key_chunk_size, num_heads, v_features], # [...,v,h,d]
|
56 |
+
)
|
57 |
+
|
58 |
+
return summarize_chunk(query, key_chunk, value_chunk)
|
59 |
+
|
60 |
+
chunk_values, chunk_weights, chunk_max = jax.lax.map(f=chunk_scanner, xs=jnp.arange(0, num_kv, key_chunk_size))
|
61 |
+
|
62 |
+
global_max = jnp.max(chunk_max, axis=0, keepdims=True)
|
63 |
+
max_diffs = jnp.exp(chunk_max - global_max)
|
64 |
+
|
65 |
+
chunk_values *= jnp.expand_dims(max_diffs, axis=-1)
|
66 |
+
chunk_weights *= max_diffs
|
67 |
+
|
68 |
+
all_values = chunk_values.sum(axis=0)
|
69 |
+
all_weights = jnp.expand_dims(chunk_weights, -1).sum(axis=0)
|
70 |
+
|
71 |
+
return all_values / all_weights
|
72 |
+
|
73 |
+
|
74 |
+
def jax_memory_efficient_attention(
|
75 |
+
query, key, value, precision=jax.lax.Precision.HIGHEST, query_chunk_size: int = 1024, key_chunk_size: int = 4096
|
76 |
+
):
|
77 |
+
r"""
|
78 |
+
Flax Memory-efficient multi-head dot product attention. https://arxiv.org/abs/2112.05682v2
|
79 |
+
https://github.com/AminRezaei0x443/memory-efficient-attention
|
80 |
+
|
81 |
+
Args:
|
82 |
+
query (`jnp.ndarray`): (batch..., query_length, head, query_key_depth_per_head)
|
83 |
+
key (`jnp.ndarray`): (batch..., key_value_length, head, query_key_depth_per_head)
|
84 |
+
value (`jnp.ndarray`): (batch..., key_value_length, head, value_depth_per_head)
|
85 |
+
precision (`jax.lax.Precision`, *optional*, defaults to `jax.lax.Precision.HIGHEST`):
|
86 |
+
numerical precision for computation
|
87 |
+
query_chunk_size (`int`, *optional*, defaults to 1024):
|
88 |
+
chunk size to divide query array value must divide query_length equally without remainder
|
89 |
+
key_chunk_size (`int`, *optional*, defaults to 4096):
|
90 |
+
chunk size to divide key and value array value must divide key_value_length equally without remainder
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
(`jnp.ndarray`) with shape of (batch..., query_length, head, value_depth_per_head)
|
94 |
+
"""
|
95 |
+
num_q, num_heads, q_features = query.shape[-3:]
|
96 |
+
|
97 |
+
def chunk_scanner(chunk_idx, _):
|
98 |
+
# julienne query array
|
99 |
+
query_chunk = jax.lax.dynamic_slice(
|
100 |
+
operand=query,
|
101 |
+
start_indices=([0] * (query.ndim - 3)) + [chunk_idx, 0, 0], # [...,q,h,d]
|
102 |
+
slice_sizes=list(query.shape[:-3]) + [min(query_chunk_size, num_q), num_heads, q_features], # [...,q,h,d]
|
103 |
+
)
|
104 |
+
|
105 |
+
return (
|
106 |
+
chunk_idx + query_chunk_size, # unused ignore it
|
107 |
+
_query_chunk_attention(
|
108 |
+
query=query_chunk, key=key, value=value, precision=precision, key_chunk_size=key_chunk_size
|
109 |
+
),
|
110 |
+
)
|
111 |
+
|
112 |
+
_, res = jax.lax.scan(
|
113 |
+
f=chunk_scanner,
|
114 |
+
init=0,
|
115 |
+
xs=None,
|
116 |
+
length=math.ceil(num_q / query_chunk_size), # start counter # stop counter
|
117 |
+
)
|
118 |
+
|
119 |
+
return jnp.concatenate(res, axis=-3) # fuse the chunked result back
|
120 |
+
|
121 |
+
|
122 |
+
class FlaxAttention(nn.Module):
|
123 |
+
r"""
|
124 |
+
A Flax multi-head attention module as described in: https://arxiv.org/abs/1706.03762
|
125 |
+
|
126 |
+
Parameters:
|
127 |
+
query_dim (:obj:`int`):
|
128 |
+
Input hidden states dimension
|
129 |
+
heads (:obj:`int`, *optional*, defaults to 8):
|
130 |
+
Number of heads
|
131 |
+
dim_head (:obj:`int`, *optional*, defaults to 64):
|
132 |
+
Hidden states dimension inside each head
|
133 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
134 |
+
Dropout rate
|
135 |
+
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
|
136 |
+
enable memory efficient attention https://arxiv.org/abs/2112.05682
|
137 |
+
split_head_dim (`bool`, *optional*, defaults to `False`):
|
138 |
+
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
|
139 |
+
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
|
140 |
+
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
141 |
+
Parameters `dtype`
|
142 |
+
|
143 |
+
"""
|
144 |
+
|
145 |
+
query_dim: int
|
146 |
+
heads: int = 8
|
147 |
+
dim_head: int = 64
|
148 |
+
dropout: float = 0.0
|
149 |
+
use_memory_efficient_attention: bool = False
|
150 |
+
split_head_dim: bool = False
|
151 |
+
dtype: jnp.dtype = jnp.float32
|
152 |
+
|
153 |
+
def setup(self):
|
154 |
+
inner_dim = self.dim_head * self.heads
|
155 |
+
self.scale = self.dim_head**-0.5
|
156 |
+
|
157 |
+
# Weights were exported with old names {to_q, to_k, to_v, to_out}
|
158 |
+
self.query = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_q")
|
159 |
+
self.key = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_k")
|
160 |
+
self.value = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, name="to_v")
|
161 |
+
|
162 |
+
self.proj_attn = nn.Dense(self.query_dim, dtype=self.dtype, name="to_out_0")
|
163 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
164 |
+
|
165 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
166 |
+
batch_size, seq_len, dim = tensor.shape
|
167 |
+
head_size = self.heads
|
168 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
169 |
+
tensor = jnp.transpose(tensor, (0, 2, 1, 3))
|
170 |
+
tensor = tensor.reshape(batch_size * head_size, seq_len, dim // head_size)
|
171 |
+
return tensor
|
172 |
+
|
173 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
174 |
+
batch_size, seq_len, dim = tensor.shape
|
175 |
+
head_size = self.heads
|
176 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
177 |
+
tensor = jnp.transpose(tensor, (0, 2, 1, 3))
|
178 |
+
tensor = tensor.reshape(batch_size // head_size, seq_len, dim * head_size)
|
179 |
+
return tensor
|
180 |
+
|
181 |
+
def __call__(self, hidden_states, context=None, deterministic=True):
|
182 |
+
context = hidden_states if context is None else context
|
183 |
+
|
184 |
+
query_proj = self.query(hidden_states)
|
185 |
+
key_proj = self.key(context)
|
186 |
+
value_proj = self.value(context)
|
187 |
+
|
188 |
+
if self.split_head_dim:
|
189 |
+
b = hidden_states.shape[0]
|
190 |
+
query_states = jnp.reshape(query_proj, (b, -1, self.heads, self.dim_head))
|
191 |
+
key_states = jnp.reshape(key_proj, (b, -1, self.heads, self.dim_head))
|
192 |
+
value_states = jnp.reshape(value_proj, (b, -1, self.heads, self.dim_head))
|
193 |
+
else:
|
194 |
+
query_states = self.reshape_heads_to_batch_dim(query_proj)
|
195 |
+
key_states = self.reshape_heads_to_batch_dim(key_proj)
|
196 |
+
value_states = self.reshape_heads_to_batch_dim(value_proj)
|
197 |
+
|
198 |
+
if self.use_memory_efficient_attention:
|
199 |
+
query_states = query_states.transpose(1, 0, 2)
|
200 |
+
key_states = key_states.transpose(1, 0, 2)
|
201 |
+
value_states = value_states.transpose(1, 0, 2)
|
202 |
+
|
203 |
+
# this if statement create a chunk size for each layer of the unet
|
204 |
+
# the chunk size is equal to the query_length dimension of the deepest layer of the unet
|
205 |
+
|
206 |
+
flatten_latent_dim = query_states.shape[-3]
|
207 |
+
if flatten_latent_dim % 64 == 0:
|
208 |
+
query_chunk_size = int(flatten_latent_dim / 64)
|
209 |
+
elif flatten_latent_dim % 16 == 0:
|
210 |
+
query_chunk_size = int(flatten_latent_dim / 16)
|
211 |
+
elif flatten_latent_dim % 4 == 0:
|
212 |
+
query_chunk_size = int(flatten_latent_dim / 4)
|
213 |
+
else:
|
214 |
+
query_chunk_size = int(flatten_latent_dim)
|
215 |
+
|
216 |
+
hidden_states = jax_memory_efficient_attention(
|
217 |
+
query_states, key_states, value_states, query_chunk_size=query_chunk_size, key_chunk_size=4096 * 4
|
218 |
+
)
|
219 |
+
hidden_states = hidden_states.transpose(1, 0, 2)
|
220 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
221 |
+
else:
|
222 |
+
# compute attentions
|
223 |
+
if self.split_head_dim:
|
224 |
+
attention_scores = jnp.einsum("b t n h, b f n h -> b n f t", key_states, query_states)
|
225 |
+
else:
|
226 |
+
attention_scores = jnp.einsum("b i d, b j d->b i j", query_states, key_states)
|
227 |
+
|
228 |
+
attention_scores = attention_scores * self.scale
|
229 |
+
attention_probs = nn.softmax(attention_scores, axis=-1 if self.split_head_dim else 2)
|
230 |
+
|
231 |
+
# attend to values
|
232 |
+
if self.split_head_dim:
|
233 |
+
hidden_states = jnp.einsum("b n f t, b t n h -> b f n h", attention_probs, value_states)
|
234 |
+
b = hidden_states.shape[0]
|
235 |
+
hidden_states = jnp.reshape(hidden_states, (b, -1, self.heads * self.dim_head))
|
236 |
+
else:
|
237 |
+
hidden_states = jnp.einsum("b i j, b j d -> b i d", attention_probs, value_states)
|
238 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
239 |
+
|
240 |
+
hidden_states = self.proj_attn(hidden_states)
|
241 |
+
return self.dropout_layer(hidden_states, deterministic=deterministic)
|
242 |
+
|
243 |
+
|
244 |
+
class FlaxBasicTransformerBlock(nn.Module):
|
245 |
+
r"""
|
246 |
+
A Flax transformer block layer with `GLU` (Gated Linear Unit) activation function as described in:
|
247 |
+
https://arxiv.org/abs/1706.03762
|
248 |
+
|
249 |
+
|
250 |
+
Parameters:
|
251 |
+
dim (:obj:`int`):
|
252 |
+
Inner hidden states dimension
|
253 |
+
n_heads (:obj:`int`):
|
254 |
+
Number of heads
|
255 |
+
d_head (:obj:`int`):
|
256 |
+
Hidden states dimension inside each head
|
257 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
258 |
+
Dropout rate
|
259 |
+
only_cross_attention (`bool`, defaults to `False`):
|
260 |
+
Whether to only apply cross attention.
|
261 |
+
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
262 |
+
Parameters `dtype`
|
263 |
+
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
|
264 |
+
enable memory efficient attention https://arxiv.org/abs/2112.05682
|
265 |
+
split_head_dim (`bool`, *optional*, defaults to `False`):
|
266 |
+
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
|
267 |
+
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
|
268 |
+
"""
|
269 |
+
|
270 |
+
dim: int
|
271 |
+
n_heads: int
|
272 |
+
d_head: int
|
273 |
+
dropout: float = 0.0
|
274 |
+
only_cross_attention: bool = False
|
275 |
+
dtype: jnp.dtype = jnp.float32
|
276 |
+
use_memory_efficient_attention: bool = False
|
277 |
+
split_head_dim: bool = False
|
278 |
+
|
279 |
+
def setup(self):
|
280 |
+
# self attention (or cross_attention if only_cross_attention is True)
|
281 |
+
self.attn1 = FlaxAttention(
|
282 |
+
self.dim,
|
283 |
+
self.n_heads,
|
284 |
+
self.d_head,
|
285 |
+
self.dropout,
|
286 |
+
self.use_memory_efficient_attention,
|
287 |
+
self.split_head_dim,
|
288 |
+
dtype=self.dtype,
|
289 |
+
)
|
290 |
+
# cross attention
|
291 |
+
self.attn2 = FlaxAttention(
|
292 |
+
self.dim,
|
293 |
+
self.n_heads,
|
294 |
+
self.d_head,
|
295 |
+
self.dropout,
|
296 |
+
self.use_memory_efficient_attention,
|
297 |
+
self.split_head_dim,
|
298 |
+
dtype=self.dtype,
|
299 |
+
)
|
300 |
+
self.ff = FlaxFeedForward(dim=self.dim, dropout=self.dropout, dtype=self.dtype)
|
301 |
+
self.norm1 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
|
302 |
+
self.norm2 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
|
303 |
+
self.norm3 = nn.LayerNorm(epsilon=1e-5, dtype=self.dtype)
|
304 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
305 |
+
|
306 |
+
def __call__(self, hidden_states, context, deterministic=True):
|
307 |
+
# self attention
|
308 |
+
residual = hidden_states
|
309 |
+
if self.only_cross_attention:
|
310 |
+
hidden_states = self.attn1(self.norm1(hidden_states), context, deterministic=deterministic)
|
311 |
+
else:
|
312 |
+
hidden_states = self.attn1(self.norm1(hidden_states), deterministic=deterministic)
|
313 |
+
hidden_states = hidden_states + residual
|
314 |
+
|
315 |
+
# cross attention
|
316 |
+
residual = hidden_states
|
317 |
+
hidden_states = self.attn2(self.norm2(hidden_states), context, deterministic=deterministic)
|
318 |
+
hidden_states = hidden_states + residual
|
319 |
+
|
320 |
+
# feed forward
|
321 |
+
residual = hidden_states
|
322 |
+
hidden_states = self.ff(self.norm3(hidden_states), deterministic=deterministic)
|
323 |
+
hidden_states = hidden_states + residual
|
324 |
+
|
325 |
+
return self.dropout_layer(hidden_states, deterministic=deterministic)
|
326 |
+
|
327 |
+
|
328 |
+
class FlaxTransformer2DModel(nn.Module):
|
329 |
+
r"""
|
330 |
+
A Spatial Transformer layer with Gated Linear Unit (GLU) activation function as described in:
|
331 |
+
https://arxiv.org/pdf/1506.02025.pdf
|
332 |
+
|
333 |
+
|
334 |
+
Parameters:
|
335 |
+
in_channels (:obj:`int`):
|
336 |
+
Input number of channels
|
337 |
+
n_heads (:obj:`int`):
|
338 |
+
Number of heads
|
339 |
+
d_head (:obj:`int`):
|
340 |
+
Hidden states dimension inside each head
|
341 |
+
depth (:obj:`int`, *optional*, defaults to 1):
|
342 |
+
Number of transformers block
|
343 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
344 |
+
Dropout rate
|
345 |
+
use_linear_projection (`bool`, defaults to `False`): tbd
|
346 |
+
only_cross_attention (`bool`, defaults to `False`): tbd
|
347 |
+
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
348 |
+
Parameters `dtype`
|
349 |
+
use_memory_efficient_attention (`bool`, *optional*, defaults to `False`):
|
350 |
+
enable memory efficient attention https://arxiv.org/abs/2112.05682
|
351 |
+
split_head_dim (`bool`, *optional*, defaults to `False`):
|
352 |
+
Whether to split the head dimension into a new axis for the self-attention computation. In most cases,
|
353 |
+
enabling this flag should speed up the computation for Stable Diffusion 2.x and Stable Diffusion XL.
|
354 |
+
"""
|
355 |
+
|
356 |
+
in_channels: int
|
357 |
+
n_heads: int
|
358 |
+
d_head: int
|
359 |
+
depth: int = 1
|
360 |
+
dropout: float = 0.0
|
361 |
+
use_linear_projection: bool = False
|
362 |
+
only_cross_attention: bool = False
|
363 |
+
dtype: jnp.dtype = jnp.float32
|
364 |
+
use_memory_efficient_attention: bool = False
|
365 |
+
split_head_dim: bool = False
|
366 |
+
|
367 |
+
def setup(self):
|
368 |
+
self.norm = nn.GroupNorm(num_groups=32, epsilon=1e-5)
|
369 |
+
|
370 |
+
inner_dim = self.n_heads * self.d_head
|
371 |
+
if self.use_linear_projection:
|
372 |
+
self.proj_in = nn.Dense(inner_dim, dtype=self.dtype)
|
373 |
+
else:
|
374 |
+
self.proj_in = nn.Conv(
|
375 |
+
inner_dim,
|
376 |
+
kernel_size=(1, 1),
|
377 |
+
strides=(1, 1),
|
378 |
+
padding="VALID",
|
379 |
+
dtype=self.dtype,
|
380 |
+
)
|
381 |
+
|
382 |
+
self.transformer_blocks = [
|
383 |
+
FlaxBasicTransformerBlock(
|
384 |
+
inner_dim,
|
385 |
+
self.n_heads,
|
386 |
+
self.d_head,
|
387 |
+
dropout=self.dropout,
|
388 |
+
only_cross_attention=self.only_cross_attention,
|
389 |
+
dtype=self.dtype,
|
390 |
+
use_memory_efficient_attention=self.use_memory_efficient_attention,
|
391 |
+
split_head_dim=self.split_head_dim,
|
392 |
+
)
|
393 |
+
for _ in range(self.depth)
|
394 |
+
]
|
395 |
+
|
396 |
+
if self.use_linear_projection:
|
397 |
+
self.proj_out = nn.Dense(inner_dim, dtype=self.dtype)
|
398 |
+
else:
|
399 |
+
self.proj_out = nn.Conv(
|
400 |
+
inner_dim,
|
401 |
+
kernel_size=(1, 1),
|
402 |
+
strides=(1, 1),
|
403 |
+
padding="VALID",
|
404 |
+
dtype=self.dtype,
|
405 |
+
)
|
406 |
+
|
407 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
408 |
+
|
409 |
+
def __call__(self, hidden_states, context, deterministic=True):
|
410 |
+
batch, height, width, channels = hidden_states.shape
|
411 |
+
residual = hidden_states
|
412 |
+
hidden_states = self.norm(hidden_states)
|
413 |
+
if self.use_linear_projection:
|
414 |
+
hidden_states = hidden_states.reshape(batch, height * width, channels)
|
415 |
+
hidden_states = self.proj_in(hidden_states)
|
416 |
+
else:
|
417 |
+
hidden_states = self.proj_in(hidden_states)
|
418 |
+
hidden_states = hidden_states.reshape(batch, height * width, channels)
|
419 |
+
|
420 |
+
for transformer_block in self.transformer_blocks:
|
421 |
+
hidden_states = transformer_block(hidden_states, context, deterministic=deterministic)
|
422 |
+
|
423 |
+
if self.use_linear_projection:
|
424 |
+
hidden_states = self.proj_out(hidden_states)
|
425 |
+
hidden_states = hidden_states.reshape(batch, height, width, channels)
|
426 |
+
else:
|
427 |
+
hidden_states = hidden_states.reshape(batch, height, width, channels)
|
428 |
+
hidden_states = self.proj_out(hidden_states)
|
429 |
+
|
430 |
+
hidden_states = hidden_states + residual
|
431 |
+
return self.dropout_layer(hidden_states, deterministic=deterministic)
|
432 |
+
|
433 |
+
|
434 |
+
class FlaxFeedForward(nn.Module):
|
435 |
+
r"""
|
436 |
+
Flax module that encapsulates two Linear layers separated by a non-linearity. It is the counterpart of PyTorch's
|
437 |
+
[`FeedForward`] class, with the following simplifications:
|
438 |
+
- The activation function is currently hardcoded to a gated linear unit from:
|
439 |
+
https://arxiv.org/abs/2002.05202
|
440 |
+
- `dim_out` is equal to `dim`.
|
441 |
+
- The number of hidden dimensions is hardcoded to `dim * 4` in [`FlaxGELU`].
|
442 |
+
|
443 |
+
Parameters:
|
444 |
+
dim (:obj:`int`):
|
445 |
+
Inner hidden states dimension
|
446 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
447 |
+
Dropout rate
|
448 |
+
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
449 |
+
Parameters `dtype`
|
450 |
+
"""
|
451 |
+
|
452 |
+
dim: int
|
453 |
+
dropout: float = 0.0
|
454 |
+
dtype: jnp.dtype = jnp.float32
|
455 |
+
|
456 |
+
def setup(self):
|
457 |
+
# The second linear layer needs to be called
|
458 |
+
# net_2 for now to match the index of the Sequential layer
|
459 |
+
self.net_0 = FlaxGEGLU(self.dim, self.dropout, self.dtype)
|
460 |
+
self.net_2 = nn.Dense(self.dim, dtype=self.dtype)
|
461 |
+
|
462 |
+
def __call__(self, hidden_states, deterministic=True):
|
463 |
+
hidden_states = self.net_0(hidden_states, deterministic=deterministic)
|
464 |
+
hidden_states = self.net_2(hidden_states)
|
465 |
+
return hidden_states
|
466 |
+
|
467 |
+
|
468 |
+
class FlaxGEGLU(nn.Module):
|
469 |
+
r"""
|
470 |
+
Flax implementation of a Linear layer followed by the variant of the gated linear unit activation function from
|
471 |
+
https://arxiv.org/abs/2002.05202.
|
472 |
+
|
473 |
+
Parameters:
|
474 |
+
dim (:obj:`int`):
|
475 |
+
Input hidden states dimension
|
476 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0):
|
477 |
+
Dropout rate
|
478 |
+
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32):
|
479 |
+
Parameters `dtype`
|
480 |
+
"""
|
481 |
+
|
482 |
+
dim: int
|
483 |
+
dropout: float = 0.0
|
484 |
+
dtype: jnp.dtype = jnp.float32
|
485 |
+
|
486 |
+
def setup(self):
|
487 |
+
inner_dim = self.dim * 4
|
488 |
+
self.proj = nn.Dense(inner_dim * 2, dtype=self.dtype)
|
489 |
+
self.dropout_layer = nn.Dropout(rate=self.dropout)
|
490 |
+
|
491 |
+
def __call__(self, hidden_states, deterministic=True):
|
492 |
+
hidden_states = self.proj(hidden_states)
|
493 |
+
hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis=2)
|
494 |
+
return self.dropout_layer(hidden_linear * nn.gelu(hidden_gelu), deterministic=deterministic)
|
icedit/diffusers/models/attention_processor.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
icedit/diffusers/models/autoencoders/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .autoencoder_asym_kl import AsymmetricAutoencoderKL
|
2 |
+
from .autoencoder_dc import AutoencoderDC
|
3 |
+
from .autoencoder_kl import AutoencoderKL
|
4 |
+
from .autoencoder_kl_allegro import AutoencoderKLAllegro
|
5 |
+
from .autoencoder_kl_cogvideox import AutoencoderKLCogVideoX
|
6 |
+
from .autoencoder_kl_hunyuan_video import AutoencoderKLHunyuanVideo
|
7 |
+
from .autoencoder_kl_ltx import AutoencoderKLLTXVideo
|
8 |
+
from .autoencoder_kl_mochi import AutoencoderKLMochi
|
9 |
+
from .autoencoder_kl_temporal_decoder import AutoencoderKLTemporalDecoder
|
10 |
+
from .autoencoder_oobleck import AutoencoderOobleck
|
11 |
+
from .autoencoder_tiny import AutoencoderTiny
|
12 |
+
from .consistency_decoder_vae import ConsistencyDecoderVAE
|
13 |
+
from .vq_model import VQModel
|
icedit/diffusers/models/autoencoders/autoencoder_asym_kl.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Optional, Tuple, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
20 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
21 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
22 |
+
from ..modeling_utils import ModelMixin
|
23 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder, MaskConditionDecoder
|
24 |
+
|
25 |
+
|
26 |
+
class AsymmetricAutoencoderKL(ModelMixin, ConfigMixin):
|
27 |
+
r"""
|
28 |
+
Designing a Better Asymmetric VQGAN for StableDiffusion https://arxiv.org/abs/2306.04632 . A VAE model with KL loss
|
29 |
+
for encoding images into latents and decoding latent representations into images.
|
30 |
+
|
31 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
32 |
+
for all models (such as downloading or saving).
|
33 |
+
|
34 |
+
Parameters:
|
35 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
36 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
37 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
38 |
+
Tuple of downsample block types.
|
39 |
+
down_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
40 |
+
Tuple of down block output channels.
|
41 |
+
layers_per_down_block (`int`, *optional*, defaults to `1`):
|
42 |
+
Number layers for down block.
|
43 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
44 |
+
Tuple of upsample block types.
|
45 |
+
up_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
46 |
+
Tuple of up block output channels.
|
47 |
+
layers_per_up_block (`int`, *optional*, defaults to `1`):
|
48 |
+
Number layers for up block.
|
49 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
50 |
+
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
51 |
+
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
52 |
+
norm_num_groups (`int`, *optional*, defaults to `32`):
|
53 |
+
Number of groups to use for the first normalization layer in ResNet blocks.
|
54 |
+
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
55 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
56 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
57 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
58 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
59 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
60 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
61 |
+
"""
|
62 |
+
|
63 |
+
@register_to_config
|
64 |
+
def __init__(
|
65 |
+
self,
|
66 |
+
in_channels: int = 3,
|
67 |
+
out_channels: int = 3,
|
68 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
|
69 |
+
down_block_out_channels: Tuple[int, ...] = (64,),
|
70 |
+
layers_per_down_block: int = 1,
|
71 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
72 |
+
up_block_out_channels: Tuple[int, ...] = (64,),
|
73 |
+
layers_per_up_block: int = 1,
|
74 |
+
act_fn: str = "silu",
|
75 |
+
latent_channels: int = 4,
|
76 |
+
norm_num_groups: int = 32,
|
77 |
+
sample_size: int = 32,
|
78 |
+
scaling_factor: float = 0.18215,
|
79 |
+
) -> None:
|
80 |
+
super().__init__()
|
81 |
+
|
82 |
+
# pass init params to Encoder
|
83 |
+
self.encoder = Encoder(
|
84 |
+
in_channels=in_channels,
|
85 |
+
out_channels=latent_channels,
|
86 |
+
down_block_types=down_block_types,
|
87 |
+
block_out_channels=down_block_out_channels,
|
88 |
+
layers_per_block=layers_per_down_block,
|
89 |
+
act_fn=act_fn,
|
90 |
+
norm_num_groups=norm_num_groups,
|
91 |
+
double_z=True,
|
92 |
+
)
|
93 |
+
|
94 |
+
# pass init params to Decoder
|
95 |
+
self.decoder = MaskConditionDecoder(
|
96 |
+
in_channels=latent_channels,
|
97 |
+
out_channels=out_channels,
|
98 |
+
up_block_types=up_block_types,
|
99 |
+
block_out_channels=up_block_out_channels,
|
100 |
+
layers_per_block=layers_per_up_block,
|
101 |
+
act_fn=act_fn,
|
102 |
+
norm_num_groups=norm_num_groups,
|
103 |
+
)
|
104 |
+
|
105 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
106 |
+
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
|
107 |
+
|
108 |
+
self.use_slicing = False
|
109 |
+
self.use_tiling = False
|
110 |
+
|
111 |
+
self.register_to_config(block_out_channels=up_block_out_channels)
|
112 |
+
self.register_to_config(force_upcast=False)
|
113 |
+
|
114 |
+
@apply_forward_hook
|
115 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderKLOutput, Tuple[torch.Tensor]]:
|
116 |
+
h = self.encoder(x)
|
117 |
+
moments = self.quant_conv(h)
|
118 |
+
posterior = DiagonalGaussianDistribution(moments)
|
119 |
+
|
120 |
+
if not return_dict:
|
121 |
+
return (posterior,)
|
122 |
+
|
123 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
124 |
+
|
125 |
+
def _decode(
|
126 |
+
self,
|
127 |
+
z: torch.Tensor,
|
128 |
+
image: Optional[torch.Tensor] = None,
|
129 |
+
mask: Optional[torch.Tensor] = None,
|
130 |
+
return_dict: bool = True,
|
131 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
132 |
+
z = self.post_quant_conv(z)
|
133 |
+
dec = self.decoder(z, image, mask)
|
134 |
+
|
135 |
+
if not return_dict:
|
136 |
+
return (dec,)
|
137 |
+
|
138 |
+
return DecoderOutput(sample=dec)
|
139 |
+
|
140 |
+
@apply_forward_hook
|
141 |
+
def decode(
|
142 |
+
self,
|
143 |
+
z: torch.Tensor,
|
144 |
+
generator: Optional[torch.Generator] = None,
|
145 |
+
image: Optional[torch.Tensor] = None,
|
146 |
+
mask: Optional[torch.Tensor] = None,
|
147 |
+
return_dict: bool = True,
|
148 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
149 |
+
decoded = self._decode(z, image, mask).sample
|
150 |
+
|
151 |
+
if not return_dict:
|
152 |
+
return (decoded,)
|
153 |
+
|
154 |
+
return DecoderOutput(sample=decoded)
|
155 |
+
|
156 |
+
def forward(
|
157 |
+
self,
|
158 |
+
sample: torch.Tensor,
|
159 |
+
mask: Optional[torch.Tensor] = None,
|
160 |
+
sample_posterior: bool = False,
|
161 |
+
return_dict: bool = True,
|
162 |
+
generator: Optional[torch.Generator] = None,
|
163 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
164 |
+
r"""
|
165 |
+
Args:
|
166 |
+
sample (`torch.Tensor`): Input sample.
|
167 |
+
mask (`torch.Tensor`, *optional*, defaults to `None`): Optional inpainting mask.
|
168 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
169 |
+
Whether to sample from the posterior.
|
170 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
171 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
172 |
+
"""
|
173 |
+
x = sample
|
174 |
+
posterior = self.encode(x).latent_dist
|
175 |
+
if sample_posterior:
|
176 |
+
z = posterior.sample(generator=generator)
|
177 |
+
else:
|
178 |
+
z = posterior.mode()
|
179 |
+
dec = self.decode(z, generator, sample, mask).sample
|
180 |
+
|
181 |
+
if not return_dict:
|
182 |
+
return (dec,)
|
183 |
+
|
184 |
+
return DecoderOutput(sample=dec)
|
icedit/diffusers/models/autoencoders/autoencoder_dc.py
ADDED
@@ -0,0 +1,620 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 MIT, Tsinghua University, NVIDIA CORPORATION and The HuggingFace Team.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
|
22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from ...loaders import FromOriginalModelMixin
|
24 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
25 |
+
from ..activations import get_activation
|
26 |
+
from ..attention_processor import SanaMultiscaleLinearAttention
|
27 |
+
from ..modeling_utils import ModelMixin
|
28 |
+
from ..normalization import RMSNorm, get_normalization
|
29 |
+
from ..transformers.sana_transformer import GLUMBConv
|
30 |
+
from .vae import DecoderOutput, EncoderOutput
|
31 |
+
|
32 |
+
|
33 |
+
class ResBlock(nn.Module):
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
in_channels: int,
|
37 |
+
out_channels: int,
|
38 |
+
norm_type: str = "batch_norm",
|
39 |
+
act_fn: str = "relu6",
|
40 |
+
) -> None:
|
41 |
+
super().__init__()
|
42 |
+
|
43 |
+
self.norm_type = norm_type
|
44 |
+
|
45 |
+
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
|
46 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
|
47 |
+
self.conv2 = nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
|
48 |
+
self.norm = get_normalization(norm_type, out_channels)
|
49 |
+
|
50 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
51 |
+
residual = hidden_states
|
52 |
+
hidden_states = self.conv1(hidden_states)
|
53 |
+
hidden_states = self.nonlinearity(hidden_states)
|
54 |
+
hidden_states = self.conv2(hidden_states)
|
55 |
+
|
56 |
+
if self.norm_type == "rms_norm":
|
57 |
+
# move channel to the last dimension so we apply RMSnorm across channel dimension
|
58 |
+
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
59 |
+
else:
|
60 |
+
hidden_states = self.norm(hidden_states)
|
61 |
+
|
62 |
+
return hidden_states + residual
|
63 |
+
|
64 |
+
|
65 |
+
class EfficientViTBlock(nn.Module):
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
in_channels: int,
|
69 |
+
mult: float = 1.0,
|
70 |
+
attention_head_dim: int = 32,
|
71 |
+
qkv_multiscales: Tuple[int, ...] = (5,),
|
72 |
+
norm_type: str = "batch_norm",
|
73 |
+
) -> None:
|
74 |
+
super().__init__()
|
75 |
+
|
76 |
+
self.attn = SanaMultiscaleLinearAttention(
|
77 |
+
in_channels=in_channels,
|
78 |
+
out_channels=in_channels,
|
79 |
+
mult=mult,
|
80 |
+
attention_head_dim=attention_head_dim,
|
81 |
+
norm_type=norm_type,
|
82 |
+
kernel_sizes=qkv_multiscales,
|
83 |
+
residual_connection=True,
|
84 |
+
)
|
85 |
+
|
86 |
+
self.conv_out = GLUMBConv(
|
87 |
+
in_channels=in_channels,
|
88 |
+
out_channels=in_channels,
|
89 |
+
norm_type="rms_norm",
|
90 |
+
)
|
91 |
+
|
92 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
93 |
+
x = self.attn(x)
|
94 |
+
x = self.conv_out(x)
|
95 |
+
return x
|
96 |
+
|
97 |
+
|
98 |
+
def get_block(
|
99 |
+
block_type: str,
|
100 |
+
in_channels: int,
|
101 |
+
out_channels: int,
|
102 |
+
attention_head_dim: int,
|
103 |
+
norm_type: str,
|
104 |
+
act_fn: str,
|
105 |
+
qkv_mutliscales: Tuple[int] = (),
|
106 |
+
):
|
107 |
+
if block_type == "ResBlock":
|
108 |
+
block = ResBlock(in_channels, out_channels, norm_type, act_fn)
|
109 |
+
|
110 |
+
elif block_type == "EfficientViTBlock":
|
111 |
+
block = EfficientViTBlock(
|
112 |
+
in_channels, attention_head_dim=attention_head_dim, norm_type=norm_type, qkv_multiscales=qkv_mutliscales
|
113 |
+
)
|
114 |
+
|
115 |
+
else:
|
116 |
+
raise ValueError(f"Block with {block_type=} is not supported.")
|
117 |
+
|
118 |
+
return block
|
119 |
+
|
120 |
+
|
121 |
+
class DCDownBlock2d(nn.Module):
|
122 |
+
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
|
123 |
+
super().__init__()
|
124 |
+
|
125 |
+
self.downsample = downsample
|
126 |
+
self.factor = 2
|
127 |
+
self.stride = 1 if downsample else 2
|
128 |
+
self.group_size = in_channels * self.factor**2 // out_channels
|
129 |
+
self.shortcut = shortcut
|
130 |
+
|
131 |
+
out_ratio = self.factor**2
|
132 |
+
if downsample:
|
133 |
+
assert out_channels % out_ratio == 0
|
134 |
+
out_channels = out_channels // out_ratio
|
135 |
+
|
136 |
+
self.conv = nn.Conv2d(
|
137 |
+
in_channels,
|
138 |
+
out_channels,
|
139 |
+
kernel_size=3,
|
140 |
+
stride=self.stride,
|
141 |
+
padding=1,
|
142 |
+
)
|
143 |
+
|
144 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
145 |
+
x = self.conv(hidden_states)
|
146 |
+
if self.downsample:
|
147 |
+
x = F.pixel_unshuffle(x, self.factor)
|
148 |
+
|
149 |
+
if self.shortcut:
|
150 |
+
y = F.pixel_unshuffle(hidden_states, self.factor)
|
151 |
+
y = y.unflatten(1, (-1, self.group_size))
|
152 |
+
y = y.mean(dim=2)
|
153 |
+
hidden_states = x + y
|
154 |
+
else:
|
155 |
+
hidden_states = x
|
156 |
+
|
157 |
+
return hidden_states
|
158 |
+
|
159 |
+
|
160 |
+
class DCUpBlock2d(nn.Module):
|
161 |
+
def __init__(
|
162 |
+
self,
|
163 |
+
in_channels: int,
|
164 |
+
out_channels: int,
|
165 |
+
interpolate: bool = False,
|
166 |
+
shortcut: bool = True,
|
167 |
+
interpolation_mode: str = "nearest",
|
168 |
+
) -> None:
|
169 |
+
super().__init__()
|
170 |
+
|
171 |
+
self.interpolate = interpolate
|
172 |
+
self.interpolation_mode = interpolation_mode
|
173 |
+
self.shortcut = shortcut
|
174 |
+
self.factor = 2
|
175 |
+
self.repeats = out_channels * self.factor**2 // in_channels
|
176 |
+
|
177 |
+
out_ratio = self.factor**2
|
178 |
+
|
179 |
+
if not interpolate:
|
180 |
+
out_channels = out_channels * out_ratio
|
181 |
+
|
182 |
+
self.conv = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
|
183 |
+
|
184 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
185 |
+
if self.interpolate:
|
186 |
+
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
|
187 |
+
x = self.conv(x)
|
188 |
+
else:
|
189 |
+
x = self.conv(hidden_states)
|
190 |
+
x = F.pixel_shuffle(x, self.factor)
|
191 |
+
|
192 |
+
if self.shortcut:
|
193 |
+
y = hidden_states.repeat_interleave(self.repeats, dim=1)
|
194 |
+
y = F.pixel_shuffle(y, self.factor)
|
195 |
+
hidden_states = x + y
|
196 |
+
else:
|
197 |
+
hidden_states = x
|
198 |
+
|
199 |
+
return hidden_states
|
200 |
+
|
201 |
+
|
202 |
+
class Encoder(nn.Module):
|
203 |
+
def __init__(
|
204 |
+
self,
|
205 |
+
in_channels: int,
|
206 |
+
latent_channels: int,
|
207 |
+
attention_head_dim: int = 32,
|
208 |
+
block_type: Union[str, Tuple[str]] = "ResBlock",
|
209 |
+
block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
|
210 |
+
layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
|
211 |
+
qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
|
212 |
+
downsample_block_type: str = "pixel_unshuffle",
|
213 |
+
out_shortcut: bool = True,
|
214 |
+
):
|
215 |
+
super().__init__()
|
216 |
+
|
217 |
+
num_blocks = len(block_out_channels)
|
218 |
+
|
219 |
+
if isinstance(block_type, str):
|
220 |
+
block_type = (block_type,) * num_blocks
|
221 |
+
|
222 |
+
if layers_per_block[0] > 0:
|
223 |
+
self.conv_in = nn.Conv2d(
|
224 |
+
in_channels,
|
225 |
+
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
|
226 |
+
kernel_size=3,
|
227 |
+
stride=1,
|
228 |
+
padding=1,
|
229 |
+
)
|
230 |
+
else:
|
231 |
+
self.conv_in = DCDownBlock2d(
|
232 |
+
in_channels=in_channels,
|
233 |
+
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
|
234 |
+
downsample=downsample_block_type == "pixel_unshuffle",
|
235 |
+
shortcut=False,
|
236 |
+
)
|
237 |
+
|
238 |
+
down_blocks = []
|
239 |
+
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
|
240 |
+
down_block_list = []
|
241 |
+
|
242 |
+
for _ in range(num_layers):
|
243 |
+
block = get_block(
|
244 |
+
block_type[i],
|
245 |
+
out_channel,
|
246 |
+
out_channel,
|
247 |
+
attention_head_dim=attention_head_dim,
|
248 |
+
norm_type="rms_norm",
|
249 |
+
act_fn="silu",
|
250 |
+
qkv_mutliscales=qkv_multiscales[i],
|
251 |
+
)
|
252 |
+
down_block_list.append(block)
|
253 |
+
|
254 |
+
if i < num_blocks - 1 and num_layers > 0:
|
255 |
+
downsample_block = DCDownBlock2d(
|
256 |
+
in_channels=out_channel,
|
257 |
+
out_channels=block_out_channels[i + 1],
|
258 |
+
downsample=downsample_block_type == "pixel_unshuffle",
|
259 |
+
shortcut=True,
|
260 |
+
)
|
261 |
+
down_block_list.append(downsample_block)
|
262 |
+
|
263 |
+
down_blocks.append(nn.Sequential(*down_block_list))
|
264 |
+
|
265 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
266 |
+
|
267 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
|
268 |
+
|
269 |
+
self.out_shortcut = out_shortcut
|
270 |
+
if out_shortcut:
|
271 |
+
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
|
272 |
+
|
273 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
274 |
+
hidden_states = self.conv_in(hidden_states)
|
275 |
+
for down_block in self.down_blocks:
|
276 |
+
hidden_states = down_block(hidden_states)
|
277 |
+
|
278 |
+
if self.out_shortcut:
|
279 |
+
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
|
280 |
+
x = x.mean(dim=2)
|
281 |
+
hidden_states = self.conv_out(hidden_states) + x
|
282 |
+
else:
|
283 |
+
hidden_states = self.conv_out(hidden_states)
|
284 |
+
|
285 |
+
return hidden_states
|
286 |
+
|
287 |
+
|
288 |
+
class Decoder(nn.Module):
|
289 |
+
def __init__(
|
290 |
+
self,
|
291 |
+
in_channels: int,
|
292 |
+
latent_channels: int,
|
293 |
+
attention_head_dim: int = 32,
|
294 |
+
block_type: Union[str, Tuple[str]] = "ResBlock",
|
295 |
+
block_out_channels: Tuple[int] = (128, 256, 512, 512, 1024, 1024),
|
296 |
+
layers_per_block: Tuple[int] = (2, 2, 2, 2, 2, 2),
|
297 |
+
qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
|
298 |
+
norm_type: Union[str, Tuple[str]] = "rms_norm",
|
299 |
+
act_fn: Union[str, Tuple[str]] = "silu",
|
300 |
+
upsample_block_type: str = "pixel_shuffle",
|
301 |
+
in_shortcut: bool = True,
|
302 |
+
):
|
303 |
+
super().__init__()
|
304 |
+
|
305 |
+
num_blocks = len(block_out_channels)
|
306 |
+
|
307 |
+
if isinstance(block_type, str):
|
308 |
+
block_type = (block_type,) * num_blocks
|
309 |
+
if isinstance(norm_type, str):
|
310 |
+
norm_type = (norm_type,) * num_blocks
|
311 |
+
if isinstance(act_fn, str):
|
312 |
+
act_fn = (act_fn,) * num_blocks
|
313 |
+
|
314 |
+
self.conv_in = nn.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
|
315 |
+
|
316 |
+
self.in_shortcut = in_shortcut
|
317 |
+
if in_shortcut:
|
318 |
+
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
|
319 |
+
|
320 |
+
up_blocks = []
|
321 |
+
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
|
322 |
+
up_block_list = []
|
323 |
+
|
324 |
+
if i < num_blocks - 1 and num_layers > 0:
|
325 |
+
upsample_block = DCUpBlock2d(
|
326 |
+
block_out_channels[i + 1],
|
327 |
+
out_channel,
|
328 |
+
interpolate=upsample_block_type == "interpolate",
|
329 |
+
shortcut=True,
|
330 |
+
)
|
331 |
+
up_block_list.append(upsample_block)
|
332 |
+
|
333 |
+
for _ in range(num_layers):
|
334 |
+
block = get_block(
|
335 |
+
block_type[i],
|
336 |
+
out_channel,
|
337 |
+
out_channel,
|
338 |
+
attention_head_dim=attention_head_dim,
|
339 |
+
norm_type=norm_type[i],
|
340 |
+
act_fn=act_fn[i],
|
341 |
+
qkv_mutliscales=qkv_multiscales[i],
|
342 |
+
)
|
343 |
+
up_block_list.append(block)
|
344 |
+
|
345 |
+
up_blocks.insert(0, nn.Sequential(*up_block_list))
|
346 |
+
|
347 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
348 |
+
|
349 |
+
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
|
350 |
+
|
351 |
+
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
|
352 |
+
self.conv_act = nn.ReLU()
|
353 |
+
self.conv_out = None
|
354 |
+
|
355 |
+
if layers_per_block[0] > 0:
|
356 |
+
self.conv_out = nn.Conv2d(channels, in_channels, 3, 1, 1)
|
357 |
+
else:
|
358 |
+
self.conv_out = DCUpBlock2d(
|
359 |
+
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
|
360 |
+
)
|
361 |
+
|
362 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
363 |
+
if self.in_shortcut:
|
364 |
+
x = hidden_states.repeat_interleave(self.in_shortcut_repeats, dim=1)
|
365 |
+
hidden_states = self.conv_in(hidden_states) + x
|
366 |
+
else:
|
367 |
+
hidden_states = self.conv_in(hidden_states)
|
368 |
+
|
369 |
+
for up_block in reversed(self.up_blocks):
|
370 |
+
hidden_states = up_block(hidden_states)
|
371 |
+
|
372 |
+
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
373 |
+
hidden_states = self.conv_act(hidden_states)
|
374 |
+
hidden_states = self.conv_out(hidden_states)
|
375 |
+
return hidden_states
|
376 |
+
|
377 |
+
|
378 |
+
class AutoencoderDC(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
379 |
+
r"""
|
380 |
+
An Autoencoder model introduced in [DCAE](https://arxiv.org/abs/2410.10733) and used in
|
381 |
+
[SANA](https://arxiv.org/abs/2410.10629).
|
382 |
+
|
383 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
384 |
+
for all models (such as downloading or saving).
|
385 |
+
|
386 |
+
Args:
|
387 |
+
in_channels (`int`, defaults to `3`):
|
388 |
+
The number of input channels in samples.
|
389 |
+
latent_channels (`int`, defaults to `32`):
|
390 |
+
The number of channels in the latent space representation.
|
391 |
+
encoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
|
392 |
+
The type(s) of block to use in the encoder.
|
393 |
+
decoder_block_types (`Union[str, Tuple[str]]`, defaults to `"ResBlock"`):
|
394 |
+
The type(s) of block to use in the decoder.
|
395 |
+
encoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
|
396 |
+
The number of output channels for each block in the encoder.
|
397 |
+
decoder_block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512, 1024, 1024)`):
|
398 |
+
The number of output channels for each block in the decoder.
|
399 |
+
encoder_layers_per_block (`Tuple[int]`, defaults to `(2, 2, 2, 3, 3, 3)`):
|
400 |
+
The number of layers per block in the encoder.
|
401 |
+
decoder_layers_per_block (`Tuple[int]`, defaults to `(3, 3, 3, 3, 3, 3)`):
|
402 |
+
The number of layers per block in the decoder.
|
403 |
+
encoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
|
404 |
+
Multi-scale configurations for the encoder's QKV (query-key-value) transformations.
|
405 |
+
decoder_qkv_multiscales (`Tuple[Tuple[int, ...], ...]`, defaults to `((), (), (), (5,), (5,), (5,))`):
|
406 |
+
Multi-scale configurations for the decoder's QKV (query-key-value) transformations.
|
407 |
+
upsample_block_type (`str`, defaults to `"pixel_shuffle"`):
|
408 |
+
The type of block to use for upsampling in the decoder.
|
409 |
+
downsample_block_type (`str`, defaults to `"pixel_unshuffle"`):
|
410 |
+
The type of block to use for downsampling in the encoder.
|
411 |
+
decoder_norm_types (`Union[str, Tuple[str]]`, defaults to `"rms_norm"`):
|
412 |
+
The normalization type(s) to use in the decoder.
|
413 |
+
decoder_act_fns (`Union[str, Tuple[str]]`, defaults to `"silu"`):
|
414 |
+
The activation function(s) to use in the decoder.
|
415 |
+
scaling_factor (`float`, defaults to `1.0`):
|
416 |
+
The multiplicative inverse of the root mean square of the latent features. This is used to scale the latent
|
417 |
+
space to have unit variance when training the diffusion model. The latents are scaled with the formula `z =
|
418 |
+
z * scaling_factor` before being passed to the diffusion model. When decoding, the latents are scaled back
|
419 |
+
to the original scale with the formula: `z = 1 / scaling_factor * z`.
|
420 |
+
"""
|
421 |
+
|
422 |
+
_supports_gradient_checkpointing = False
|
423 |
+
|
424 |
+
@register_to_config
|
425 |
+
def __init__(
|
426 |
+
self,
|
427 |
+
in_channels: int = 3,
|
428 |
+
latent_channels: int = 32,
|
429 |
+
attention_head_dim: int = 32,
|
430 |
+
encoder_block_types: Union[str, Tuple[str]] = "ResBlock",
|
431 |
+
decoder_block_types: Union[str, Tuple[str]] = "ResBlock",
|
432 |
+
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
|
433 |
+
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512, 1024, 1024),
|
434 |
+
encoder_layers_per_block: Tuple[int] = (2, 2, 2, 3, 3, 3),
|
435 |
+
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3, 3, 3),
|
436 |
+
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
|
437 |
+
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (), (5,), (5,), (5,)),
|
438 |
+
upsample_block_type: str = "pixel_shuffle",
|
439 |
+
downsample_block_type: str = "pixel_unshuffle",
|
440 |
+
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
|
441 |
+
decoder_act_fns: Union[str, Tuple[str]] = "silu",
|
442 |
+
scaling_factor: float = 1.0,
|
443 |
+
) -> None:
|
444 |
+
super().__init__()
|
445 |
+
|
446 |
+
self.encoder = Encoder(
|
447 |
+
in_channels=in_channels,
|
448 |
+
latent_channels=latent_channels,
|
449 |
+
attention_head_dim=attention_head_dim,
|
450 |
+
block_type=encoder_block_types,
|
451 |
+
block_out_channels=encoder_block_out_channels,
|
452 |
+
layers_per_block=encoder_layers_per_block,
|
453 |
+
qkv_multiscales=encoder_qkv_multiscales,
|
454 |
+
downsample_block_type=downsample_block_type,
|
455 |
+
)
|
456 |
+
self.decoder = Decoder(
|
457 |
+
in_channels=in_channels,
|
458 |
+
latent_channels=latent_channels,
|
459 |
+
attention_head_dim=attention_head_dim,
|
460 |
+
block_type=decoder_block_types,
|
461 |
+
block_out_channels=decoder_block_out_channels,
|
462 |
+
layers_per_block=decoder_layers_per_block,
|
463 |
+
qkv_multiscales=decoder_qkv_multiscales,
|
464 |
+
norm_type=decoder_norm_types,
|
465 |
+
act_fn=decoder_act_fns,
|
466 |
+
upsample_block_type=upsample_block_type,
|
467 |
+
)
|
468 |
+
|
469 |
+
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
|
470 |
+
self.temporal_compression_ratio = 1
|
471 |
+
|
472 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
473 |
+
# to perform decoding of a single video latent at a time.
|
474 |
+
self.use_slicing = False
|
475 |
+
|
476 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
477 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
478 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
479 |
+
self.use_tiling = False
|
480 |
+
|
481 |
+
# The minimal tile height and width for spatial tiling to be used
|
482 |
+
self.tile_sample_min_height = 512
|
483 |
+
self.tile_sample_min_width = 512
|
484 |
+
|
485 |
+
# The minimal distance between two spatial tiles
|
486 |
+
self.tile_sample_stride_height = 448
|
487 |
+
self.tile_sample_stride_width = 448
|
488 |
+
|
489 |
+
def enable_tiling(
|
490 |
+
self,
|
491 |
+
tile_sample_min_height: Optional[int] = None,
|
492 |
+
tile_sample_min_width: Optional[int] = None,
|
493 |
+
tile_sample_stride_height: Optional[float] = None,
|
494 |
+
tile_sample_stride_width: Optional[float] = None,
|
495 |
+
) -> None:
|
496 |
+
r"""
|
497 |
+
Enable tiled AE decoding. When this option is enabled, the AE will split the input tensor into tiles to compute
|
498 |
+
decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
499 |
+
processing larger images.
|
500 |
+
|
501 |
+
Args:
|
502 |
+
tile_sample_min_height (`int`, *optional*):
|
503 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
504 |
+
tile_sample_min_width (`int`, *optional*):
|
505 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
506 |
+
tile_sample_stride_height (`int`, *optional*):
|
507 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
508 |
+
no tiling artifacts produced across the height dimension.
|
509 |
+
tile_sample_stride_width (`int`, *optional*):
|
510 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
511 |
+
artifacts produced across the width dimension.
|
512 |
+
"""
|
513 |
+
self.use_tiling = True
|
514 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
515 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
516 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
517 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
518 |
+
|
519 |
+
def disable_tiling(self) -> None:
|
520 |
+
r"""
|
521 |
+
Disable tiled AE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
522 |
+
decoding in one step.
|
523 |
+
"""
|
524 |
+
self.use_tiling = False
|
525 |
+
|
526 |
+
def enable_slicing(self) -> None:
|
527 |
+
r"""
|
528 |
+
Enable sliced AE decoding. When this option is enabled, the AE will split the input tensor in slices to compute
|
529 |
+
decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
530 |
+
"""
|
531 |
+
self.use_slicing = True
|
532 |
+
|
533 |
+
def disable_slicing(self) -> None:
|
534 |
+
r"""
|
535 |
+
Disable sliced AE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
536 |
+
decoding in one step.
|
537 |
+
"""
|
538 |
+
self.use_slicing = False
|
539 |
+
|
540 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
541 |
+
batch_size, num_channels, height, width = x.shape
|
542 |
+
|
543 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
544 |
+
return self.tiled_encode(x, return_dict=False)[0]
|
545 |
+
|
546 |
+
encoded = self.encoder(x)
|
547 |
+
|
548 |
+
return encoded
|
549 |
+
|
550 |
+
@apply_forward_hook
|
551 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[EncoderOutput, Tuple[torch.Tensor]]:
|
552 |
+
r"""
|
553 |
+
Encode a batch of images into latents.
|
554 |
+
|
555 |
+
Args:
|
556 |
+
x (`torch.Tensor`): Input batch of images.
|
557 |
+
return_dict (`bool`, defaults to `True`):
|
558 |
+
Whether to return a [`~models.vae.EncoderOutput`] instead of a plain tuple.
|
559 |
+
|
560 |
+
Returns:
|
561 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
562 |
+
[`~models.vae.EncoderOutput`] is returned, otherwise a plain `tuple` is returned.
|
563 |
+
"""
|
564 |
+
if self.use_slicing and x.shape[0] > 1:
|
565 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
566 |
+
encoded = torch.cat(encoded_slices)
|
567 |
+
else:
|
568 |
+
encoded = self._encode(x)
|
569 |
+
|
570 |
+
if not return_dict:
|
571 |
+
return (encoded,)
|
572 |
+
return EncoderOutput(latent=encoded)
|
573 |
+
|
574 |
+
def _decode(self, z: torch.Tensor) -> torch.Tensor:
|
575 |
+
batch_size, num_channels, height, width = z.shape
|
576 |
+
|
577 |
+
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
|
578 |
+
return self.tiled_decode(z, return_dict=False)[0]
|
579 |
+
|
580 |
+
decoded = self.decoder(z)
|
581 |
+
|
582 |
+
return decoded
|
583 |
+
|
584 |
+
@apply_forward_hook
|
585 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
586 |
+
r"""
|
587 |
+
Decode a batch of images.
|
588 |
+
|
589 |
+
Args:
|
590 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
591 |
+
return_dict (`bool`, defaults to `True`):
|
592 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
593 |
+
|
594 |
+
Returns:
|
595 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
596 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
597 |
+
returned.
|
598 |
+
"""
|
599 |
+
if self.use_slicing and z.size(0) > 1:
|
600 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
601 |
+
decoded = torch.cat(decoded_slices)
|
602 |
+
else:
|
603 |
+
decoded = self._decode(z)
|
604 |
+
|
605 |
+
if not return_dict:
|
606 |
+
return (decoded,)
|
607 |
+
return DecoderOutput(sample=decoded)
|
608 |
+
|
609 |
+
def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
|
610 |
+
raise NotImplementedError("`tiled_encode` has not been implemented for AutoencoderDC.")
|
611 |
+
|
612 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
613 |
+
raise NotImplementedError("`tiled_decode` has not been implemented for AutoencoderDC.")
|
614 |
+
|
615 |
+
def forward(self, sample: torch.Tensor, return_dict: bool = True) -> torch.Tensor:
|
616 |
+
encoded = self.encode(sample, return_dict=False)[0]
|
617 |
+
decoded = self.decode(encoded, return_dict=False)[0]
|
618 |
+
if not return_dict:
|
619 |
+
return (decoded,)
|
620 |
+
return DecoderOutput(sample=decoded)
|
icedit/diffusers/models/autoencoders/autoencoder_kl.py
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import Dict, Optional, Tuple, Union
|
15 |
+
|
16 |
+
import torch
|
17 |
+
import torch.nn as nn
|
18 |
+
|
19 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
20 |
+
from ...loaders import PeftAdapterMixin
|
21 |
+
from ...loaders.single_file_model import FromOriginalModelMixin
|
22 |
+
from ...utils import deprecate
|
23 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
24 |
+
from ..attention_processor import (
|
25 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
26 |
+
CROSS_ATTENTION_PROCESSORS,
|
27 |
+
Attention,
|
28 |
+
AttentionProcessor,
|
29 |
+
AttnAddedKVProcessor,
|
30 |
+
AttnProcessor,
|
31 |
+
FusedAttnProcessor2_0,
|
32 |
+
)
|
33 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
34 |
+
from ..modeling_utils import ModelMixin
|
35 |
+
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
|
36 |
+
|
37 |
+
|
38 |
+
class AutoencoderKL(ModelMixin, ConfigMixin, FromOriginalModelMixin, PeftAdapterMixin):
|
39 |
+
r"""
|
40 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
41 |
+
|
42 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
43 |
+
for all models (such as downloading or saving).
|
44 |
+
|
45 |
+
Parameters:
|
46 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
47 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
48 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
49 |
+
Tuple of downsample block types.
|
50 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
51 |
+
Tuple of upsample block types.
|
52 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
53 |
+
Tuple of block output channels.
|
54 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
55 |
+
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
56 |
+
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
57 |
+
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
58 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
59 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
60 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
61 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
62 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
63 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
64 |
+
force_upcast (`bool`, *optional*, default to `True`):
|
65 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
66 |
+
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
67 |
+
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
68 |
+
mid_block_add_attention (`bool`, *optional*, default to `True`):
|
69 |
+
If enabled, the mid_block of the Encoder and Decoder will have attention blocks. If set to false, the
|
70 |
+
mid_block will only have resnet blocks
|
71 |
+
"""
|
72 |
+
|
73 |
+
_supports_gradient_checkpointing = True
|
74 |
+
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D"]
|
75 |
+
|
76 |
+
@register_to_config
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
in_channels: int = 3,
|
80 |
+
out_channels: int = 3,
|
81 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
82 |
+
up_block_types: Tuple[str] = ("UpDecoderBlock2D",),
|
83 |
+
block_out_channels: Tuple[int] = (64,),
|
84 |
+
layers_per_block: int = 1,
|
85 |
+
act_fn: str = "silu",
|
86 |
+
latent_channels: int = 4,
|
87 |
+
norm_num_groups: int = 32,
|
88 |
+
sample_size: int = 32,
|
89 |
+
scaling_factor: float = 0.18215,
|
90 |
+
shift_factor: Optional[float] = None,
|
91 |
+
latents_mean: Optional[Tuple[float]] = None,
|
92 |
+
latents_std: Optional[Tuple[float]] = None,
|
93 |
+
force_upcast: float = True,
|
94 |
+
use_quant_conv: bool = True,
|
95 |
+
use_post_quant_conv: bool = True,
|
96 |
+
mid_block_add_attention: bool = True,
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
|
100 |
+
# pass init params to Encoder
|
101 |
+
self.encoder = Encoder(
|
102 |
+
in_channels=in_channels,
|
103 |
+
out_channels=latent_channels,
|
104 |
+
down_block_types=down_block_types,
|
105 |
+
block_out_channels=block_out_channels,
|
106 |
+
layers_per_block=layers_per_block,
|
107 |
+
act_fn=act_fn,
|
108 |
+
norm_num_groups=norm_num_groups,
|
109 |
+
double_z=True,
|
110 |
+
mid_block_add_attention=mid_block_add_attention,
|
111 |
+
)
|
112 |
+
|
113 |
+
# pass init params to Decoder
|
114 |
+
self.decoder = Decoder(
|
115 |
+
in_channels=latent_channels,
|
116 |
+
out_channels=out_channels,
|
117 |
+
up_block_types=up_block_types,
|
118 |
+
block_out_channels=block_out_channels,
|
119 |
+
layers_per_block=layers_per_block,
|
120 |
+
norm_num_groups=norm_num_groups,
|
121 |
+
act_fn=act_fn,
|
122 |
+
mid_block_add_attention=mid_block_add_attention,
|
123 |
+
)
|
124 |
+
|
125 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) if use_quant_conv else None
|
126 |
+
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) if use_post_quant_conv else None
|
127 |
+
|
128 |
+
self.use_slicing = False
|
129 |
+
self.use_tiling = False
|
130 |
+
|
131 |
+
# only relevant if vae tiling is enabled
|
132 |
+
self.tile_sample_min_size = self.config.sample_size
|
133 |
+
sample_size = (
|
134 |
+
self.config.sample_size[0]
|
135 |
+
if isinstance(self.config.sample_size, (list, tuple))
|
136 |
+
else self.config.sample_size
|
137 |
+
)
|
138 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
139 |
+
self.tile_overlap_factor = 0.25
|
140 |
+
|
141 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
142 |
+
if isinstance(module, (Encoder, Decoder)):
|
143 |
+
module.gradient_checkpointing = value
|
144 |
+
|
145 |
+
def enable_tiling(self, use_tiling: bool = True):
|
146 |
+
r"""
|
147 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
148 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
149 |
+
processing larger images.
|
150 |
+
"""
|
151 |
+
self.use_tiling = use_tiling
|
152 |
+
|
153 |
+
def disable_tiling(self):
|
154 |
+
r"""
|
155 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
156 |
+
decoding in one step.
|
157 |
+
"""
|
158 |
+
self.enable_tiling(False)
|
159 |
+
|
160 |
+
def enable_slicing(self):
|
161 |
+
r"""
|
162 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
163 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
164 |
+
"""
|
165 |
+
self.use_slicing = True
|
166 |
+
|
167 |
+
def disable_slicing(self):
|
168 |
+
r"""
|
169 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
170 |
+
decoding in one step.
|
171 |
+
"""
|
172 |
+
self.use_slicing = False
|
173 |
+
|
174 |
+
@property
|
175 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
176 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
177 |
+
r"""
|
178 |
+
Returns:
|
179 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
180 |
+
indexed by its weight name.
|
181 |
+
"""
|
182 |
+
# set recursively
|
183 |
+
processors = {}
|
184 |
+
|
185 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
186 |
+
if hasattr(module, "get_processor"):
|
187 |
+
processors[f"{name}.processor"] = module.get_processor()
|
188 |
+
|
189 |
+
for sub_name, child in module.named_children():
|
190 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
191 |
+
|
192 |
+
return processors
|
193 |
+
|
194 |
+
for name, module in self.named_children():
|
195 |
+
fn_recursive_add_processors(name, module, processors)
|
196 |
+
|
197 |
+
return processors
|
198 |
+
|
199 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
200 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
201 |
+
r"""
|
202 |
+
Sets the attention processor to use to compute attention.
|
203 |
+
|
204 |
+
Parameters:
|
205 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
206 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
207 |
+
for **all** `Attention` layers.
|
208 |
+
|
209 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
210 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
211 |
+
|
212 |
+
"""
|
213 |
+
count = len(self.attn_processors.keys())
|
214 |
+
|
215 |
+
if isinstance(processor, dict) and len(processor) != count:
|
216 |
+
raise ValueError(
|
217 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
218 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
219 |
+
)
|
220 |
+
|
221 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
222 |
+
if hasattr(module, "set_processor"):
|
223 |
+
if not isinstance(processor, dict):
|
224 |
+
module.set_processor(processor)
|
225 |
+
else:
|
226 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
227 |
+
|
228 |
+
for sub_name, child in module.named_children():
|
229 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
230 |
+
|
231 |
+
for name, module in self.named_children():
|
232 |
+
fn_recursive_attn_processor(name, module, processor)
|
233 |
+
|
234 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
235 |
+
def set_default_attn_processor(self):
|
236 |
+
"""
|
237 |
+
Disables custom attention processors and sets the default attention implementation.
|
238 |
+
"""
|
239 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
240 |
+
processor = AttnAddedKVProcessor()
|
241 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
242 |
+
processor = AttnProcessor()
|
243 |
+
else:
|
244 |
+
raise ValueError(
|
245 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
246 |
+
)
|
247 |
+
|
248 |
+
self.set_attn_processor(processor)
|
249 |
+
|
250 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
251 |
+
batch_size, num_channels, height, width = x.shape
|
252 |
+
|
253 |
+
if self.use_tiling and (width > self.tile_sample_min_size or height > self.tile_sample_min_size):
|
254 |
+
return self._tiled_encode(x)
|
255 |
+
|
256 |
+
enc = self.encoder(x)
|
257 |
+
if self.quant_conv is not None:
|
258 |
+
enc = self.quant_conv(enc)
|
259 |
+
|
260 |
+
return enc
|
261 |
+
|
262 |
+
@apply_forward_hook
|
263 |
+
def encode(
|
264 |
+
self, x: torch.Tensor, return_dict: bool = True
|
265 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
266 |
+
"""
|
267 |
+
Encode a batch of images into latents.
|
268 |
+
|
269 |
+
Args:
|
270 |
+
x (`torch.Tensor`): Input batch of images.
|
271 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
272 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
273 |
+
|
274 |
+
Returns:
|
275 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
276 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
277 |
+
"""
|
278 |
+
if self.use_slicing and x.shape[0] > 1:
|
279 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
280 |
+
h = torch.cat(encoded_slices)
|
281 |
+
else:
|
282 |
+
h = self._encode(x)
|
283 |
+
|
284 |
+
posterior = DiagonalGaussianDistribution(h)
|
285 |
+
|
286 |
+
if not return_dict:
|
287 |
+
return (posterior,)
|
288 |
+
|
289 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
290 |
+
|
291 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
292 |
+
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
|
293 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
294 |
+
|
295 |
+
if self.post_quant_conv is not None:
|
296 |
+
z = self.post_quant_conv(z)
|
297 |
+
|
298 |
+
dec = self.decoder(z)
|
299 |
+
|
300 |
+
if not return_dict:
|
301 |
+
return (dec,)
|
302 |
+
|
303 |
+
return DecoderOutput(sample=dec)
|
304 |
+
|
305 |
+
@apply_forward_hook
|
306 |
+
def decode(
|
307 |
+
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
308 |
+
) -> Union[DecoderOutput, torch.FloatTensor]:
|
309 |
+
"""
|
310 |
+
Decode a batch of images.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
314 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
315 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
316 |
+
|
317 |
+
Returns:
|
318 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
319 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
320 |
+
returned.
|
321 |
+
|
322 |
+
"""
|
323 |
+
if self.use_slicing and z.shape[0] > 1:
|
324 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
325 |
+
decoded = torch.cat(decoded_slices)
|
326 |
+
else:
|
327 |
+
decoded = self._decode(z).sample
|
328 |
+
|
329 |
+
if not return_dict:
|
330 |
+
return (decoded,)
|
331 |
+
|
332 |
+
return DecoderOutput(sample=decoded)
|
333 |
+
|
334 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
335 |
+
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
|
336 |
+
for y in range(blend_extent):
|
337 |
+
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
|
338 |
+
return b
|
339 |
+
|
340 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
341 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
342 |
+
for x in range(blend_extent):
|
343 |
+
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
|
344 |
+
return b
|
345 |
+
|
346 |
+
def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
347 |
+
r"""Encode a batch of images using a tiled encoder.
|
348 |
+
|
349 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
350 |
+
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
351 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
352 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
353 |
+
output, but they should be much less noticeable.
|
354 |
+
|
355 |
+
Args:
|
356 |
+
x (`torch.Tensor`): Input batch of images.
|
357 |
+
|
358 |
+
Returns:
|
359 |
+
`torch.Tensor`:
|
360 |
+
The latent representation of the encoded videos.
|
361 |
+
"""
|
362 |
+
|
363 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
364 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
365 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
366 |
+
|
367 |
+
# Split the image into 512x512 tiles and encode them separately.
|
368 |
+
rows = []
|
369 |
+
for i in range(0, x.shape[2], overlap_size):
|
370 |
+
row = []
|
371 |
+
for j in range(0, x.shape[3], overlap_size):
|
372 |
+
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
373 |
+
tile = self.encoder(tile)
|
374 |
+
if self.config.use_quant_conv:
|
375 |
+
tile = self.quant_conv(tile)
|
376 |
+
row.append(tile)
|
377 |
+
rows.append(row)
|
378 |
+
result_rows = []
|
379 |
+
for i, row in enumerate(rows):
|
380 |
+
result_row = []
|
381 |
+
for j, tile in enumerate(row):
|
382 |
+
# blend the above tile and the left tile
|
383 |
+
# to the current tile and add the current tile to the result row
|
384 |
+
if i > 0:
|
385 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
386 |
+
if j > 0:
|
387 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
388 |
+
result_row.append(tile[:, :, :row_limit, :row_limit])
|
389 |
+
result_rows.append(torch.cat(result_row, dim=3))
|
390 |
+
|
391 |
+
enc = torch.cat(result_rows, dim=2)
|
392 |
+
return enc
|
393 |
+
|
394 |
+
def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> AutoencoderKLOutput:
|
395 |
+
r"""Encode a batch of images using a tiled encoder.
|
396 |
+
|
397 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
398 |
+
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
399 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
400 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
401 |
+
output, but they should be much less noticeable.
|
402 |
+
|
403 |
+
Args:
|
404 |
+
x (`torch.Tensor`): Input batch of images.
|
405 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
406 |
+
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
407 |
+
|
408 |
+
Returns:
|
409 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`:
|
410 |
+
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain
|
411 |
+
`tuple` is returned.
|
412 |
+
"""
|
413 |
+
deprecation_message = (
|
414 |
+
"The tiled_encode implementation supporting the `return_dict` parameter is deprecated. In the future, the "
|
415 |
+
"implementation of this method will be replaced with that of `_tiled_encode` and you will no longer be able "
|
416 |
+
"to pass `return_dict`. You will also have to create a `DiagonalGaussianDistribution()` from the returned value."
|
417 |
+
)
|
418 |
+
deprecate("tiled_encode", "1.0.0", deprecation_message, standard_warn=False)
|
419 |
+
|
420 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
421 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
422 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
423 |
+
|
424 |
+
# Split the image into 512x512 tiles and encode them separately.
|
425 |
+
rows = []
|
426 |
+
for i in range(0, x.shape[2], overlap_size):
|
427 |
+
row = []
|
428 |
+
for j in range(0, x.shape[3], overlap_size):
|
429 |
+
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
430 |
+
tile = self.encoder(tile)
|
431 |
+
if self.config.use_quant_conv:
|
432 |
+
tile = self.quant_conv(tile)
|
433 |
+
row.append(tile)
|
434 |
+
rows.append(row)
|
435 |
+
result_rows = []
|
436 |
+
for i, row in enumerate(rows):
|
437 |
+
result_row = []
|
438 |
+
for j, tile in enumerate(row):
|
439 |
+
# blend the above tile and the left tile
|
440 |
+
# to the current tile and add the current tile to the result row
|
441 |
+
if i > 0:
|
442 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
443 |
+
if j > 0:
|
444 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
445 |
+
result_row.append(tile[:, :, :row_limit, :row_limit])
|
446 |
+
result_rows.append(torch.cat(result_row, dim=3))
|
447 |
+
|
448 |
+
moments = torch.cat(result_rows, dim=2)
|
449 |
+
posterior = DiagonalGaussianDistribution(moments)
|
450 |
+
|
451 |
+
if not return_dict:
|
452 |
+
return (posterior,)
|
453 |
+
|
454 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
455 |
+
|
456 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
457 |
+
r"""
|
458 |
+
Decode a batch of images using a tiled decoder.
|
459 |
+
|
460 |
+
Args:
|
461 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
462 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
463 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
464 |
+
|
465 |
+
Returns:
|
466 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
467 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
468 |
+
returned.
|
469 |
+
"""
|
470 |
+
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor))
|
471 |
+
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor)
|
472 |
+
row_limit = self.tile_sample_min_size - blend_extent
|
473 |
+
|
474 |
+
# Split z into overlapping 64x64 tiles and decode them separately.
|
475 |
+
# The tiles have an overlap to avoid seams between tiles.
|
476 |
+
rows = []
|
477 |
+
for i in range(0, z.shape[2], overlap_size):
|
478 |
+
row = []
|
479 |
+
for j in range(0, z.shape[3], overlap_size):
|
480 |
+
tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
|
481 |
+
if self.config.use_post_quant_conv:
|
482 |
+
tile = self.post_quant_conv(tile)
|
483 |
+
decoded = self.decoder(tile)
|
484 |
+
row.append(decoded)
|
485 |
+
rows.append(row)
|
486 |
+
result_rows = []
|
487 |
+
for i, row in enumerate(rows):
|
488 |
+
result_row = []
|
489 |
+
for j, tile in enumerate(row):
|
490 |
+
# blend the above tile and the left tile
|
491 |
+
# to the current tile and add the current tile to the result row
|
492 |
+
if i > 0:
|
493 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
494 |
+
if j > 0:
|
495 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
496 |
+
result_row.append(tile[:, :, :row_limit, :row_limit])
|
497 |
+
result_rows.append(torch.cat(result_row, dim=3))
|
498 |
+
|
499 |
+
dec = torch.cat(result_rows, dim=2)
|
500 |
+
if not return_dict:
|
501 |
+
return (dec,)
|
502 |
+
|
503 |
+
return DecoderOutput(sample=dec)
|
504 |
+
|
505 |
+
def forward(
|
506 |
+
self,
|
507 |
+
sample: torch.Tensor,
|
508 |
+
sample_posterior: bool = False,
|
509 |
+
return_dict: bool = True,
|
510 |
+
generator: Optional[torch.Generator] = None,
|
511 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
512 |
+
r"""
|
513 |
+
Args:
|
514 |
+
sample (`torch.Tensor`): Input sample.
|
515 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
516 |
+
Whether to sample from the posterior.
|
517 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
518 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
519 |
+
"""
|
520 |
+
x = sample
|
521 |
+
posterior = self.encode(x).latent_dist
|
522 |
+
if sample_posterior:
|
523 |
+
z = posterior.sample(generator=generator)
|
524 |
+
else:
|
525 |
+
z = posterior.mode()
|
526 |
+
dec = self.decode(z).sample
|
527 |
+
|
528 |
+
if not return_dict:
|
529 |
+
return (dec,)
|
530 |
+
|
531 |
+
return DecoderOutput(sample=dec)
|
532 |
+
|
533 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
534 |
+
def fuse_qkv_projections(self):
|
535 |
+
"""
|
536 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
537 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
538 |
+
|
539 |
+
<Tip warning={true}>
|
540 |
+
|
541 |
+
This API is 🧪 experimental.
|
542 |
+
|
543 |
+
</Tip>
|
544 |
+
"""
|
545 |
+
self.original_attn_processors = None
|
546 |
+
|
547 |
+
for _, attn_processor in self.attn_processors.items():
|
548 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
549 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
550 |
+
|
551 |
+
self.original_attn_processors = self.attn_processors
|
552 |
+
|
553 |
+
for module in self.modules():
|
554 |
+
if isinstance(module, Attention):
|
555 |
+
module.fuse_projections(fuse=True)
|
556 |
+
|
557 |
+
self.set_attn_processor(FusedAttnProcessor2_0())
|
558 |
+
|
559 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
560 |
+
def unfuse_qkv_projections(self):
|
561 |
+
"""Disables the fused QKV projection if enabled.
|
562 |
+
|
563 |
+
<Tip warning={true}>
|
564 |
+
|
565 |
+
This API is 🧪 experimental.
|
566 |
+
|
567 |
+
</Tip>
|
568 |
+
|
569 |
+
"""
|
570 |
+
if self.original_attn_processors is not None:
|
571 |
+
self.set_attn_processor(self.original_attn_processors)
|
icedit/diffusers/models/autoencoders/autoencoder_kl_allegro.py
ADDED
@@ -0,0 +1,1149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The RhymesAI and The HuggingFace Team.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import math
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
24 |
+
from ..attention_processor import Attention, SpatialNorm
|
25 |
+
from ..autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
26 |
+
from ..downsampling import Downsample2D
|
27 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
28 |
+
from ..modeling_utils import ModelMixin
|
29 |
+
from ..resnet import ResnetBlock2D
|
30 |
+
from ..upsampling import Upsample2D
|
31 |
+
|
32 |
+
|
33 |
+
class AllegroTemporalConvLayer(nn.Module):
|
34 |
+
r"""
|
35 |
+
Temporal convolutional layer that can be used for video (sequence of images) input. Code adapted from:
|
36 |
+
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
|
37 |
+
"""
|
38 |
+
|
39 |
+
def __init__(
|
40 |
+
self,
|
41 |
+
in_dim: int,
|
42 |
+
out_dim: Optional[int] = None,
|
43 |
+
dropout: float = 0.0,
|
44 |
+
norm_num_groups: int = 32,
|
45 |
+
up_sample: bool = False,
|
46 |
+
down_sample: bool = False,
|
47 |
+
stride: int = 1,
|
48 |
+
) -> None:
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
out_dim = out_dim or in_dim
|
52 |
+
pad_h = pad_w = int((stride - 1) * 0.5)
|
53 |
+
pad_t = 0
|
54 |
+
|
55 |
+
self.down_sample = down_sample
|
56 |
+
self.up_sample = up_sample
|
57 |
+
|
58 |
+
if down_sample:
|
59 |
+
self.conv1 = nn.Sequential(
|
60 |
+
nn.GroupNorm(norm_num_groups, in_dim),
|
61 |
+
nn.SiLU(),
|
62 |
+
nn.Conv3d(in_dim, out_dim, (2, stride, stride), stride=(2, 1, 1), padding=(0, pad_h, pad_w)),
|
63 |
+
)
|
64 |
+
elif up_sample:
|
65 |
+
self.conv1 = nn.Sequential(
|
66 |
+
nn.GroupNorm(norm_num_groups, in_dim),
|
67 |
+
nn.SiLU(),
|
68 |
+
nn.Conv3d(in_dim, out_dim * 2, (1, stride, stride), padding=(0, pad_h, pad_w)),
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
self.conv1 = nn.Sequential(
|
72 |
+
nn.GroupNorm(norm_num_groups, in_dim),
|
73 |
+
nn.SiLU(),
|
74 |
+
nn.Conv3d(in_dim, out_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
|
75 |
+
)
|
76 |
+
self.conv2 = nn.Sequential(
|
77 |
+
nn.GroupNorm(norm_num_groups, out_dim),
|
78 |
+
nn.SiLU(),
|
79 |
+
nn.Dropout(dropout),
|
80 |
+
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_w)),
|
81 |
+
)
|
82 |
+
self.conv3 = nn.Sequential(
|
83 |
+
nn.GroupNorm(norm_num_groups, out_dim),
|
84 |
+
nn.SiLU(),
|
85 |
+
nn.Dropout(dropout),
|
86 |
+
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
|
87 |
+
)
|
88 |
+
self.conv4 = nn.Sequential(
|
89 |
+
nn.GroupNorm(norm_num_groups, out_dim),
|
90 |
+
nn.SiLU(),
|
91 |
+
nn.Conv3d(out_dim, in_dim, (3, stride, stride), padding=(pad_t, pad_h, pad_h)),
|
92 |
+
)
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def _pad_temporal_dim(hidden_states: torch.Tensor) -> torch.Tensor:
|
96 |
+
hidden_states = torch.cat((hidden_states[:, :, 0:1], hidden_states), dim=2)
|
97 |
+
hidden_states = torch.cat((hidden_states, hidden_states[:, :, -1:]), dim=2)
|
98 |
+
return hidden_states
|
99 |
+
|
100 |
+
def forward(self, hidden_states: torch.Tensor, batch_size: int) -> torch.Tensor:
|
101 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
102 |
+
|
103 |
+
if self.down_sample:
|
104 |
+
identity = hidden_states[:, :, ::2]
|
105 |
+
elif self.up_sample:
|
106 |
+
identity = hidden_states.repeat_interleave(2, dim=2)
|
107 |
+
else:
|
108 |
+
identity = hidden_states
|
109 |
+
|
110 |
+
if self.down_sample or self.up_sample:
|
111 |
+
hidden_states = self.conv1(hidden_states)
|
112 |
+
else:
|
113 |
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
114 |
+
hidden_states = self.conv1(hidden_states)
|
115 |
+
|
116 |
+
if self.up_sample:
|
117 |
+
hidden_states = hidden_states.unflatten(1, (2, -1)).permute(0, 2, 3, 1, 4, 5).flatten(2, 3)
|
118 |
+
|
119 |
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
120 |
+
hidden_states = self.conv2(hidden_states)
|
121 |
+
|
122 |
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
123 |
+
hidden_states = self.conv3(hidden_states)
|
124 |
+
|
125 |
+
hidden_states = self._pad_temporal_dim(hidden_states)
|
126 |
+
hidden_states = self.conv4(hidden_states)
|
127 |
+
|
128 |
+
hidden_states = identity + hidden_states
|
129 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
130 |
+
|
131 |
+
return hidden_states
|
132 |
+
|
133 |
+
|
134 |
+
class AllegroDownBlock3D(nn.Module):
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
in_channels: int,
|
138 |
+
out_channels: int,
|
139 |
+
dropout: float = 0.0,
|
140 |
+
num_layers: int = 1,
|
141 |
+
resnet_eps: float = 1e-6,
|
142 |
+
resnet_time_scale_shift: str = "default",
|
143 |
+
resnet_act_fn: str = "swish",
|
144 |
+
resnet_groups: int = 32,
|
145 |
+
resnet_pre_norm: bool = True,
|
146 |
+
output_scale_factor: float = 1.0,
|
147 |
+
spatial_downsample: bool = True,
|
148 |
+
temporal_downsample: bool = False,
|
149 |
+
downsample_padding: int = 1,
|
150 |
+
):
|
151 |
+
super().__init__()
|
152 |
+
|
153 |
+
resnets = []
|
154 |
+
temp_convs = []
|
155 |
+
|
156 |
+
for i in range(num_layers):
|
157 |
+
in_channels = in_channels if i == 0 else out_channels
|
158 |
+
resnets.append(
|
159 |
+
ResnetBlock2D(
|
160 |
+
in_channels=in_channels,
|
161 |
+
out_channels=out_channels,
|
162 |
+
temb_channels=None,
|
163 |
+
eps=resnet_eps,
|
164 |
+
groups=resnet_groups,
|
165 |
+
dropout=dropout,
|
166 |
+
time_embedding_norm=resnet_time_scale_shift,
|
167 |
+
non_linearity=resnet_act_fn,
|
168 |
+
output_scale_factor=output_scale_factor,
|
169 |
+
pre_norm=resnet_pre_norm,
|
170 |
+
)
|
171 |
+
)
|
172 |
+
temp_convs.append(
|
173 |
+
AllegroTemporalConvLayer(
|
174 |
+
out_channels,
|
175 |
+
out_channels,
|
176 |
+
dropout=0.1,
|
177 |
+
norm_num_groups=resnet_groups,
|
178 |
+
)
|
179 |
+
)
|
180 |
+
|
181 |
+
self.resnets = nn.ModuleList(resnets)
|
182 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
183 |
+
|
184 |
+
if temporal_downsample:
|
185 |
+
self.temp_convs_down = AllegroTemporalConvLayer(
|
186 |
+
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, down_sample=True, stride=3
|
187 |
+
)
|
188 |
+
self.add_temp_downsample = temporal_downsample
|
189 |
+
|
190 |
+
if spatial_downsample:
|
191 |
+
self.downsamplers = nn.ModuleList(
|
192 |
+
[
|
193 |
+
Downsample2D(
|
194 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
195 |
+
)
|
196 |
+
]
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
self.downsamplers = None
|
200 |
+
|
201 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
202 |
+
batch_size = hidden_states.shape[0]
|
203 |
+
|
204 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
205 |
+
|
206 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
207 |
+
hidden_states = resnet(hidden_states, temb=None)
|
208 |
+
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
|
209 |
+
|
210 |
+
if self.add_temp_downsample:
|
211 |
+
hidden_states = self.temp_convs_down(hidden_states, batch_size=batch_size)
|
212 |
+
|
213 |
+
if self.downsamplers is not None:
|
214 |
+
for downsampler in self.downsamplers:
|
215 |
+
hidden_states = downsampler(hidden_states)
|
216 |
+
|
217 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
218 |
+
return hidden_states
|
219 |
+
|
220 |
+
|
221 |
+
class AllegroUpBlock3D(nn.Module):
|
222 |
+
def __init__(
|
223 |
+
self,
|
224 |
+
in_channels: int,
|
225 |
+
out_channels: int,
|
226 |
+
dropout: float = 0.0,
|
227 |
+
num_layers: int = 1,
|
228 |
+
resnet_eps: float = 1e-6,
|
229 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
230 |
+
resnet_act_fn: str = "swish",
|
231 |
+
resnet_groups: int = 32,
|
232 |
+
resnet_pre_norm: bool = True,
|
233 |
+
output_scale_factor: float = 1.0,
|
234 |
+
spatial_upsample: bool = True,
|
235 |
+
temporal_upsample: bool = False,
|
236 |
+
temb_channels: Optional[int] = None,
|
237 |
+
):
|
238 |
+
super().__init__()
|
239 |
+
|
240 |
+
resnets = []
|
241 |
+
temp_convs = []
|
242 |
+
|
243 |
+
for i in range(num_layers):
|
244 |
+
input_channels = in_channels if i == 0 else out_channels
|
245 |
+
|
246 |
+
resnets.append(
|
247 |
+
ResnetBlock2D(
|
248 |
+
in_channels=input_channels,
|
249 |
+
out_channels=out_channels,
|
250 |
+
temb_channels=temb_channels,
|
251 |
+
eps=resnet_eps,
|
252 |
+
groups=resnet_groups,
|
253 |
+
dropout=dropout,
|
254 |
+
time_embedding_norm=resnet_time_scale_shift,
|
255 |
+
non_linearity=resnet_act_fn,
|
256 |
+
output_scale_factor=output_scale_factor,
|
257 |
+
pre_norm=resnet_pre_norm,
|
258 |
+
)
|
259 |
+
)
|
260 |
+
temp_convs.append(
|
261 |
+
AllegroTemporalConvLayer(
|
262 |
+
out_channels,
|
263 |
+
out_channels,
|
264 |
+
dropout=0.1,
|
265 |
+
norm_num_groups=resnet_groups,
|
266 |
+
)
|
267 |
+
)
|
268 |
+
|
269 |
+
self.resnets = nn.ModuleList(resnets)
|
270 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
271 |
+
|
272 |
+
self.add_temp_upsample = temporal_upsample
|
273 |
+
if temporal_upsample:
|
274 |
+
self.temp_conv_up = AllegroTemporalConvLayer(
|
275 |
+
out_channels, out_channels, dropout=0.1, norm_num_groups=resnet_groups, up_sample=True, stride=3
|
276 |
+
)
|
277 |
+
|
278 |
+
if spatial_upsample:
|
279 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
280 |
+
else:
|
281 |
+
self.upsamplers = None
|
282 |
+
|
283 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
284 |
+
batch_size = hidden_states.shape[0]
|
285 |
+
|
286 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
287 |
+
|
288 |
+
for resnet, temp_conv in zip(self.resnets, self.temp_convs):
|
289 |
+
hidden_states = resnet(hidden_states, temb=None)
|
290 |
+
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
|
291 |
+
|
292 |
+
if self.add_temp_upsample:
|
293 |
+
hidden_states = self.temp_conv_up(hidden_states, batch_size=batch_size)
|
294 |
+
|
295 |
+
if self.upsamplers is not None:
|
296 |
+
for upsampler in self.upsamplers:
|
297 |
+
hidden_states = upsampler(hidden_states)
|
298 |
+
|
299 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class AllegroMidBlock3DConv(nn.Module):
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
in_channels: int,
|
307 |
+
temb_channels: int,
|
308 |
+
dropout: float = 0.0,
|
309 |
+
num_layers: int = 1,
|
310 |
+
resnet_eps: float = 1e-6,
|
311 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
312 |
+
resnet_act_fn: str = "swish",
|
313 |
+
resnet_groups: int = 32,
|
314 |
+
resnet_pre_norm: bool = True,
|
315 |
+
add_attention: bool = True,
|
316 |
+
attention_head_dim: int = 1,
|
317 |
+
output_scale_factor: float = 1.0,
|
318 |
+
):
|
319 |
+
super().__init__()
|
320 |
+
|
321 |
+
# there is always at least one resnet
|
322 |
+
resnets = [
|
323 |
+
ResnetBlock2D(
|
324 |
+
in_channels=in_channels,
|
325 |
+
out_channels=in_channels,
|
326 |
+
temb_channels=temb_channels,
|
327 |
+
eps=resnet_eps,
|
328 |
+
groups=resnet_groups,
|
329 |
+
dropout=dropout,
|
330 |
+
time_embedding_norm=resnet_time_scale_shift,
|
331 |
+
non_linearity=resnet_act_fn,
|
332 |
+
output_scale_factor=output_scale_factor,
|
333 |
+
pre_norm=resnet_pre_norm,
|
334 |
+
)
|
335 |
+
]
|
336 |
+
temp_convs = [
|
337 |
+
AllegroTemporalConvLayer(
|
338 |
+
in_channels,
|
339 |
+
in_channels,
|
340 |
+
dropout=0.1,
|
341 |
+
norm_num_groups=resnet_groups,
|
342 |
+
)
|
343 |
+
]
|
344 |
+
attentions = []
|
345 |
+
|
346 |
+
if attention_head_dim is None:
|
347 |
+
attention_head_dim = in_channels
|
348 |
+
|
349 |
+
for _ in range(num_layers):
|
350 |
+
if add_attention:
|
351 |
+
attentions.append(
|
352 |
+
Attention(
|
353 |
+
in_channels,
|
354 |
+
heads=in_channels // attention_head_dim,
|
355 |
+
dim_head=attention_head_dim,
|
356 |
+
rescale_output_factor=output_scale_factor,
|
357 |
+
eps=resnet_eps,
|
358 |
+
norm_num_groups=resnet_groups if resnet_time_scale_shift == "default" else None,
|
359 |
+
spatial_norm_dim=temb_channels if resnet_time_scale_shift == "spatial" else None,
|
360 |
+
residual_connection=True,
|
361 |
+
bias=True,
|
362 |
+
upcast_softmax=True,
|
363 |
+
_from_deprecated_attn_block=True,
|
364 |
+
)
|
365 |
+
)
|
366 |
+
else:
|
367 |
+
attentions.append(None)
|
368 |
+
|
369 |
+
resnets.append(
|
370 |
+
ResnetBlock2D(
|
371 |
+
in_channels=in_channels,
|
372 |
+
out_channels=in_channels,
|
373 |
+
temb_channels=temb_channels,
|
374 |
+
eps=resnet_eps,
|
375 |
+
groups=resnet_groups,
|
376 |
+
dropout=dropout,
|
377 |
+
time_embedding_norm=resnet_time_scale_shift,
|
378 |
+
non_linearity=resnet_act_fn,
|
379 |
+
output_scale_factor=output_scale_factor,
|
380 |
+
pre_norm=resnet_pre_norm,
|
381 |
+
)
|
382 |
+
)
|
383 |
+
|
384 |
+
temp_convs.append(
|
385 |
+
AllegroTemporalConvLayer(
|
386 |
+
in_channels,
|
387 |
+
in_channels,
|
388 |
+
dropout=0.1,
|
389 |
+
norm_num_groups=resnet_groups,
|
390 |
+
)
|
391 |
+
)
|
392 |
+
|
393 |
+
self.resnets = nn.ModuleList(resnets)
|
394 |
+
self.temp_convs = nn.ModuleList(temp_convs)
|
395 |
+
self.attentions = nn.ModuleList(attentions)
|
396 |
+
|
397 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
398 |
+
batch_size = hidden_states.shape[0]
|
399 |
+
|
400 |
+
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
401 |
+
hidden_states = self.resnets[0](hidden_states, temb=None)
|
402 |
+
|
403 |
+
hidden_states = self.temp_convs[0](hidden_states, batch_size=batch_size)
|
404 |
+
|
405 |
+
for attn, resnet, temp_conv in zip(self.attentions, self.resnets[1:], self.temp_convs[1:]):
|
406 |
+
hidden_states = attn(hidden_states)
|
407 |
+
hidden_states = resnet(hidden_states, temb=None)
|
408 |
+
hidden_states = temp_conv(hidden_states, batch_size=batch_size)
|
409 |
+
|
410 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
411 |
+
return hidden_states
|
412 |
+
|
413 |
+
|
414 |
+
class AllegroEncoder3D(nn.Module):
|
415 |
+
def __init__(
|
416 |
+
self,
|
417 |
+
in_channels: int = 3,
|
418 |
+
out_channels: int = 3,
|
419 |
+
down_block_types: Tuple[str, ...] = (
|
420 |
+
"AllegroDownBlock3D",
|
421 |
+
"AllegroDownBlock3D",
|
422 |
+
"AllegroDownBlock3D",
|
423 |
+
"AllegroDownBlock3D",
|
424 |
+
),
|
425 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
426 |
+
temporal_downsample_blocks: Tuple[bool, ...] = [True, True, False, False],
|
427 |
+
layers_per_block: int = 2,
|
428 |
+
norm_num_groups: int = 32,
|
429 |
+
act_fn: str = "silu",
|
430 |
+
double_z: bool = True,
|
431 |
+
):
|
432 |
+
super().__init__()
|
433 |
+
|
434 |
+
self.conv_in = nn.Conv2d(
|
435 |
+
in_channels,
|
436 |
+
block_out_channels[0],
|
437 |
+
kernel_size=3,
|
438 |
+
stride=1,
|
439 |
+
padding=1,
|
440 |
+
)
|
441 |
+
|
442 |
+
self.temp_conv_in = nn.Conv3d(
|
443 |
+
in_channels=block_out_channels[0],
|
444 |
+
out_channels=block_out_channels[0],
|
445 |
+
kernel_size=(3, 1, 1),
|
446 |
+
padding=(1, 0, 0),
|
447 |
+
)
|
448 |
+
|
449 |
+
self.down_blocks = nn.ModuleList([])
|
450 |
+
|
451 |
+
# down
|
452 |
+
output_channel = block_out_channels[0]
|
453 |
+
for i, down_block_type in enumerate(down_block_types):
|
454 |
+
input_channel = output_channel
|
455 |
+
output_channel = block_out_channels[i]
|
456 |
+
is_final_block = i == len(block_out_channels) - 1
|
457 |
+
|
458 |
+
if down_block_type == "AllegroDownBlock3D":
|
459 |
+
down_block = AllegroDownBlock3D(
|
460 |
+
num_layers=layers_per_block,
|
461 |
+
in_channels=input_channel,
|
462 |
+
out_channels=output_channel,
|
463 |
+
spatial_downsample=not is_final_block,
|
464 |
+
temporal_downsample=temporal_downsample_blocks[i],
|
465 |
+
resnet_eps=1e-6,
|
466 |
+
downsample_padding=0,
|
467 |
+
resnet_act_fn=act_fn,
|
468 |
+
resnet_groups=norm_num_groups,
|
469 |
+
)
|
470 |
+
else:
|
471 |
+
raise ValueError("Invalid `down_block_type` encountered. Must be `AllegroDownBlock3D`")
|
472 |
+
|
473 |
+
self.down_blocks.append(down_block)
|
474 |
+
|
475 |
+
# mid
|
476 |
+
self.mid_block = AllegroMidBlock3DConv(
|
477 |
+
in_channels=block_out_channels[-1],
|
478 |
+
resnet_eps=1e-6,
|
479 |
+
resnet_act_fn=act_fn,
|
480 |
+
output_scale_factor=1,
|
481 |
+
resnet_time_scale_shift="default",
|
482 |
+
attention_head_dim=block_out_channels[-1],
|
483 |
+
resnet_groups=norm_num_groups,
|
484 |
+
temb_channels=None,
|
485 |
+
)
|
486 |
+
|
487 |
+
# out
|
488 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
489 |
+
self.conv_act = nn.SiLU()
|
490 |
+
|
491 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
492 |
+
|
493 |
+
self.temp_conv_out = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))
|
494 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
495 |
+
|
496 |
+
self.gradient_checkpointing = False
|
497 |
+
|
498 |
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
499 |
+
batch_size = sample.shape[0]
|
500 |
+
|
501 |
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
502 |
+
sample = self.conv_in(sample)
|
503 |
+
|
504 |
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
505 |
+
residual = sample
|
506 |
+
sample = self.temp_conv_in(sample)
|
507 |
+
sample = sample + residual
|
508 |
+
|
509 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
510 |
+
|
511 |
+
def create_custom_forward(module):
|
512 |
+
def custom_forward(*inputs):
|
513 |
+
return module(*inputs)
|
514 |
+
|
515 |
+
return custom_forward
|
516 |
+
|
517 |
+
# Down blocks
|
518 |
+
for down_block in self.down_blocks:
|
519 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
|
520 |
+
|
521 |
+
# Mid block
|
522 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
|
523 |
+
else:
|
524 |
+
# Down blocks
|
525 |
+
for down_block in self.down_blocks:
|
526 |
+
sample = down_block(sample)
|
527 |
+
|
528 |
+
# Mid block
|
529 |
+
sample = self.mid_block(sample)
|
530 |
+
|
531 |
+
# Post process
|
532 |
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
533 |
+
sample = self.conv_norm_out(sample)
|
534 |
+
sample = self.conv_act(sample)
|
535 |
+
|
536 |
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
537 |
+
residual = sample
|
538 |
+
sample = self.temp_conv_out(sample)
|
539 |
+
sample = sample + residual
|
540 |
+
|
541 |
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
542 |
+
sample = self.conv_out(sample)
|
543 |
+
|
544 |
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
545 |
+
return sample
|
546 |
+
|
547 |
+
|
548 |
+
class AllegroDecoder3D(nn.Module):
|
549 |
+
def __init__(
|
550 |
+
self,
|
551 |
+
in_channels: int = 4,
|
552 |
+
out_channels: int = 3,
|
553 |
+
up_block_types: Tuple[str, ...] = (
|
554 |
+
"AllegroUpBlock3D",
|
555 |
+
"AllegroUpBlock3D",
|
556 |
+
"AllegroUpBlock3D",
|
557 |
+
"AllegroUpBlock3D",
|
558 |
+
),
|
559 |
+
temporal_upsample_blocks: Tuple[bool, ...] = [False, True, True, False],
|
560 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
561 |
+
layers_per_block: int = 2,
|
562 |
+
norm_num_groups: int = 32,
|
563 |
+
act_fn: str = "silu",
|
564 |
+
norm_type: str = "group", # group, spatial
|
565 |
+
):
|
566 |
+
super().__init__()
|
567 |
+
|
568 |
+
self.conv_in = nn.Conv2d(
|
569 |
+
in_channels,
|
570 |
+
block_out_channels[-1],
|
571 |
+
kernel_size=3,
|
572 |
+
stride=1,
|
573 |
+
padding=1,
|
574 |
+
)
|
575 |
+
|
576 |
+
self.temp_conv_in = nn.Conv3d(block_out_channels[-1], block_out_channels[-1], (3, 1, 1), padding=(1, 0, 0))
|
577 |
+
|
578 |
+
self.mid_block = None
|
579 |
+
self.up_blocks = nn.ModuleList([])
|
580 |
+
|
581 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
582 |
+
|
583 |
+
# mid
|
584 |
+
self.mid_block = AllegroMidBlock3DConv(
|
585 |
+
in_channels=block_out_channels[-1],
|
586 |
+
resnet_eps=1e-6,
|
587 |
+
resnet_act_fn=act_fn,
|
588 |
+
output_scale_factor=1,
|
589 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
590 |
+
attention_head_dim=block_out_channels[-1],
|
591 |
+
resnet_groups=norm_num_groups,
|
592 |
+
temb_channels=temb_channels,
|
593 |
+
)
|
594 |
+
|
595 |
+
# up
|
596 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
597 |
+
output_channel = reversed_block_out_channels[0]
|
598 |
+
for i, up_block_type in enumerate(up_block_types):
|
599 |
+
prev_output_channel = output_channel
|
600 |
+
output_channel = reversed_block_out_channels[i]
|
601 |
+
|
602 |
+
is_final_block = i == len(block_out_channels) - 1
|
603 |
+
|
604 |
+
if up_block_type == "AllegroUpBlock3D":
|
605 |
+
up_block = AllegroUpBlock3D(
|
606 |
+
num_layers=layers_per_block + 1,
|
607 |
+
in_channels=prev_output_channel,
|
608 |
+
out_channels=output_channel,
|
609 |
+
spatial_upsample=not is_final_block,
|
610 |
+
temporal_upsample=temporal_upsample_blocks[i],
|
611 |
+
resnet_eps=1e-6,
|
612 |
+
resnet_act_fn=act_fn,
|
613 |
+
resnet_groups=norm_num_groups,
|
614 |
+
temb_channels=temb_channels,
|
615 |
+
resnet_time_scale_shift=norm_type,
|
616 |
+
)
|
617 |
+
else:
|
618 |
+
raise ValueError("Invalid `UP_block_type` encountered. Must be `AllegroUpBlock3D`")
|
619 |
+
|
620 |
+
self.up_blocks.append(up_block)
|
621 |
+
prev_output_channel = output_channel
|
622 |
+
|
623 |
+
# out
|
624 |
+
if norm_type == "spatial":
|
625 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
626 |
+
else:
|
627 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
628 |
+
|
629 |
+
self.conv_act = nn.SiLU()
|
630 |
+
|
631 |
+
self.temp_conv_out = nn.Conv3d(block_out_channels[0], block_out_channels[0], (3, 1, 1), padding=(1, 0, 0))
|
632 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
633 |
+
|
634 |
+
self.gradient_checkpointing = False
|
635 |
+
|
636 |
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
637 |
+
batch_size = sample.shape[0]
|
638 |
+
|
639 |
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
640 |
+
sample = self.conv_in(sample)
|
641 |
+
|
642 |
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
643 |
+
residual = sample
|
644 |
+
sample = self.temp_conv_in(sample)
|
645 |
+
sample = sample + residual
|
646 |
+
|
647 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
648 |
+
|
649 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
650 |
+
|
651 |
+
def create_custom_forward(module):
|
652 |
+
def custom_forward(*inputs):
|
653 |
+
return module(*inputs)
|
654 |
+
|
655 |
+
return custom_forward
|
656 |
+
|
657 |
+
# Mid block
|
658 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
|
659 |
+
|
660 |
+
# Up blocks
|
661 |
+
for up_block in self.up_blocks:
|
662 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample)
|
663 |
+
|
664 |
+
else:
|
665 |
+
# Mid block
|
666 |
+
sample = self.mid_block(sample)
|
667 |
+
sample = sample.to(upscale_dtype)
|
668 |
+
|
669 |
+
# Up blocks
|
670 |
+
for up_block in self.up_blocks:
|
671 |
+
sample = up_block(sample)
|
672 |
+
|
673 |
+
# Post process
|
674 |
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
675 |
+
sample = self.conv_norm_out(sample)
|
676 |
+
sample = self.conv_act(sample)
|
677 |
+
|
678 |
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
679 |
+
residual = sample
|
680 |
+
sample = self.temp_conv_out(sample)
|
681 |
+
sample = sample + residual
|
682 |
+
|
683 |
+
sample = sample.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
684 |
+
sample = self.conv_out(sample)
|
685 |
+
|
686 |
+
sample = sample.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
687 |
+
return sample
|
688 |
+
|
689 |
+
|
690 |
+
class AutoencoderKLAllegro(ModelMixin, ConfigMixin):
|
691 |
+
r"""
|
692 |
+
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos. Used in
|
693 |
+
[Allegro](https://github.com/rhymes-ai/Allegro).
|
694 |
+
|
695 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
696 |
+
for all models (such as downloading or saving).
|
697 |
+
|
698 |
+
Parameters:
|
699 |
+
in_channels (int, defaults to `3`):
|
700 |
+
Number of channels in the input image.
|
701 |
+
out_channels (int, defaults to `3`):
|
702 |
+
Number of channels in the output.
|
703 |
+
down_block_types (`Tuple[str, ...]`, defaults to `("AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D", "AllegroDownBlock3D")`):
|
704 |
+
Tuple of strings denoting which types of down blocks to use.
|
705 |
+
up_block_types (`Tuple[str, ...]`, defaults to `("AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D", "AllegroUpBlock3D")`):
|
706 |
+
Tuple of strings denoting which types of up blocks to use.
|
707 |
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
708 |
+
Tuple of integers denoting number of output channels in each block.
|
709 |
+
temporal_downsample_blocks (`Tuple[bool, ...]`, defaults to `(True, True, False, False)`):
|
710 |
+
Tuple of booleans denoting which blocks to enable temporal downsampling in.
|
711 |
+
latent_channels (`int`, defaults to `4`):
|
712 |
+
Number of channels in latents.
|
713 |
+
layers_per_block (`int`, defaults to `2`):
|
714 |
+
Number of resnet or attention or temporal convolution layers per down/up block.
|
715 |
+
act_fn (`str`, defaults to `"silu"`):
|
716 |
+
The activation function to use.
|
717 |
+
norm_num_groups (`int`, defaults to `32`):
|
718 |
+
Number of groups to use in normalization layers.
|
719 |
+
temporal_compression_ratio (`int`, defaults to `4`):
|
720 |
+
Ratio by which temporal dimension of samples are compressed.
|
721 |
+
sample_size (`int`, defaults to `320`):
|
722 |
+
Default latent size.
|
723 |
+
scaling_factor (`float`, defaults to `0.13235`):
|
724 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
725 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
726 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
727 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
728 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
729 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
730 |
+
force_upcast (`bool`, default to `True`):
|
731 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
732 |
+
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
733 |
+
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
734 |
+
"""
|
735 |
+
|
736 |
+
_supports_gradient_checkpointing = True
|
737 |
+
|
738 |
+
@register_to_config
|
739 |
+
def __init__(
|
740 |
+
self,
|
741 |
+
in_channels: int = 3,
|
742 |
+
out_channels: int = 3,
|
743 |
+
down_block_types: Tuple[str, ...] = (
|
744 |
+
"AllegroDownBlock3D",
|
745 |
+
"AllegroDownBlock3D",
|
746 |
+
"AllegroDownBlock3D",
|
747 |
+
"AllegroDownBlock3D",
|
748 |
+
),
|
749 |
+
up_block_types: Tuple[str, ...] = (
|
750 |
+
"AllegroUpBlock3D",
|
751 |
+
"AllegroUpBlock3D",
|
752 |
+
"AllegroUpBlock3D",
|
753 |
+
"AllegroUpBlock3D",
|
754 |
+
),
|
755 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
756 |
+
temporal_downsample_blocks: Tuple[bool, ...] = (True, True, False, False),
|
757 |
+
temporal_upsample_blocks: Tuple[bool, ...] = (False, True, True, False),
|
758 |
+
latent_channels: int = 4,
|
759 |
+
layers_per_block: int = 2,
|
760 |
+
act_fn: str = "silu",
|
761 |
+
norm_num_groups: int = 32,
|
762 |
+
temporal_compression_ratio: float = 4,
|
763 |
+
sample_size: int = 320,
|
764 |
+
scaling_factor: float = 0.13,
|
765 |
+
force_upcast: bool = True,
|
766 |
+
) -> None:
|
767 |
+
super().__init__()
|
768 |
+
|
769 |
+
self.encoder = AllegroEncoder3D(
|
770 |
+
in_channels=in_channels,
|
771 |
+
out_channels=latent_channels,
|
772 |
+
down_block_types=down_block_types,
|
773 |
+
temporal_downsample_blocks=temporal_downsample_blocks,
|
774 |
+
block_out_channels=block_out_channels,
|
775 |
+
layers_per_block=layers_per_block,
|
776 |
+
act_fn=act_fn,
|
777 |
+
norm_num_groups=norm_num_groups,
|
778 |
+
double_z=True,
|
779 |
+
)
|
780 |
+
self.decoder = AllegroDecoder3D(
|
781 |
+
in_channels=latent_channels,
|
782 |
+
out_channels=out_channels,
|
783 |
+
up_block_types=up_block_types,
|
784 |
+
temporal_upsample_blocks=temporal_upsample_blocks,
|
785 |
+
block_out_channels=block_out_channels,
|
786 |
+
layers_per_block=layers_per_block,
|
787 |
+
norm_num_groups=norm_num_groups,
|
788 |
+
act_fn=act_fn,
|
789 |
+
)
|
790 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
791 |
+
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1)
|
792 |
+
|
793 |
+
# TODO(aryan): For the 1.0.0 refactor, `temporal_compression_ratio` can be inferred directly and we don't need
|
794 |
+
# to use a specific parameter here or in other VAEs.
|
795 |
+
|
796 |
+
self.use_slicing = False
|
797 |
+
self.use_tiling = False
|
798 |
+
|
799 |
+
self.spatial_compression_ratio = 2 ** (len(block_out_channels) - 1)
|
800 |
+
self.tile_overlap_t = 8
|
801 |
+
self.tile_overlap_h = 120
|
802 |
+
self.tile_overlap_w = 80
|
803 |
+
sample_frames = 24
|
804 |
+
|
805 |
+
self.kernel = (sample_frames, sample_size, sample_size)
|
806 |
+
self.stride = (
|
807 |
+
sample_frames - self.tile_overlap_t,
|
808 |
+
sample_size - self.tile_overlap_h,
|
809 |
+
sample_size - self.tile_overlap_w,
|
810 |
+
)
|
811 |
+
|
812 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
813 |
+
if isinstance(module, (AllegroEncoder3D, AllegroDecoder3D)):
|
814 |
+
module.gradient_checkpointing = value
|
815 |
+
|
816 |
+
def enable_tiling(self) -> None:
|
817 |
+
r"""
|
818 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
819 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
820 |
+
processing larger images.
|
821 |
+
"""
|
822 |
+
self.use_tiling = True
|
823 |
+
|
824 |
+
def disable_tiling(self) -> None:
|
825 |
+
r"""
|
826 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
827 |
+
decoding in one step.
|
828 |
+
"""
|
829 |
+
self.use_tiling = False
|
830 |
+
|
831 |
+
def enable_slicing(self) -> None:
|
832 |
+
r"""
|
833 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
834 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
835 |
+
"""
|
836 |
+
self.use_slicing = True
|
837 |
+
|
838 |
+
def disable_slicing(self) -> None:
|
839 |
+
r"""
|
840 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
841 |
+
decoding in one step.
|
842 |
+
"""
|
843 |
+
self.use_slicing = False
|
844 |
+
|
845 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
846 |
+
# TODO(aryan)
|
847 |
+
# if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
848 |
+
if self.use_tiling:
|
849 |
+
return self.tiled_encode(x)
|
850 |
+
|
851 |
+
raise NotImplementedError("Encoding without tiling has not been implemented yet.")
|
852 |
+
|
853 |
+
@apply_forward_hook
|
854 |
+
def encode(
|
855 |
+
self, x: torch.Tensor, return_dict: bool = True
|
856 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
857 |
+
r"""
|
858 |
+
Encode a batch of videos into latents.
|
859 |
+
|
860 |
+
Args:
|
861 |
+
x (`torch.Tensor`):
|
862 |
+
Input batch of videos.
|
863 |
+
return_dict (`bool`, defaults to `True`):
|
864 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
865 |
+
|
866 |
+
Returns:
|
867 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
868 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
869 |
+
"""
|
870 |
+
if self.use_slicing and x.shape[0] > 1:
|
871 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
872 |
+
h = torch.cat(encoded_slices)
|
873 |
+
else:
|
874 |
+
h = self._encode(x)
|
875 |
+
|
876 |
+
posterior = DiagonalGaussianDistribution(h)
|
877 |
+
|
878 |
+
if not return_dict:
|
879 |
+
return (posterior,)
|
880 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
881 |
+
|
882 |
+
def _decode(self, z: torch.Tensor) -> torch.Tensor:
|
883 |
+
# TODO(aryan): refactor tiling implementation
|
884 |
+
# if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
|
885 |
+
if self.use_tiling:
|
886 |
+
return self.tiled_decode(z)
|
887 |
+
|
888 |
+
raise NotImplementedError("Decoding without tiling has not been implemented yet.")
|
889 |
+
|
890 |
+
@apply_forward_hook
|
891 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
892 |
+
"""
|
893 |
+
Decode a batch of videos.
|
894 |
+
|
895 |
+
Args:
|
896 |
+
z (`torch.Tensor`):
|
897 |
+
Input batch of latent vectors.
|
898 |
+
return_dict (`bool`, defaults to `True`):
|
899 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
900 |
+
|
901 |
+
Returns:
|
902 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
903 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
904 |
+
returned.
|
905 |
+
"""
|
906 |
+
if self.use_slicing and z.shape[0] > 1:
|
907 |
+
decoded_slices = [self._decode(z_slice) for z_slice in z.split(1)]
|
908 |
+
decoded = torch.cat(decoded_slices)
|
909 |
+
else:
|
910 |
+
decoded = self._decode(z)
|
911 |
+
|
912 |
+
if not return_dict:
|
913 |
+
return (decoded,)
|
914 |
+
return DecoderOutput(sample=decoded)
|
915 |
+
|
916 |
+
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
917 |
+
local_batch_size = 1
|
918 |
+
rs = self.spatial_compression_ratio
|
919 |
+
rt = self.config.temporal_compression_ratio
|
920 |
+
|
921 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
922 |
+
|
923 |
+
output_num_frames = math.floor((num_frames - self.kernel[0]) / self.stride[0]) + 1
|
924 |
+
output_height = math.floor((height - self.kernel[1]) / self.stride[1]) + 1
|
925 |
+
output_width = math.floor((width - self.kernel[2]) / self.stride[2]) + 1
|
926 |
+
|
927 |
+
count = 0
|
928 |
+
output_latent = x.new_zeros(
|
929 |
+
(
|
930 |
+
output_num_frames * output_height * output_width,
|
931 |
+
2 * self.config.latent_channels,
|
932 |
+
self.kernel[0] // rt,
|
933 |
+
self.kernel[1] // rs,
|
934 |
+
self.kernel[2] // rs,
|
935 |
+
)
|
936 |
+
)
|
937 |
+
vae_batch_input = x.new_zeros((local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2]))
|
938 |
+
|
939 |
+
for i in range(output_num_frames):
|
940 |
+
for j in range(output_height):
|
941 |
+
for k in range(output_width):
|
942 |
+
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
|
943 |
+
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
|
944 |
+
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]
|
945 |
+
|
946 |
+
video_cube = x[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
947 |
+
vae_batch_input[count % local_batch_size] = video_cube
|
948 |
+
|
949 |
+
if (
|
950 |
+
count % local_batch_size == local_batch_size - 1
|
951 |
+
or count == output_num_frames * output_height * output_width - 1
|
952 |
+
):
|
953 |
+
latent = self.encoder(vae_batch_input)
|
954 |
+
|
955 |
+
if (
|
956 |
+
count == output_num_frames * output_height * output_width - 1
|
957 |
+
and count % local_batch_size != local_batch_size - 1
|
958 |
+
):
|
959 |
+
output_latent[count - count % local_batch_size :] = latent[: count % local_batch_size + 1]
|
960 |
+
else:
|
961 |
+
output_latent[count - local_batch_size + 1 : count + 1] = latent
|
962 |
+
|
963 |
+
vae_batch_input = x.new_zeros(
|
964 |
+
(local_batch_size, num_channels, self.kernel[0], self.kernel[1], self.kernel[2])
|
965 |
+
)
|
966 |
+
|
967 |
+
count += 1
|
968 |
+
|
969 |
+
latent = x.new_zeros(
|
970 |
+
(batch_size, 2 * self.config.latent_channels, num_frames // rt, height // rs, width // rs)
|
971 |
+
)
|
972 |
+
output_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
|
973 |
+
output_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs
|
974 |
+
output_overlap = (
|
975 |
+
output_kernel[0] - output_stride[0],
|
976 |
+
output_kernel[1] - output_stride[1],
|
977 |
+
output_kernel[2] - output_stride[2],
|
978 |
+
)
|
979 |
+
|
980 |
+
for i in range(output_num_frames):
|
981 |
+
n_start, n_end = i * output_stride[0], i * output_stride[0] + output_kernel[0]
|
982 |
+
for j in range(output_height):
|
983 |
+
h_start, h_end = j * output_stride[1], j * output_stride[1] + output_kernel[1]
|
984 |
+
for k in range(output_width):
|
985 |
+
w_start, w_end = k * output_stride[2], k * output_stride[2] + output_kernel[2]
|
986 |
+
latent_mean = _prepare_for_blend(
|
987 |
+
(i, output_num_frames, output_overlap[0]),
|
988 |
+
(j, output_height, output_overlap[1]),
|
989 |
+
(k, output_width, output_overlap[2]),
|
990 |
+
output_latent[i * output_height * output_width + j * output_width + k].unsqueeze(0),
|
991 |
+
)
|
992 |
+
latent[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += latent_mean
|
993 |
+
|
994 |
+
latent = latent.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
995 |
+
latent = self.quant_conv(latent)
|
996 |
+
latent = latent.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
997 |
+
return latent
|
998 |
+
|
999 |
+
def tiled_decode(self, z: torch.Tensor) -> torch.Tensor:
|
1000 |
+
local_batch_size = 1
|
1001 |
+
rs = self.spatial_compression_ratio
|
1002 |
+
rt = self.config.temporal_compression_ratio
|
1003 |
+
|
1004 |
+
latent_kernel = self.kernel[0] // rt, self.kernel[1] // rs, self.kernel[2] // rs
|
1005 |
+
latent_stride = self.stride[0] // rt, self.stride[1] // rs, self.stride[2] // rs
|
1006 |
+
|
1007 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1008 |
+
|
1009 |
+
## post quant conv (a mapping)
|
1010 |
+
z = z.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
1011 |
+
z = self.post_quant_conv(z)
|
1012 |
+
z = z.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
1013 |
+
|
1014 |
+
output_num_frames = math.floor((num_frames - latent_kernel[0]) / latent_stride[0]) + 1
|
1015 |
+
output_height = math.floor((height - latent_kernel[1]) / latent_stride[1]) + 1
|
1016 |
+
output_width = math.floor((width - latent_kernel[2]) / latent_stride[2]) + 1
|
1017 |
+
|
1018 |
+
count = 0
|
1019 |
+
decoded_videos = z.new_zeros(
|
1020 |
+
(
|
1021 |
+
output_num_frames * output_height * output_width,
|
1022 |
+
self.config.out_channels,
|
1023 |
+
self.kernel[0],
|
1024 |
+
self.kernel[1],
|
1025 |
+
self.kernel[2],
|
1026 |
+
)
|
1027 |
+
)
|
1028 |
+
vae_batch_input = z.new_zeros(
|
1029 |
+
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
for i in range(output_num_frames):
|
1033 |
+
for j in range(output_height):
|
1034 |
+
for k in range(output_width):
|
1035 |
+
n_start, n_end = i * latent_stride[0], i * latent_stride[0] + latent_kernel[0]
|
1036 |
+
h_start, h_end = j * latent_stride[1], j * latent_stride[1] + latent_kernel[1]
|
1037 |
+
w_start, w_end = k * latent_stride[2], k * latent_stride[2] + latent_kernel[2]
|
1038 |
+
|
1039 |
+
current_latent = z[:, :, n_start:n_end, h_start:h_end, w_start:w_end]
|
1040 |
+
vae_batch_input[count % local_batch_size] = current_latent
|
1041 |
+
|
1042 |
+
if (
|
1043 |
+
count % local_batch_size == local_batch_size - 1
|
1044 |
+
or count == output_num_frames * output_height * output_width - 1
|
1045 |
+
):
|
1046 |
+
current_video = self.decoder(vae_batch_input)
|
1047 |
+
|
1048 |
+
if (
|
1049 |
+
count == output_num_frames * output_height * output_width - 1
|
1050 |
+
and count % local_batch_size != local_batch_size - 1
|
1051 |
+
):
|
1052 |
+
decoded_videos[count - count % local_batch_size :] = current_video[
|
1053 |
+
: count % local_batch_size + 1
|
1054 |
+
]
|
1055 |
+
else:
|
1056 |
+
decoded_videos[count - local_batch_size + 1 : count + 1] = current_video
|
1057 |
+
|
1058 |
+
vae_batch_input = z.new_zeros(
|
1059 |
+
(local_batch_size, num_channels, latent_kernel[0], latent_kernel[1], latent_kernel[2])
|
1060 |
+
)
|
1061 |
+
|
1062 |
+
count += 1
|
1063 |
+
|
1064 |
+
video = z.new_zeros((batch_size, self.config.out_channels, num_frames * rt, height * rs, width * rs))
|
1065 |
+
video_overlap = (
|
1066 |
+
self.kernel[0] - self.stride[0],
|
1067 |
+
self.kernel[1] - self.stride[1],
|
1068 |
+
self.kernel[2] - self.stride[2],
|
1069 |
+
)
|
1070 |
+
|
1071 |
+
for i in range(output_num_frames):
|
1072 |
+
n_start, n_end = i * self.stride[0], i * self.stride[0] + self.kernel[0]
|
1073 |
+
for j in range(output_height):
|
1074 |
+
h_start, h_end = j * self.stride[1], j * self.stride[1] + self.kernel[1]
|
1075 |
+
for k in range(output_width):
|
1076 |
+
w_start, w_end = k * self.stride[2], k * self.stride[2] + self.kernel[2]
|
1077 |
+
out_video_blend = _prepare_for_blend(
|
1078 |
+
(i, output_num_frames, video_overlap[0]),
|
1079 |
+
(j, output_height, video_overlap[1]),
|
1080 |
+
(k, output_width, video_overlap[2]),
|
1081 |
+
decoded_videos[i * output_height * output_width + j * output_width + k].unsqueeze(0),
|
1082 |
+
)
|
1083 |
+
video[:, :, n_start:n_end, h_start:h_end, w_start:w_end] += out_video_blend
|
1084 |
+
|
1085 |
+
video = video.permute(0, 2, 1, 3, 4).contiguous()
|
1086 |
+
return video
|
1087 |
+
|
1088 |
+
def forward(
|
1089 |
+
self,
|
1090 |
+
sample: torch.Tensor,
|
1091 |
+
sample_posterior: bool = False,
|
1092 |
+
return_dict: bool = True,
|
1093 |
+
generator: Optional[torch.Generator] = None,
|
1094 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
1095 |
+
r"""
|
1096 |
+
Args:
|
1097 |
+
sample (`torch.Tensor`): Input sample.
|
1098 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
1099 |
+
Whether to sample from the posterior.
|
1100 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1101 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
1102 |
+
generator (`torch.Generator`, *optional*):
|
1103 |
+
PyTorch random number generator.
|
1104 |
+
"""
|
1105 |
+
x = sample
|
1106 |
+
posterior = self.encode(x).latent_dist
|
1107 |
+
if sample_posterior:
|
1108 |
+
z = posterior.sample(generator=generator)
|
1109 |
+
else:
|
1110 |
+
z = posterior.mode()
|
1111 |
+
dec = self.decode(z).sample
|
1112 |
+
|
1113 |
+
if not return_dict:
|
1114 |
+
return (dec,)
|
1115 |
+
|
1116 |
+
return DecoderOutput(sample=dec)
|
1117 |
+
|
1118 |
+
|
1119 |
+
def _prepare_for_blend(n_param, h_param, w_param, x):
|
1120 |
+
# TODO(aryan): refactor
|
1121 |
+
n, n_max, overlap_n = n_param
|
1122 |
+
h, h_max, overlap_h = h_param
|
1123 |
+
w, w_max, overlap_w = w_param
|
1124 |
+
if overlap_n > 0:
|
1125 |
+
if n > 0: # the head overlap part decays from 0 to 1
|
1126 |
+
x[:, :, 0:overlap_n, :, :] = x[:, :, 0:overlap_n, :, :] * (
|
1127 |
+
torch.arange(0, overlap_n).float().to(x.device) / overlap_n
|
1128 |
+
).reshape(overlap_n, 1, 1)
|
1129 |
+
if n < n_max - 1: # the tail overlap part decays from 1 to 0
|
1130 |
+
x[:, :, -overlap_n:, :, :] = x[:, :, -overlap_n:, :, :] * (
|
1131 |
+
1 - torch.arange(0, overlap_n).float().to(x.device) / overlap_n
|
1132 |
+
).reshape(overlap_n, 1, 1)
|
1133 |
+
if h > 0:
|
1134 |
+
x[:, :, :, 0:overlap_h, :] = x[:, :, :, 0:overlap_h, :] * (
|
1135 |
+
torch.arange(0, overlap_h).float().to(x.device) / overlap_h
|
1136 |
+
).reshape(overlap_h, 1)
|
1137 |
+
if h < h_max - 1:
|
1138 |
+
x[:, :, :, -overlap_h:, :] = x[:, :, :, -overlap_h:, :] * (
|
1139 |
+
1 - torch.arange(0, overlap_h).float().to(x.device) / overlap_h
|
1140 |
+
).reshape(overlap_h, 1)
|
1141 |
+
if w > 0:
|
1142 |
+
x[:, :, :, :, 0:overlap_w] = x[:, :, :, :, 0:overlap_w] * (
|
1143 |
+
torch.arange(0, overlap_w).float().to(x.device) / overlap_w
|
1144 |
+
)
|
1145 |
+
if w < w_max - 1:
|
1146 |
+
x[:, :, :, :, -overlap_w:] = x[:, :, :, :, -overlap_w:] * (
|
1147 |
+
1 - torch.arange(0, overlap_w).float().to(x.device) / overlap_w
|
1148 |
+
)
|
1149 |
+
return x
|
icedit/diffusers/models/autoencoders/autoencoder_kl_cogvideox.py
ADDED
@@ -0,0 +1,1482 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Dict, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
import torch.nn.functional as F
|
22 |
+
|
23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
24 |
+
from ...loaders.single_file_model import FromOriginalModelMixin
|
25 |
+
from ...utils import logging
|
26 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
27 |
+
from ..activations import get_activation
|
28 |
+
from ..downsampling import CogVideoXDownsample3D
|
29 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
30 |
+
from ..modeling_utils import ModelMixin
|
31 |
+
from ..upsampling import CogVideoXUpsample3D
|
32 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
36 |
+
|
37 |
+
|
38 |
+
class CogVideoXSafeConv3d(nn.Conv3d):
|
39 |
+
r"""
|
40 |
+
A 3D convolution layer that splits the input tensor into smaller parts to avoid OOM in CogVideoX Model.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
44 |
+
memory_count = (
|
45 |
+
(input.shape[0] * input.shape[1] * input.shape[2] * input.shape[3] * input.shape[4]) * 2 / 1024**3
|
46 |
+
)
|
47 |
+
|
48 |
+
# Set to 2GB, suitable for CuDNN
|
49 |
+
if memory_count > 2:
|
50 |
+
kernel_size = self.kernel_size[0]
|
51 |
+
part_num = int(memory_count / 2) + 1
|
52 |
+
input_chunks = torch.chunk(input, part_num, dim=2)
|
53 |
+
|
54 |
+
if kernel_size > 1:
|
55 |
+
input_chunks = [input_chunks[0]] + [
|
56 |
+
torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
|
57 |
+
for i in range(1, len(input_chunks))
|
58 |
+
]
|
59 |
+
|
60 |
+
output_chunks = []
|
61 |
+
for input_chunk in input_chunks:
|
62 |
+
output_chunks.append(super().forward(input_chunk))
|
63 |
+
output = torch.cat(output_chunks, dim=2)
|
64 |
+
return output
|
65 |
+
else:
|
66 |
+
return super().forward(input)
|
67 |
+
|
68 |
+
|
69 |
+
class CogVideoXCausalConv3d(nn.Module):
|
70 |
+
r"""A 3D causal convolution layer that pads the input tensor to ensure causality in CogVideoX Model.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
in_channels (`int`): Number of channels in the input tensor.
|
74 |
+
out_channels (`int`): Number of output channels produced by the convolution.
|
75 |
+
kernel_size (`int` or `Tuple[int, int, int]`): Kernel size of the convolutional kernel.
|
76 |
+
stride (`int`, defaults to `1`): Stride of the convolution.
|
77 |
+
dilation (`int`, defaults to `1`): Dilation rate of the convolution.
|
78 |
+
pad_mode (`str`, defaults to `"constant"`): Padding mode.
|
79 |
+
"""
|
80 |
+
|
81 |
+
def __init__(
|
82 |
+
self,
|
83 |
+
in_channels: int,
|
84 |
+
out_channels: int,
|
85 |
+
kernel_size: Union[int, Tuple[int, int, int]],
|
86 |
+
stride: int = 1,
|
87 |
+
dilation: int = 1,
|
88 |
+
pad_mode: str = "constant",
|
89 |
+
):
|
90 |
+
super().__init__()
|
91 |
+
|
92 |
+
if isinstance(kernel_size, int):
|
93 |
+
kernel_size = (kernel_size,) * 3
|
94 |
+
|
95 |
+
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
|
96 |
+
|
97 |
+
# TODO(aryan): configure calculation based on stride and dilation in the future.
|
98 |
+
# Since CogVideoX does not use it, it is currently tailored to "just work" with Mochi
|
99 |
+
time_pad = time_kernel_size - 1
|
100 |
+
height_pad = (height_kernel_size - 1) // 2
|
101 |
+
width_pad = (width_kernel_size - 1) // 2
|
102 |
+
|
103 |
+
self.pad_mode = pad_mode
|
104 |
+
self.height_pad = height_pad
|
105 |
+
self.width_pad = width_pad
|
106 |
+
self.time_pad = time_pad
|
107 |
+
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0)
|
108 |
+
|
109 |
+
self.temporal_dim = 2
|
110 |
+
self.time_kernel_size = time_kernel_size
|
111 |
+
|
112 |
+
stride = stride if isinstance(stride, tuple) else (stride, 1, 1)
|
113 |
+
dilation = (dilation, 1, 1)
|
114 |
+
self.conv = CogVideoXSafeConv3d(
|
115 |
+
in_channels=in_channels,
|
116 |
+
out_channels=out_channels,
|
117 |
+
kernel_size=kernel_size,
|
118 |
+
stride=stride,
|
119 |
+
dilation=dilation,
|
120 |
+
)
|
121 |
+
|
122 |
+
def fake_context_parallel_forward(
|
123 |
+
self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None
|
124 |
+
) -> torch.Tensor:
|
125 |
+
if self.pad_mode == "replicate":
|
126 |
+
inputs = F.pad(inputs, self.time_causal_padding, mode="replicate")
|
127 |
+
else:
|
128 |
+
kernel_size = self.time_kernel_size
|
129 |
+
if kernel_size > 1:
|
130 |
+
cached_inputs = [conv_cache] if conv_cache is not None else [inputs[:, :, :1]] * (kernel_size - 1)
|
131 |
+
inputs = torch.cat(cached_inputs + [inputs], dim=2)
|
132 |
+
return inputs
|
133 |
+
|
134 |
+
def forward(self, inputs: torch.Tensor, conv_cache: Optional[torch.Tensor] = None) -> torch.Tensor:
|
135 |
+
inputs = self.fake_context_parallel_forward(inputs, conv_cache)
|
136 |
+
|
137 |
+
if self.pad_mode == "replicate":
|
138 |
+
conv_cache = None
|
139 |
+
else:
|
140 |
+
padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad)
|
141 |
+
conv_cache = inputs[:, :, -self.time_kernel_size + 1 :].clone()
|
142 |
+
inputs = F.pad(inputs, padding_2d, mode="constant", value=0)
|
143 |
+
|
144 |
+
output = self.conv(inputs)
|
145 |
+
return output, conv_cache
|
146 |
+
|
147 |
+
|
148 |
+
class CogVideoXSpatialNorm3D(nn.Module):
|
149 |
+
r"""
|
150 |
+
Spatially conditioned normalization as defined in https://arxiv.org/abs/2209.09002. This implementation is specific
|
151 |
+
to 3D-video like data.
|
152 |
+
|
153 |
+
CogVideoXSafeConv3d is used instead of nn.Conv3d to avoid OOM in CogVideoX Model.
|
154 |
+
|
155 |
+
Args:
|
156 |
+
f_channels (`int`):
|
157 |
+
The number of channels for input to group normalization layer, and output of the spatial norm layer.
|
158 |
+
zq_channels (`int`):
|
159 |
+
The number of channels for the quantized vector as described in the paper.
|
160 |
+
groups (`int`):
|
161 |
+
Number of groups to separate the channels into for group normalization.
|
162 |
+
"""
|
163 |
+
|
164 |
+
def __init__(
|
165 |
+
self,
|
166 |
+
f_channels: int,
|
167 |
+
zq_channels: int,
|
168 |
+
groups: int = 32,
|
169 |
+
):
|
170 |
+
super().__init__()
|
171 |
+
self.norm_layer = nn.GroupNorm(num_channels=f_channels, num_groups=groups, eps=1e-6, affine=True)
|
172 |
+
self.conv_y = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
|
173 |
+
self.conv_b = CogVideoXCausalConv3d(zq_channels, f_channels, kernel_size=1, stride=1)
|
174 |
+
|
175 |
+
def forward(
|
176 |
+
self, f: torch.Tensor, zq: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
|
177 |
+
) -> torch.Tensor:
|
178 |
+
new_conv_cache = {}
|
179 |
+
conv_cache = conv_cache or {}
|
180 |
+
|
181 |
+
if f.shape[2] > 1 and f.shape[2] % 2 == 1:
|
182 |
+
f_first, f_rest = f[:, :, :1], f[:, :, 1:]
|
183 |
+
f_first_size, f_rest_size = f_first.shape[-3:], f_rest.shape[-3:]
|
184 |
+
z_first, z_rest = zq[:, :, :1], zq[:, :, 1:]
|
185 |
+
z_first = F.interpolate(z_first, size=f_first_size)
|
186 |
+
z_rest = F.interpolate(z_rest, size=f_rest_size)
|
187 |
+
zq = torch.cat([z_first, z_rest], dim=2)
|
188 |
+
else:
|
189 |
+
zq = F.interpolate(zq, size=f.shape[-3:])
|
190 |
+
|
191 |
+
conv_y, new_conv_cache["conv_y"] = self.conv_y(zq, conv_cache=conv_cache.get("conv_y"))
|
192 |
+
conv_b, new_conv_cache["conv_b"] = self.conv_b(zq, conv_cache=conv_cache.get("conv_b"))
|
193 |
+
|
194 |
+
norm_f = self.norm_layer(f)
|
195 |
+
new_f = norm_f * conv_y + conv_b
|
196 |
+
return new_f, new_conv_cache
|
197 |
+
|
198 |
+
|
199 |
+
class CogVideoXResnetBlock3D(nn.Module):
|
200 |
+
r"""
|
201 |
+
A 3D ResNet block used in the CogVideoX model.
|
202 |
+
|
203 |
+
Args:
|
204 |
+
in_channels (`int`):
|
205 |
+
Number of input channels.
|
206 |
+
out_channels (`int`, *optional*):
|
207 |
+
Number of output channels. If None, defaults to `in_channels`.
|
208 |
+
dropout (`float`, defaults to `0.0`):
|
209 |
+
Dropout rate.
|
210 |
+
temb_channels (`int`, defaults to `512`):
|
211 |
+
Number of time embedding channels.
|
212 |
+
groups (`int`, defaults to `32`):
|
213 |
+
Number of groups to separate the channels into for group normalization.
|
214 |
+
eps (`float`, defaults to `1e-6`):
|
215 |
+
Epsilon value for normalization layers.
|
216 |
+
non_linearity (`str`, defaults to `"swish"`):
|
217 |
+
Activation function to use.
|
218 |
+
conv_shortcut (bool, defaults to `False`):
|
219 |
+
Whether or not to use a convolution shortcut.
|
220 |
+
spatial_norm_dim (`int`, *optional*):
|
221 |
+
The dimension to use for spatial norm if it is to be used instead of group norm.
|
222 |
+
pad_mode (str, defaults to `"first"`):
|
223 |
+
Padding mode.
|
224 |
+
"""
|
225 |
+
|
226 |
+
def __init__(
|
227 |
+
self,
|
228 |
+
in_channels: int,
|
229 |
+
out_channels: Optional[int] = None,
|
230 |
+
dropout: float = 0.0,
|
231 |
+
temb_channels: int = 512,
|
232 |
+
groups: int = 32,
|
233 |
+
eps: float = 1e-6,
|
234 |
+
non_linearity: str = "swish",
|
235 |
+
conv_shortcut: bool = False,
|
236 |
+
spatial_norm_dim: Optional[int] = None,
|
237 |
+
pad_mode: str = "first",
|
238 |
+
):
|
239 |
+
super().__init__()
|
240 |
+
|
241 |
+
out_channels = out_channels or in_channels
|
242 |
+
|
243 |
+
self.in_channels = in_channels
|
244 |
+
self.out_channels = out_channels
|
245 |
+
self.nonlinearity = get_activation(non_linearity)
|
246 |
+
self.use_conv_shortcut = conv_shortcut
|
247 |
+
self.spatial_norm_dim = spatial_norm_dim
|
248 |
+
|
249 |
+
if spatial_norm_dim is None:
|
250 |
+
self.norm1 = nn.GroupNorm(num_channels=in_channels, num_groups=groups, eps=eps)
|
251 |
+
self.norm2 = nn.GroupNorm(num_channels=out_channels, num_groups=groups, eps=eps)
|
252 |
+
else:
|
253 |
+
self.norm1 = CogVideoXSpatialNorm3D(
|
254 |
+
f_channels=in_channels,
|
255 |
+
zq_channels=spatial_norm_dim,
|
256 |
+
groups=groups,
|
257 |
+
)
|
258 |
+
self.norm2 = CogVideoXSpatialNorm3D(
|
259 |
+
f_channels=out_channels,
|
260 |
+
zq_channels=spatial_norm_dim,
|
261 |
+
groups=groups,
|
262 |
+
)
|
263 |
+
|
264 |
+
self.conv1 = CogVideoXCausalConv3d(
|
265 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
|
266 |
+
)
|
267 |
+
|
268 |
+
if temb_channels > 0:
|
269 |
+
self.temb_proj = nn.Linear(in_features=temb_channels, out_features=out_channels)
|
270 |
+
|
271 |
+
self.dropout = nn.Dropout(dropout)
|
272 |
+
self.conv2 = CogVideoXCausalConv3d(
|
273 |
+
in_channels=out_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
|
274 |
+
)
|
275 |
+
|
276 |
+
if self.in_channels != self.out_channels:
|
277 |
+
if self.use_conv_shortcut:
|
278 |
+
self.conv_shortcut = CogVideoXCausalConv3d(
|
279 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, pad_mode=pad_mode
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
self.conv_shortcut = CogVideoXSafeConv3d(
|
283 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, padding=0
|
284 |
+
)
|
285 |
+
|
286 |
+
def forward(
|
287 |
+
self,
|
288 |
+
inputs: torch.Tensor,
|
289 |
+
temb: Optional[torch.Tensor] = None,
|
290 |
+
zq: Optional[torch.Tensor] = None,
|
291 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
292 |
+
) -> torch.Tensor:
|
293 |
+
new_conv_cache = {}
|
294 |
+
conv_cache = conv_cache or {}
|
295 |
+
|
296 |
+
hidden_states = inputs
|
297 |
+
|
298 |
+
if zq is not None:
|
299 |
+
hidden_states, new_conv_cache["norm1"] = self.norm1(hidden_states, zq, conv_cache=conv_cache.get("norm1"))
|
300 |
+
else:
|
301 |
+
hidden_states = self.norm1(hidden_states)
|
302 |
+
|
303 |
+
hidden_states = self.nonlinearity(hidden_states)
|
304 |
+
hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1"))
|
305 |
+
|
306 |
+
if temb is not None:
|
307 |
+
hidden_states = hidden_states + self.temb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
308 |
+
|
309 |
+
if zq is not None:
|
310 |
+
hidden_states, new_conv_cache["norm2"] = self.norm2(hidden_states, zq, conv_cache=conv_cache.get("norm2"))
|
311 |
+
else:
|
312 |
+
hidden_states = self.norm2(hidden_states)
|
313 |
+
|
314 |
+
hidden_states = self.nonlinearity(hidden_states)
|
315 |
+
hidden_states = self.dropout(hidden_states)
|
316 |
+
hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2"))
|
317 |
+
|
318 |
+
if self.in_channels != self.out_channels:
|
319 |
+
if self.use_conv_shortcut:
|
320 |
+
inputs, new_conv_cache["conv_shortcut"] = self.conv_shortcut(
|
321 |
+
inputs, conv_cache=conv_cache.get("conv_shortcut")
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
inputs = self.conv_shortcut(inputs)
|
325 |
+
|
326 |
+
hidden_states = hidden_states + inputs
|
327 |
+
return hidden_states, new_conv_cache
|
328 |
+
|
329 |
+
|
330 |
+
class CogVideoXDownBlock3D(nn.Module):
|
331 |
+
r"""
|
332 |
+
A downsampling block used in the CogVideoX model.
|
333 |
+
|
334 |
+
Args:
|
335 |
+
in_channels (`int`):
|
336 |
+
Number of input channels.
|
337 |
+
out_channels (`int`, *optional*):
|
338 |
+
Number of output channels. If None, defaults to `in_channels`.
|
339 |
+
temb_channels (`int`, defaults to `512`):
|
340 |
+
Number of time embedding channels.
|
341 |
+
num_layers (`int`, defaults to `1`):
|
342 |
+
Number of resnet layers.
|
343 |
+
dropout (`float`, defaults to `0.0`):
|
344 |
+
Dropout rate.
|
345 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
346 |
+
Epsilon value for normalization layers.
|
347 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
348 |
+
Activation function to use.
|
349 |
+
resnet_groups (`int`, defaults to `32`):
|
350 |
+
Number of groups to separate the channels into for group normalization.
|
351 |
+
add_downsample (`bool`, defaults to `True`):
|
352 |
+
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
|
353 |
+
compress_time (`bool`, defaults to `False`):
|
354 |
+
Whether or not to downsample across temporal dimension.
|
355 |
+
pad_mode (str, defaults to `"first"`):
|
356 |
+
Padding mode.
|
357 |
+
"""
|
358 |
+
|
359 |
+
_supports_gradient_checkpointing = True
|
360 |
+
|
361 |
+
def __init__(
|
362 |
+
self,
|
363 |
+
in_channels: int,
|
364 |
+
out_channels: int,
|
365 |
+
temb_channels: int,
|
366 |
+
dropout: float = 0.0,
|
367 |
+
num_layers: int = 1,
|
368 |
+
resnet_eps: float = 1e-6,
|
369 |
+
resnet_act_fn: str = "swish",
|
370 |
+
resnet_groups: int = 32,
|
371 |
+
add_downsample: bool = True,
|
372 |
+
downsample_padding: int = 0,
|
373 |
+
compress_time: bool = False,
|
374 |
+
pad_mode: str = "first",
|
375 |
+
):
|
376 |
+
super().__init__()
|
377 |
+
|
378 |
+
resnets = []
|
379 |
+
for i in range(num_layers):
|
380 |
+
in_channel = in_channels if i == 0 else out_channels
|
381 |
+
resnets.append(
|
382 |
+
CogVideoXResnetBlock3D(
|
383 |
+
in_channels=in_channel,
|
384 |
+
out_channels=out_channels,
|
385 |
+
dropout=dropout,
|
386 |
+
temb_channels=temb_channels,
|
387 |
+
groups=resnet_groups,
|
388 |
+
eps=resnet_eps,
|
389 |
+
non_linearity=resnet_act_fn,
|
390 |
+
pad_mode=pad_mode,
|
391 |
+
)
|
392 |
+
)
|
393 |
+
|
394 |
+
self.resnets = nn.ModuleList(resnets)
|
395 |
+
self.downsamplers = None
|
396 |
+
|
397 |
+
if add_downsample:
|
398 |
+
self.downsamplers = nn.ModuleList(
|
399 |
+
[
|
400 |
+
CogVideoXDownsample3D(
|
401 |
+
out_channels, out_channels, padding=downsample_padding, compress_time=compress_time
|
402 |
+
)
|
403 |
+
]
|
404 |
+
)
|
405 |
+
|
406 |
+
self.gradient_checkpointing = False
|
407 |
+
|
408 |
+
def forward(
|
409 |
+
self,
|
410 |
+
hidden_states: torch.Tensor,
|
411 |
+
temb: Optional[torch.Tensor] = None,
|
412 |
+
zq: Optional[torch.Tensor] = None,
|
413 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
414 |
+
) -> torch.Tensor:
|
415 |
+
r"""Forward method of the `CogVideoXDownBlock3D` class."""
|
416 |
+
|
417 |
+
new_conv_cache = {}
|
418 |
+
conv_cache = conv_cache or {}
|
419 |
+
|
420 |
+
for i, resnet in enumerate(self.resnets):
|
421 |
+
conv_cache_key = f"resnet_{i}"
|
422 |
+
|
423 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
424 |
+
|
425 |
+
def create_custom_forward(module):
|
426 |
+
def create_forward(*inputs):
|
427 |
+
return module(*inputs)
|
428 |
+
|
429 |
+
return create_forward
|
430 |
+
|
431 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
432 |
+
create_custom_forward(resnet),
|
433 |
+
hidden_states,
|
434 |
+
temb,
|
435 |
+
zq,
|
436 |
+
conv_cache.get(conv_cache_key),
|
437 |
+
)
|
438 |
+
else:
|
439 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
440 |
+
hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
|
441 |
+
)
|
442 |
+
|
443 |
+
if self.downsamplers is not None:
|
444 |
+
for downsampler in self.downsamplers:
|
445 |
+
hidden_states = downsampler(hidden_states)
|
446 |
+
|
447 |
+
return hidden_states, new_conv_cache
|
448 |
+
|
449 |
+
|
450 |
+
class CogVideoXMidBlock3D(nn.Module):
|
451 |
+
r"""
|
452 |
+
A middle block used in the CogVideoX model.
|
453 |
+
|
454 |
+
Args:
|
455 |
+
in_channels (`int`):
|
456 |
+
Number of input channels.
|
457 |
+
temb_channels (`int`, defaults to `512`):
|
458 |
+
Number of time embedding channels.
|
459 |
+
dropout (`float`, defaults to `0.0`):
|
460 |
+
Dropout rate.
|
461 |
+
num_layers (`int`, defaults to `1`):
|
462 |
+
Number of resnet layers.
|
463 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
464 |
+
Epsilon value for normalization layers.
|
465 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
466 |
+
Activation function to use.
|
467 |
+
resnet_groups (`int`, defaults to `32`):
|
468 |
+
Number of groups to separate the channels into for group normalization.
|
469 |
+
spatial_norm_dim (`int`, *optional*):
|
470 |
+
The dimension to use for spatial norm if it is to be used instead of group norm.
|
471 |
+
pad_mode (str, defaults to `"first"`):
|
472 |
+
Padding mode.
|
473 |
+
"""
|
474 |
+
|
475 |
+
_supports_gradient_checkpointing = True
|
476 |
+
|
477 |
+
def __init__(
|
478 |
+
self,
|
479 |
+
in_channels: int,
|
480 |
+
temb_channels: int,
|
481 |
+
dropout: float = 0.0,
|
482 |
+
num_layers: int = 1,
|
483 |
+
resnet_eps: float = 1e-6,
|
484 |
+
resnet_act_fn: str = "swish",
|
485 |
+
resnet_groups: int = 32,
|
486 |
+
spatial_norm_dim: Optional[int] = None,
|
487 |
+
pad_mode: str = "first",
|
488 |
+
):
|
489 |
+
super().__init__()
|
490 |
+
|
491 |
+
resnets = []
|
492 |
+
for _ in range(num_layers):
|
493 |
+
resnets.append(
|
494 |
+
CogVideoXResnetBlock3D(
|
495 |
+
in_channels=in_channels,
|
496 |
+
out_channels=in_channels,
|
497 |
+
dropout=dropout,
|
498 |
+
temb_channels=temb_channels,
|
499 |
+
groups=resnet_groups,
|
500 |
+
eps=resnet_eps,
|
501 |
+
spatial_norm_dim=spatial_norm_dim,
|
502 |
+
non_linearity=resnet_act_fn,
|
503 |
+
pad_mode=pad_mode,
|
504 |
+
)
|
505 |
+
)
|
506 |
+
self.resnets = nn.ModuleList(resnets)
|
507 |
+
|
508 |
+
self.gradient_checkpointing = False
|
509 |
+
|
510 |
+
def forward(
|
511 |
+
self,
|
512 |
+
hidden_states: torch.Tensor,
|
513 |
+
temb: Optional[torch.Tensor] = None,
|
514 |
+
zq: Optional[torch.Tensor] = None,
|
515 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
516 |
+
) -> torch.Tensor:
|
517 |
+
r"""Forward method of the `CogVideoXMidBlock3D` class."""
|
518 |
+
|
519 |
+
new_conv_cache = {}
|
520 |
+
conv_cache = conv_cache or {}
|
521 |
+
|
522 |
+
for i, resnet in enumerate(self.resnets):
|
523 |
+
conv_cache_key = f"resnet_{i}"
|
524 |
+
|
525 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
526 |
+
|
527 |
+
def create_custom_forward(module):
|
528 |
+
def create_forward(*inputs):
|
529 |
+
return module(*inputs)
|
530 |
+
|
531 |
+
return create_forward
|
532 |
+
|
533 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
534 |
+
create_custom_forward(resnet), hidden_states, temb, zq, conv_cache.get(conv_cache_key)
|
535 |
+
)
|
536 |
+
else:
|
537 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
538 |
+
hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
|
539 |
+
)
|
540 |
+
|
541 |
+
return hidden_states, new_conv_cache
|
542 |
+
|
543 |
+
|
544 |
+
class CogVideoXUpBlock3D(nn.Module):
|
545 |
+
r"""
|
546 |
+
An upsampling block used in the CogVideoX model.
|
547 |
+
|
548 |
+
Args:
|
549 |
+
in_channels (`int`):
|
550 |
+
Number of input channels.
|
551 |
+
out_channels (`int`, *optional*):
|
552 |
+
Number of output channels. If None, defaults to `in_channels`.
|
553 |
+
temb_channels (`int`, defaults to `512`):
|
554 |
+
Number of time embedding channels.
|
555 |
+
dropout (`float`, defaults to `0.0`):
|
556 |
+
Dropout rate.
|
557 |
+
num_layers (`int`, defaults to `1`):
|
558 |
+
Number of resnet layers.
|
559 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
560 |
+
Epsilon value for normalization layers.
|
561 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
562 |
+
Activation function to use.
|
563 |
+
resnet_groups (`int`, defaults to `32`):
|
564 |
+
Number of groups to separate the channels into for group normalization.
|
565 |
+
spatial_norm_dim (`int`, defaults to `16`):
|
566 |
+
The dimension to use for spatial norm if it is to be used instead of group norm.
|
567 |
+
add_upsample (`bool`, defaults to `True`):
|
568 |
+
Whether or not to use a upsampling layer. If not used, output dimension would be same as input dimension.
|
569 |
+
compress_time (`bool`, defaults to `False`):
|
570 |
+
Whether or not to downsample across temporal dimension.
|
571 |
+
pad_mode (str, defaults to `"first"`):
|
572 |
+
Padding mode.
|
573 |
+
"""
|
574 |
+
|
575 |
+
def __init__(
|
576 |
+
self,
|
577 |
+
in_channels: int,
|
578 |
+
out_channels: int,
|
579 |
+
temb_channels: int,
|
580 |
+
dropout: float = 0.0,
|
581 |
+
num_layers: int = 1,
|
582 |
+
resnet_eps: float = 1e-6,
|
583 |
+
resnet_act_fn: str = "swish",
|
584 |
+
resnet_groups: int = 32,
|
585 |
+
spatial_norm_dim: int = 16,
|
586 |
+
add_upsample: bool = True,
|
587 |
+
upsample_padding: int = 1,
|
588 |
+
compress_time: bool = False,
|
589 |
+
pad_mode: str = "first",
|
590 |
+
):
|
591 |
+
super().__init__()
|
592 |
+
|
593 |
+
resnets = []
|
594 |
+
for i in range(num_layers):
|
595 |
+
in_channel = in_channels if i == 0 else out_channels
|
596 |
+
resnets.append(
|
597 |
+
CogVideoXResnetBlock3D(
|
598 |
+
in_channels=in_channel,
|
599 |
+
out_channels=out_channels,
|
600 |
+
dropout=dropout,
|
601 |
+
temb_channels=temb_channels,
|
602 |
+
groups=resnet_groups,
|
603 |
+
eps=resnet_eps,
|
604 |
+
non_linearity=resnet_act_fn,
|
605 |
+
spatial_norm_dim=spatial_norm_dim,
|
606 |
+
pad_mode=pad_mode,
|
607 |
+
)
|
608 |
+
)
|
609 |
+
|
610 |
+
self.resnets = nn.ModuleList(resnets)
|
611 |
+
self.upsamplers = None
|
612 |
+
|
613 |
+
if add_upsample:
|
614 |
+
self.upsamplers = nn.ModuleList(
|
615 |
+
[
|
616 |
+
CogVideoXUpsample3D(
|
617 |
+
out_channels, out_channels, padding=upsample_padding, compress_time=compress_time
|
618 |
+
)
|
619 |
+
]
|
620 |
+
)
|
621 |
+
|
622 |
+
self.gradient_checkpointing = False
|
623 |
+
|
624 |
+
def forward(
|
625 |
+
self,
|
626 |
+
hidden_states: torch.Tensor,
|
627 |
+
temb: Optional[torch.Tensor] = None,
|
628 |
+
zq: Optional[torch.Tensor] = None,
|
629 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
630 |
+
) -> torch.Tensor:
|
631 |
+
r"""Forward method of the `CogVideoXUpBlock3D` class."""
|
632 |
+
|
633 |
+
new_conv_cache = {}
|
634 |
+
conv_cache = conv_cache or {}
|
635 |
+
|
636 |
+
for i, resnet in enumerate(self.resnets):
|
637 |
+
conv_cache_key = f"resnet_{i}"
|
638 |
+
|
639 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
640 |
+
|
641 |
+
def create_custom_forward(module):
|
642 |
+
def create_forward(*inputs):
|
643 |
+
return module(*inputs)
|
644 |
+
|
645 |
+
return create_forward
|
646 |
+
|
647 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
648 |
+
create_custom_forward(resnet),
|
649 |
+
hidden_states,
|
650 |
+
temb,
|
651 |
+
zq,
|
652 |
+
conv_cache.get(conv_cache_key),
|
653 |
+
)
|
654 |
+
else:
|
655 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
656 |
+
hidden_states, temb, zq, conv_cache=conv_cache.get(conv_cache_key)
|
657 |
+
)
|
658 |
+
|
659 |
+
if self.upsamplers is not None:
|
660 |
+
for upsampler in self.upsamplers:
|
661 |
+
hidden_states = upsampler(hidden_states)
|
662 |
+
|
663 |
+
return hidden_states, new_conv_cache
|
664 |
+
|
665 |
+
|
666 |
+
class CogVideoXEncoder3D(nn.Module):
|
667 |
+
r"""
|
668 |
+
The `CogVideoXEncoder3D` layer of a variational autoencoder that encodes its input into a latent representation.
|
669 |
+
|
670 |
+
Args:
|
671 |
+
in_channels (`int`, *optional*, defaults to 3):
|
672 |
+
The number of input channels.
|
673 |
+
out_channels (`int`, *optional*, defaults to 3):
|
674 |
+
The number of output channels.
|
675 |
+
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
676 |
+
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
|
677 |
+
options.
|
678 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
679 |
+
The number of output channels for each block.
|
680 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
681 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
682 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
683 |
+
The number of layers per block.
|
684 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
685 |
+
The number of groups for normalization.
|
686 |
+
"""
|
687 |
+
|
688 |
+
_supports_gradient_checkpointing = True
|
689 |
+
|
690 |
+
def __init__(
|
691 |
+
self,
|
692 |
+
in_channels: int = 3,
|
693 |
+
out_channels: int = 16,
|
694 |
+
down_block_types: Tuple[str, ...] = (
|
695 |
+
"CogVideoXDownBlock3D",
|
696 |
+
"CogVideoXDownBlock3D",
|
697 |
+
"CogVideoXDownBlock3D",
|
698 |
+
"CogVideoXDownBlock3D",
|
699 |
+
),
|
700 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
|
701 |
+
layers_per_block: int = 3,
|
702 |
+
act_fn: str = "silu",
|
703 |
+
norm_eps: float = 1e-6,
|
704 |
+
norm_num_groups: int = 32,
|
705 |
+
dropout: float = 0.0,
|
706 |
+
pad_mode: str = "first",
|
707 |
+
temporal_compression_ratio: float = 4,
|
708 |
+
):
|
709 |
+
super().__init__()
|
710 |
+
|
711 |
+
# log2 of temporal_compress_times
|
712 |
+
temporal_compress_level = int(np.log2(temporal_compression_ratio))
|
713 |
+
|
714 |
+
self.conv_in = CogVideoXCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, pad_mode=pad_mode)
|
715 |
+
self.down_blocks = nn.ModuleList([])
|
716 |
+
|
717 |
+
# down blocks
|
718 |
+
output_channel = block_out_channels[0]
|
719 |
+
for i, down_block_type in enumerate(down_block_types):
|
720 |
+
input_channel = output_channel
|
721 |
+
output_channel = block_out_channels[i]
|
722 |
+
is_final_block = i == len(block_out_channels) - 1
|
723 |
+
compress_time = i < temporal_compress_level
|
724 |
+
|
725 |
+
if down_block_type == "CogVideoXDownBlock3D":
|
726 |
+
down_block = CogVideoXDownBlock3D(
|
727 |
+
in_channels=input_channel,
|
728 |
+
out_channels=output_channel,
|
729 |
+
temb_channels=0,
|
730 |
+
dropout=dropout,
|
731 |
+
num_layers=layers_per_block,
|
732 |
+
resnet_eps=norm_eps,
|
733 |
+
resnet_act_fn=act_fn,
|
734 |
+
resnet_groups=norm_num_groups,
|
735 |
+
add_downsample=not is_final_block,
|
736 |
+
compress_time=compress_time,
|
737 |
+
)
|
738 |
+
else:
|
739 |
+
raise ValueError("Invalid `down_block_type` encountered. Must be `CogVideoXDownBlock3D`")
|
740 |
+
|
741 |
+
self.down_blocks.append(down_block)
|
742 |
+
|
743 |
+
# mid block
|
744 |
+
self.mid_block = CogVideoXMidBlock3D(
|
745 |
+
in_channels=block_out_channels[-1],
|
746 |
+
temb_channels=0,
|
747 |
+
dropout=dropout,
|
748 |
+
num_layers=2,
|
749 |
+
resnet_eps=norm_eps,
|
750 |
+
resnet_act_fn=act_fn,
|
751 |
+
resnet_groups=norm_num_groups,
|
752 |
+
pad_mode=pad_mode,
|
753 |
+
)
|
754 |
+
|
755 |
+
self.norm_out = nn.GroupNorm(norm_num_groups, block_out_channels[-1], eps=1e-6)
|
756 |
+
self.conv_act = nn.SiLU()
|
757 |
+
self.conv_out = CogVideoXCausalConv3d(
|
758 |
+
block_out_channels[-1], 2 * out_channels, kernel_size=3, pad_mode=pad_mode
|
759 |
+
)
|
760 |
+
|
761 |
+
self.gradient_checkpointing = False
|
762 |
+
|
763 |
+
def forward(
|
764 |
+
self,
|
765 |
+
sample: torch.Tensor,
|
766 |
+
temb: Optional[torch.Tensor] = None,
|
767 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
768 |
+
) -> torch.Tensor:
|
769 |
+
r"""The forward method of the `CogVideoXEncoder3D` class."""
|
770 |
+
|
771 |
+
new_conv_cache = {}
|
772 |
+
conv_cache = conv_cache or {}
|
773 |
+
|
774 |
+
hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
|
775 |
+
|
776 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
777 |
+
|
778 |
+
def create_custom_forward(module):
|
779 |
+
def custom_forward(*inputs):
|
780 |
+
return module(*inputs)
|
781 |
+
|
782 |
+
return custom_forward
|
783 |
+
|
784 |
+
# 1. Down
|
785 |
+
for i, down_block in enumerate(self.down_blocks):
|
786 |
+
conv_cache_key = f"down_block_{i}"
|
787 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
788 |
+
create_custom_forward(down_block),
|
789 |
+
hidden_states,
|
790 |
+
temb,
|
791 |
+
None,
|
792 |
+
conv_cache.get(conv_cache_key),
|
793 |
+
)
|
794 |
+
|
795 |
+
# 2. Mid
|
796 |
+
hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint(
|
797 |
+
create_custom_forward(self.mid_block),
|
798 |
+
hidden_states,
|
799 |
+
temb,
|
800 |
+
None,
|
801 |
+
conv_cache.get("mid_block"),
|
802 |
+
)
|
803 |
+
else:
|
804 |
+
# 1. Down
|
805 |
+
for i, down_block in enumerate(self.down_blocks):
|
806 |
+
conv_cache_key = f"down_block_{i}"
|
807 |
+
hidden_states, new_conv_cache[conv_cache_key] = down_block(
|
808 |
+
hidden_states, temb, None, conv_cache.get(conv_cache_key)
|
809 |
+
)
|
810 |
+
|
811 |
+
# 2. Mid
|
812 |
+
hidden_states, new_conv_cache["mid_block"] = self.mid_block(
|
813 |
+
hidden_states, temb, None, conv_cache=conv_cache.get("mid_block")
|
814 |
+
)
|
815 |
+
|
816 |
+
# 3. Post-process
|
817 |
+
hidden_states = self.norm_out(hidden_states)
|
818 |
+
hidden_states = self.conv_act(hidden_states)
|
819 |
+
|
820 |
+
hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))
|
821 |
+
|
822 |
+
return hidden_states, new_conv_cache
|
823 |
+
|
824 |
+
|
825 |
+
class CogVideoXDecoder3D(nn.Module):
|
826 |
+
r"""
|
827 |
+
The `CogVideoXDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
|
828 |
+
sample.
|
829 |
+
|
830 |
+
Args:
|
831 |
+
in_channels (`int`, *optional*, defaults to 3):
|
832 |
+
The number of input channels.
|
833 |
+
out_channels (`int`, *optional*, defaults to 3):
|
834 |
+
The number of output channels.
|
835 |
+
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
836 |
+
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
837 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
838 |
+
The number of output channels for each block.
|
839 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
840 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
841 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
842 |
+
The number of layers per block.
|
843 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
844 |
+
The number of groups for normalization.
|
845 |
+
"""
|
846 |
+
|
847 |
+
_supports_gradient_checkpointing = True
|
848 |
+
|
849 |
+
def __init__(
|
850 |
+
self,
|
851 |
+
in_channels: int = 16,
|
852 |
+
out_channels: int = 3,
|
853 |
+
up_block_types: Tuple[str, ...] = (
|
854 |
+
"CogVideoXUpBlock3D",
|
855 |
+
"CogVideoXUpBlock3D",
|
856 |
+
"CogVideoXUpBlock3D",
|
857 |
+
"CogVideoXUpBlock3D",
|
858 |
+
),
|
859 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 256, 512),
|
860 |
+
layers_per_block: int = 3,
|
861 |
+
act_fn: str = "silu",
|
862 |
+
norm_eps: float = 1e-6,
|
863 |
+
norm_num_groups: int = 32,
|
864 |
+
dropout: float = 0.0,
|
865 |
+
pad_mode: str = "first",
|
866 |
+
temporal_compression_ratio: float = 4,
|
867 |
+
):
|
868 |
+
super().__init__()
|
869 |
+
|
870 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
871 |
+
|
872 |
+
self.conv_in = CogVideoXCausalConv3d(
|
873 |
+
in_channels, reversed_block_out_channels[0], kernel_size=3, pad_mode=pad_mode
|
874 |
+
)
|
875 |
+
|
876 |
+
# mid block
|
877 |
+
self.mid_block = CogVideoXMidBlock3D(
|
878 |
+
in_channels=reversed_block_out_channels[0],
|
879 |
+
temb_channels=0,
|
880 |
+
num_layers=2,
|
881 |
+
resnet_eps=norm_eps,
|
882 |
+
resnet_act_fn=act_fn,
|
883 |
+
resnet_groups=norm_num_groups,
|
884 |
+
spatial_norm_dim=in_channels,
|
885 |
+
pad_mode=pad_mode,
|
886 |
+
)
|
887 |
+
|
888 |
+
# up blocks
|
889 |
+
self.up_blocks = nn.ModuleList([])
|
890 |
+
|
891 |
+
output_channel = reversed_block_out_channels[0]
|
892 |
+
temporal_compress_level = int(np.log2(temporal_compression_ratio))
|
893 |
+
|
894 |
+
for i, up_block_type in enumerate(up_block_types):
|
895 |
+
prev_output_channel = output_channel
|
896 |
+
output_channel = reversed_block_out_channels[i]
|
897 |
+
is_final_block = i == len(block_out_channels) - 1
|
898 |
+
compress_time = i < temporal_compress_level
|
899 |
+
|
900 |
+
if up_block_type == "CogVideoXUpBlock3D":
|
901 |
+
up_block = CogVideoXUpBlock3D(
|
902 |
+
in_channels=prev_output_channel,
|
903 |
+
out_channels=output_channel,
|
904 |
+
temb_channels=0,
|
905 |
+
dropout=dropout,
|
906 |
+
num_layers=layers_per_block + 1,
|
907 |
+
resnet_eps=norm_eps,
|
908 |
+
resnet_act_fn=act_fn,
|
909 |
+
resnet_groups=norm_num_groups,
|
910 |
+
spatial_norm_dim=in_channels,
|
911 |
+
add_upsample=not is_final_block,
|
912 |
+
compress_time=compress_time,
|
913 |
+
pad_mode=pad_mode,
|
914 |
+
)
|
915 |
+
prev_output_channel = output_channel
|
916 |
+
else:
|
917 |
+
raise ValueError("Invalid `up_block_type` encountered. Must be `CogVideoXUpBlock3D`")
|
918 |
+
|
919 |
+
self.up_blocks.append(up_block)
|
920 |
+
|
921 |
+
self.norm_out = CogVideoXSpatialNorm3D(reversed_block_out_channels[-1], in_channels, groups=norm_num_groups)
|
922 |
+
self.conv_act = nn.SiLU()
|
923 |
+
self.conv_out = CogVideoXCausalConv3d(
|
924 |
+
reversed_block_out_channels[-1], out_channels, kernel_size=3, pad_mode=pad_mode
|
925 |
+
)
|
926 |
+
|
927 |
+
self.gradient_checkpointing = False
|
928 |
+
|
929 |
+
def forward(
|
930 |
+
self,
|
931 |
+
sample: torch.Tensor,
|
932 |
+
temb: Optional[torch.Tensor] = None,
|
933 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
934 |
+
) -> torch.Tensor:
|
935 |
+
r"""The forward method of the `CogVideoXDecoder3D` class."""
|
936 |
+
|
937 |
+
new_conv_cache = {}
|
938 |
+
conv_cache = conv_cache or {}
|
939 |
+
|
940 |
+
hidden_states, new_conv_cache["conv_in"] = self.conv_in(sample, conv_cache=conv_cache.get("conv_in"))
|
941 |
+
|
942 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
943 |
+
|
944 |
+
def create_custom_forward(module):
|
945 |
+
def custom_forward(*inputs):
|
946 |
+
return module(*inputs)
|
947 |
+
|
948 |
+
return custom_forward
|
949 |
+
|
950 |
+
# 1. Mid
|
951 |
+
hidden_states, new_conv_cache["mid_block"] = torch.utils.checkpoint.checkpoint(
|
952 |
+
create_custom_forward(self.mid_block),
|
953 |
+
hidden_states,
|
954 |
+
temb,
|
955 |
+
sample,
|
956 |
+
conv_cache.get("mid_block"),
|
957 |
+
)
|
958 |
+
|
959 |
+
# 2. Up
|
960 |
+
for i, up_block in enumerate(self.up_blocks):
|
961 |
+
conv_cache_key = f"up_block_{i}"
|
962 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
963 |
+
create_custom_forward(up_block),
|
964 |
+
hidden_states,
|
965 |
+
temb,
|
966 |
+
sample,
|
967 |
+
conv_cache.get(conv_cache_key),
|
968 |
+
)
|
969 |
+
else:
|
970 |
+
# 1. Mid
|
971 |
+
hidden_states, new_conv_cache["mid_block"] = self.mid_block(
|
972 |
+
hidden_states, temb, sample, conv_cache=conv_cache.get("mid_block")
|
973 |
+
)
|
974 |
+
|
975 |
+
# 2. Up
|
976 |
+
for i, up_block in enumerate(self.up_blocks):
|
977 |
+
conv_cache_key = f"up_block_{i}"
|
978 |
+
hidden_states, new_conv_cache[conv_cache_key] = up_block(
|
979 |
+
hidden_states, temb, sample, conv_cache=conv_cache.get(conv_cache_key)
|
980 |
+
)
|
981 |
+
|
982 |
+
# 3. Post-process
|
983 |
+
hidden_states, new_conv_cache["norm_out"] = self.norm_out(
|
984 |
+
hidden_states, sample, conv_cache=conv_cache.get("norm_out")
|
985 |
+
)
|
986 |
+
hidden_states = self.conv_act(hidden_states)
|
987 |
+
hidden_states, new_conv_cache["conv_out"] = self.conv_out(hidden_states, conv_cache=conv_cache.get("conv_out"))
|
988 |
+
|
989 |
+
return hidden_states, new_conv_cache
|
990 |
+
|
991 |
+
|
992 |
+
class AutoencoderKLCogVideoX(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
993 |
+
r"""
|
994 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
|
995 |
+
[CogVideoX](https://github.com/THUDM/CogVideo).
|
996 |
+
|
997 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
998 |
+
for all models (such as downloading or saving).
|
999 |
+
|
1000 |
+
Parameters:
|
1001 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
1002 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
1003 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
1004 |
+
Tuple of downsample block types.
|
1005 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
1006 |
+
Tuple of upsample block types.
|
1007 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
1008 |
+
Tuple of block output channels.
|
1009 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
1010 |
+
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
1011 |
+
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
|
1012 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
1013 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
1014 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
1015 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
1016 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
1017 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
1018 |
+
force_upcast (`bool`, *optional*, default to `True`):
|
1019 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
1020 |
+
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
1021 |
+
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
1022 |
+
"""
|
1023 |
+
|
1024 |
+
_supports_gradient_checkpointing = True
|
1025 |
+
_no_split_modules = ["CogVideoXResnetBlock3D"]
|
1026 |
+
|
1027 |
+
@register_to_config
|
1028 |
+
def __init__(
|
1029 |
+
self,
|
1030 |
+
in_channels: int = 3,
|
1031 |
+
out_channels: int = 3,
|
1032 |
+
down_block_types: Tuple[str] = (
|
1033 |
+
"CogVideoXDownBlock3D",
|
1034 |
+
"CogVideoXDownBlock3D",
|
1035 |
+
"CogVideoXDownBlock3D",
|
1036 |
+
"CogVideoXDownBlock3D",
|
1037 |
+
),
|
1038 |
+
up_block_types: Tuple[str] = (
|
1039 |
+
"CogVideoXUpBlock3D",
|
1040 |
+
"CogVideoXUpBlock3D",
|
1041 |
+
"CogVideoXUpBlock3D",
|
1042 |
+
"CogVideoXUpBlock3D",
|
1043 |
+
),
|
1044 |
+
block_out_channels: Tuple[int] = (128, 256, 256, 512),
|
1045 |
+
latent_channels: int = 16,
|
1046 |
+
layers_per_block: int = 3,
|
1047 |
+
act_fn: str = "silu",
|
1048 |
+
norm_eps: float = 1e-6,
|
1049 |
+
norm_num_groups: int = 32,
|
1050 |
+
temporal_compression_ratio: float = 4,
|
1051 |
+
sample_height: int = 480,
|
1052 |
+
sample_width: int = 720,
|
1053 |
+
scaling_factor: float = 1.15258426,
|
1054 |
+
shift_factor: Optional[float] = None,
|
1055 |
+
latents_mean: Optional[Tuple[float]] = None,
|
1056 |
+
latents_std: Optional[Tuple[float]] = None,
|
1057 |
+
force_upcast: float = True,
|
1058 |
+
use_quant_conv: bool = False,
|
1059 |
+
use_post_quant_conv: bool = False,
|
1060 |
+
invert_scale_latents: bool = False,
|
1061 |
+
):
|
1062 |
+
super().__init__()
|
1063 |
+
|
1064 |
+
self.encoder = CogVideoXEncoder3D(
|
1065 |
+
in_channels=in_channels,
|
1066 |
+
out_channels=latent_channels,
|
1067 |
+
down_block_types=down_block_types,
|
1068 |
+
block_out_channels=block_out_channels,
|
1069 |
+
layers_per_block=layers_per_block,
|
1070 |
+
act_fn=act_fn,
|
1071 |
+
norm_eps=norm_eps,
|
1072 |
+
norm_num_groups=norm_num_groups,
|
1073 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
1074 |
+
)
|
1075 |
+
self.decoder = CogVideoXDecoder3D(
|
1076 |
+
in_channels=latent_channels,
|
1077 |
+
out_channels=out_channels,
|
1078 |
+
up_block_types=up_block_types,
|
1079 |
+
block_out_channels=block_out_channels,
|
1080 |
+
layers_per_block=layers_per_block,
|
1081 |
+
act_fn=act_fn,
|
1082 |
+
norm_eps=norm_eps,
|
1083 |
+
norm_num_groups=norm_num_groups,
|
1084 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
1085 |
+
)
|
1086 |
+
self.quant_conv = CogVideoXSafeConv3d(2 * out_channels, 2 * out_channels, 1) if use_quant_conv else None
|
1087 |
+
self.post_quant_conv = CogVideoXSafeConv3d(out_channels, out_channels, 1) if use_post_quant_conv else None
|
1088 |
+
|
1089 |
+
self.use_slicing = False
|
1090 |
+
self.use_tiling = False
|
1091 |
+
|
1092 |
+
# Can be increased to decode more latent frames at once, but comes at a reasonable memory cost and it is not
|
1093 |
+
# recommended because the temporal parts of the VAE, here, are tricky to understand.
|
1094 |
+
# If you decode X latent frames together, the number of output frames is:
|
1095 |
+
# (X + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) => X + 6 frames
|
1096 |
+
#
|
1097 |
+
# Example with num_latent_frames_batch_size = 2:
|
1098 |
+
# - 12 latent frames: (0, 1), (2, 3), (4, 5), (6, 7), (8, 9), (10, 11) are processed together
|
1099 |
+
# => (12 // 2 frame slices) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
|
1100 |
+
# => 6 * 8 = 48 frames
|
1101 |
+
# - 13 latent frames: (0, 1, 2) (special case), (3, 4), (5, 6), (7, 8), (9, 10), (11, 12) are processed together
|
1102 |
+
# => (1 frame slice) * ((3 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale)) +
|
1103 |
+
# ((13 - 3) // 2) * ((2 num_latent_frames_batch_size) + (2 conv cache) + (2 time upscale_1) + (4 time upscale_2) - (2 causal conv downscale))
|
1104 |
+
# => 1 * 9 + 5 * 8 = 49 frames
|
1105 |
+
# It has been implemented this way so as to not have "magic values" in the code base that would be hard to explain. Note that
|
1106 |
+
# setting it to anything other than 2 would give poor results because the VAE hasn't been trained to be adaptive with different
|
1107 |
+
# number of temporal frames.
|
1108 |
+
self.num_latent_frames_batch_size = 2
|
1109 |
+
self.num_sample_frames_batch_size = 8
|
1110 |
+
|
1111 |
+
# We make the minimum height and width of sample for tiling half that of the generally supported
|
1112 |
+
self.tile_sample_min_height = sample_height // 2
|
1113 |
+
self.tile_sample_min_width = sample_width // 2
|
1114 |
+
self.tile_latent_min_height = int(
|
1115 |
+
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
|
1116 |
+
)
|
1117 |
+
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
|
1118 |
+
|
1119 |
+
# These are experimental overlap factors that were chosen based on experimentation and seem to work best for
|
1120 |
+
# 720x480 (WxH) resolution. The above resolution is the strongly recommended generation resolution in CogVideoX
|
1121 |
+
# and so the tiling implementation has only been tested on those specific resolutions.
|
1122 |
+
self.tile_overlap_factor_height = 1 / 6
|
1123 |
+
self.tile_overlap_factor_width = 1 / 5
|
1124 |
+
|
1125 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1126 |
+
if isinstance(module, (CogVideoXEncoder3D, CogVideoXDecoder3D)):
|
1127 |
+
module.gradient_checkpointing = value
|
1128 |
+
|
1129 |
+
def enable_tiling(
|
1130 |
+
self,
|
1131 |
+
tile_sample_min_height: Optional[int] = None,
|
1132 |
+
tile_sample_min_width: Optional[int] = None,
|
1133 |
+
tile_overlap_factor_height: Optional[float] = None,
|
1134 |
+
tile_overlap_factor_width: Optional[float] = None,
|
1135 |
+
) -> None:
|
1136 |
+
r"""
|
1137 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
1138 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
1139 |
+
processing larger images.
|
1140 |
+
|
1141 |
+
Args:
|
1142 |
+
tile_sample_min_height (`int`, *optional*):
|
1143 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
1144 |
+
tile_sample_min_width (`int`, *optional*):
|
1145 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
1146 |
+
tile_overlap_factor_height (`int`, *optional*):
|
1147 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
1148 |
+
no tiling artifacts produced across the height dimension. Must be between 0 and 1. Setting a higher
|
1149 |
+
value might cause more tiles to be processed leading to slow down of the decoding process.
|
1150 |
+
tile_overlap_factor_width (`int`, *optional*):
|
1151 |
+
The minimum amount of overlap between two consecutive horizontal tiles. This is to ensure that there
|
1152 |
+
are no tiling artifacts produced across the width dimension. Must be between 0 and 1. Setting a higher
|
1153 |
+
value might cause more tiles to be processed leading to slow down of the decoding process.
|
1154 |
+
"""
|
1155 |
+
self.use_tiling = True
|
1156 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
1157 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
1158 |
+
self.tile_latent_min_height = int(
|
1159 |
+
self.tile_sample_min_height / (2 ** (len(self.config.block_out_channels) - 1))
|
1160 |
+
)
|
1161 |
+
self.tile_latent_min_width = int(self.tile_sample_min_width / (2 ** (len(self.config.block_out_channels) - 1)))
|
1162 |
+
self.tile_overlap_factor_height = tile_overlap_factor_height or self.tile_overlap_factor_height
|
1163 |
+
self.tile_overlap_factor_width = tile_overlap_factor_width or self.tile_overlap_factor_width
|
1164 |
+
|
1165 |
+
def disable_tiling(self) -> None:
|
1166 |
+
r"""
|
1167 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
1168 |
+
decoding in one step.
|
1169 |
+
"""
|
1170 |
+
self.use_tiling = False
|
1171 |
+
|
1172 |
+
def enable_slicing(self) -> None:
|
1173 |
+
r"""
|
1174 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
1175 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
1176 |
+
"""
|
1177 |
+
self.use_slicing = True
|
1178 |
+
|
1179 |
+
def disable_slicing(self) -> None:
|
1180 |
+
r"""
|
1181 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
1182 |
+
decoding in one step.
|
1183 |
+
"""
|
1184 |
+
self.use_slicing = False
|
1185 |
+
|
1186 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
1187 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
1188 |
+
|
1189 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
1190 |
+
return self.tiled_encode(x)
|
1191 |
+
|
1192 |
+
frame_batch_size = self.num_sample_frames_batch_size
|
1193 |
+
# Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
|
1194 |
+
# As the extra single frame is handled inside the loop, it is not required to round up here.
|
1195 |
+
num_batches = max(num_frames // frame_batch_size, 1)
|
1196 |
+
conv_cache = None
|
1197 |
+
enc = []
|
1198 |
+
|
1199 |
+
for i in range(num_batches):
|
1200 |
+
remaining_frames = num_frames % frame_batch_size
|
1201 |
+
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
|
1202 |
+
end_frame = frame_batch_size * (i + 1) + remaining_frames
|
1203 |
+
x_intermediate = x[:, :, start_frame:end_frame]
|
1204 |
+
x_intermediate, conv_cache = self.encoder(x_intermediate, conv_cache=conv_cache)
|
1205 |
+
if self.quant_conv is not None:
|
1206 |
+
x_intermediate = self.quant_conv(x_intermediate)
|
1207 |
+
enc.append(x_intermediate)
|
1208 |
+
|
1209 |
+
enc = torch.cat(enc, dim=2)
|
1210 |
+
return enc
|
1211 |
+
|
1212 |
+
@apply_forward_hook
|
1213 |
+
def encode(
|
1214 |
+
self, x: torch.Tensor, return_dict: bool = True
|
1215 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
1216 |
+
"""
|
1217 |
+
Encode a batch of images into latents.
|
1218 |
+
|
1219 |
+
Args:
|
1220 |
+
x (`torch.Tensor`): Input batch of images.
|
1221 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1222 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
1223 |
+
|
1224 |
+
Returns:
|
1225 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
1226 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
1227 |
+
"""
|
1228 |
+
if self.use_slicing and x.shape[0] > 1:
|
1229 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
1230 |
+
h = torch.cat(encoded_slices)
|
1231 |
+
else:
|
1232 |
+
h = self._encode(x)
|
1233 |
+
|
1234 |
+
posterior = DiagonalGaussianDistribution(h)
|
1235 |
+
|
1236 |
+
if not return_dict:
|
1237 |
+
return (posterior,)
|
1238 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
1239 |
+
|
1240 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1241 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1242 |
+
|
1243 |
+
if self.use_tiling and (width > self.tile_latent_min_width or height > self.tile_latent_min_height):
|
1244 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
1245 |
+
|
1246 |
+
frame_batch_size = self.num_latent_frames_batch_size
|
1247 |
+
num_batches = max(num_frames // frame_batch_size, 1)
|
1248 |
+
conv_cache = None
|
1249 |
+
dec = []
|
1250 |
+
|
1251 |
+
for i in range(num_batches):
|
1252 |
+
remaining_frames = num_frames % frame_batch_size
|
1253 |
+
start_frame = frame_batch_size * i + (0 if i == 0 else remaining_frames)
|
1254 |
+
end_frame = frame_batch_size * (i + 1) + remaining_frames
|
1255 |
+
z_intermediate = z[:, :, start_frame:end_frame]
|
1256 |
+
if self.post_quant_conv is not None:
|
1257 |
+
z_intermediate = self.post_quant_conv(z_intermediate)
|
1258 |
+
z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache)
|
1259 |
+
dec.append(z_intermediate)
|
1260 |
+
|
1261 |
+
dec = torch.cat(dec, dim=2)
|
1262 |
+
|
1263 |
+
if not return_dict:
|
1264 |
+
return (dec,)
|
1265 |
+
|
1266 |
+
return DecoderOutput(sample=dec)
|
1267 |
+
|
1268 |
+
@apply_forward_hook
|
1269 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1270 |
+
"""
|
1271 |
+
Decode a batch of images.
|
1272 |
+
|
1273 |
+
Args:
|
1274 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
1275 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1276 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
1277 |
+
|
1278 |
+
Returns:
|
1279 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
1280 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
1281 |
+
returned.
|
1282 |
+
"""
|
1283 |
+
if self.use_slicing and z.shape[0] > 1:
|
1284 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
1285 |
+
decoded = torch.cat(decoded_slices)
|
1286 |
+
else:
|
1287 |
+
decoded = self._decode(z).sample
|
1288 |
+
|
1289 |
+
if not return_dict:
|
1290 |
+
return (decoded,)
|
1291 |
+
return DecoderOutput(sample=decoded)
|
1292 |
+
|
1293 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
1294 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
1295 |
+
for y in range(blend_extent):
|
1296 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
1297 |
+
y / blend_extent
|
1298 |
+
)
|
1299 |
+
return b
|
1300 |
+
|
1301 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
1302 |
+
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
1303 |
+
for x in range(blend_extent):
|
1304 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
1305 |
+
x / blend_extent
|
1306 |
+
)
|
1307 |
+
return b
|
1308 |
+
|
1309 |
+
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
1310 |
+
r"""Encode a batch of images using a tiled encoder.
|
1311 |
+
|
1312 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
1313 |
+
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
1314 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
1315 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
1316 |
+
output, but they should be much less noticeable.
|
1317 |
+
|
1318 |
+
Args:
|
1319 |
+
x (`torch.Tensor`): Input batch of videos.
|
1320 |
+
|
1321 |
+
Returns:
|
1322 |
+
`torch.Tensor`:
|
1323 |
+
The latent representation of the encoded videos.
|
1324 |
+
"""
|
1325 |
+
# For a rough memory estimate, take a look at the `tiled_decode` method.
|
1326 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
1327 |
+
|
1328 |
+
overlap_height = int(self.tile_sample_min_height * (1 - self.tile_overlap_factor_height))
|
1329 |
+
overlap_width = int(self.tile_sample_min_width * (1 - self.tile_overlap_factor_width))
|
1330 |
+
blend_extent_height = int(self.tile_latent_min_height * self.tile_overlap_factor_height)
|
1331 |
+
blend_extent_width = int(self.tile_latent_min_width * self.tile_overlap_factor_width)
|
1332 |
+
row_limit_height = self.tile_latent_min_height - blend_extent_height
|
1333 |
+
row_limit_width = self.tile_latent_min_width - blend_extent_width
|
1334 |
+
frame_batch_size = self.num_sample_frames_batch_size
|
1335 |
+
|
1336 |
+
# Split x into overlapping tiles and encode them separately.
|
1337 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1338 |
+
rows = []
|
1339 |
+
for i in range(0, height, overlap_height):
|
1340 |
+
row = []
|
1341 |
+
for j in range(0, width, overlap_width):
|
1342 |
+
# Note: We expect the number of frames to be either `1` or `frame_batch_size * k` or `frame_batch_size * k + 1` for some k.
|
1343 |
+
# As the extra single frame is handled inside the loop, it is not required to round up here.
|
1344 |
+
num_batches = max(num_frames // frame_batch_size, 1)
|
1345 |
+
conv_cache = None
|
1346 |
+
time = []
|
1347 |
+
|
1348 |
+
for k in range(num_batches):
|
1349 |
+
remaining_frames = num_frames % frame_batch_size
|
1350 |
+
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
|
1351 |
+
end_frame = frame_batch_size * (k + 1) + remaining_frames
|
1352 |
+
tile = x[
|
1353 |
+
:,
|
1354 |
+
:,
|
1355 |
+
start_frame:end_frame,
|
1356 |
+
i : i + self.tile_sample_min_height,
|
1357 |
+
j : j + self.tile_sample_min_width,
|
1358 |
+
]
|
1359 |
+
tile, conv_cache = self.encoder(tile, conv_cache=conv_cache)
|
1360 |
+
if self.quant_conv is not None:
|
1361 |
+
tile = self.quant_conv(tile)
|
1362 |
+
time.append(tile)
|
1363 |
+
|
1364 |
+
row.append(torch.cat(time, dim=2))
|
1365 |
+
rows.append(row)
|
1366 |
+
|
1367 |
+
result_rows = []
|
1368 |
+
for i, row in enumerate(rows):
|
1369 |
+
result_row = []
|
1370 |
+
for j, tile in enumerate(row):
|
1371 |
+
# blend the above tile and the left tile
|
1372 |
+
# to the current tile and add the current tile to the result row
|
1373 |
+
if i > 0:
|
1374 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
|
1375 |
+
if j > 0:
|
1376 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
|
1377 |
+
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
|
1378 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
1379 |
+
|
1380 |
+
enc = torch.cat(result_rows, dim=3)
|
1381 |
+
return enc
|
1382 |
+
|
1383 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1384 |
+
r"""
|
1385 |
+
Decode a batch of images using a tiled decoder.
|
1386 |
+
|
1387 |
+
Args:
|
1388 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
1389 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1390 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
1391 |
+
|
1392 |
+
Returns:
|
1393 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
1394 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
1395 |
+
returned.
|
1396 |
+
"""
|
1397 |
+
# Rough memory assessment:
|
1398 |
+
# - In CogVideoX-2B, there are a total of 24 CausalConv3d layers.
|
1399 |
+
# - The biggest intermediate dimensions are: [1, 128, 9, 480, 720].
|
1400 |
+
# - Assume fp16 (2 bytes per value).
|
1401 |
+
# Memory required: 1 * 128 * 9 * 480 * 720 * 24 * 2 / 1024**3 = 17.8 GB
|
1402 |
+
#
|
1403 |
+
# Memory assessment when using tiling:
|
1404 |
+
# - Assume everything as above but now HxW is 240x360 by tiling in half
|
1405 |
+
# Memory required: 1 * 128 * 9 * 240 * 360 * 24 * 2 / 1024**3 = 4.5 GB
|
1406 |
+
|
1407 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1408 |
+
|
1409 |
+
overlap_height = int(self.tile_latent_min_height * (1 - self.tile_overlap_factor_height))
|
1410 |
+
overlap_width = int(self.tile_latent_min_width * (1 - self.tile_overlap_factor_width))
|
1411 |
+
blend_extent_height = int(self.tile_sample_min_height * self.tile_overlap_factor_height)
|
1412 |
+
blend_extent_width = int(self.tile_sample_min_width * self.tile_overlap_factor_width)
|
1413 |
+
row_limit_height = self.tile_sample_min_height - blend_extent_height
|
1414 |
+
row_limit_width = self.tile_sample_min_width - blend_extent_width
|
1415 |
+
frame_batch_size = self.num_latent_frames_batch_size
|
1416 |
+
|
1417 |
+
# Split z into overlapping tiles and decode them separately.
|
1418 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1419 |
+
rows = []
|
1420 |
+
for i in range(0, height, overlap_height):
|
1421 |
+
row = []
|
1422 |
+
for j in range(0, width, overlap_width):
|
1423 |
+
num_batches = max(num_frames // frame_batch_size, 1)
|
1424 |
+
conv_cache = None
|
1425 |
+
time = []
|
1426 |
+
|
1427 |
+
for k in range(num_batches):
|
1428 |
+
remaining_frames = num_frames % frame_batch_size
|
1429 |
+
start_frame = frame_batch_size * k + (0 if k == 0 else remaining_frames)
|
1430 |
+
end_frame = frame_batch_size * (k + 1) + remaining_frames
|
1431 |
+
tile = z[
|
1432 |
+
:,
|
1433 |
+
:,
|
1434 |
+
start_frame:end_frame,
|
1435 |
+
i : i + self.tile_latent_min_height,
|
1436 |
+
j : j + self.tile_latent_min_width,
|
1437 |
+
]
|
1438 |
+
if self.post_quant_conv is not None:
|
1439 |
+
tile = self.post_quant_conv(tile)
|
1440 |
+
tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
|
1441 |
+
time.append(tile)
|
1442 |
+
|
1443 |
+
row.append(torch.cat(time, dim=2))
|
1444 |
+
rows.append(row)
|
1445 |
+
|
1446 |
+
result_rows = []
|
1447 |
+
for i, row in enumerate(rows):
|
1448 |
+
result_row = []
|
1449 |
+
for j, tile in enumerate(row):
|
1450 |
+
# blend the above tile and the left tile
|
1451 |
+
# to the current tile and add the current tile to the result row
|
1452 |
+
if i > 0:
|
1453 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent_height)
|
1454 |
+
if j > 0:
|
1455 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent_width)
|
1456 |
+
result_row.append(tile[:, :, :, :row_limit_height, :row_limit_width])
|
1457 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
1458 |
+
|
1459 |
+
dec = torch.cat(result_rows, dim=3)
|
1460 |
+
|
1461 |
+
if not return_dict:
|
1462 |
+
return (dec,)
|
1463 |
+
|
1464 |
+
return DecoderOutput(sample=dec)
|
1465 |
+
|
1466 |
+
def forward(
|
1467 |
+
self,
|
1468 |
+
sample: torch.Tensor,
|
1469 |
+
sample_posterior: bool = False,
|
1470 |
+
return_dict: bool = True,
|
1471 |
+
generator: Optional[torch.Generator] = None,
|
1472 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
1473 |
+
x = sample
|
1474 |
+
posterior = self.encode(x).latent_dist
|
1475 |
+
if sample_posterior:
|
1476 |
+
z = posterior.sample(generator=generator)
|
1477 |
+
else:
|
1478 |
+
z = posterior.mode()
|
1479 |
+
dec = self.decode(z).sample
|
1480 |
+
if not return_dict:
|
1481 |
+
return (dec,)
|
1482 |
+
return DecoderOutput(sample=dec)
|
icedit/diffusers/models/autoencoders/autoencoder_kl_hunyuan_video.py
ADDED
@@ -0,0 +1,1176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
import torch.nn.functional as F
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
|
23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
24 |
+
from ...utils import is_torch_version, logging
|
25 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
26 |
+
from ..activations import get_activation
|
27 |
+
from ..attention_processor import Attention
|
28 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
29 |
+
from ..modeling_utils import ModelMixin
|
30 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34 |
+
|
35 |
+
|
36 |
+
def prepare_causal_attention_mask(
|
37 |
+
num_frames: int, height_width: int, dtype: torch.dtype, device: torch.device, batch_size: int = None
|
38 |
+
) -> torch.Tensor:
|
39 |
+
seq_len = num_frames * height_width
|
40 |
+
mask = torch.full((seq_len, seq_len), float("-inf"), dtype=dtype, device=device)
|
41 |
+
for i in range(seq_len):
|
42 |
+
i_frame = i // height_width
|
43 |
+
mask[i, : (i_frame + 1) * height_width] = 0
|
44 |
+
if batch_size is not None:
|
45 |
+
mask = mask.unsqueeze(0).expand(batch_size, -1, -1)
|
46 |
+
return mask
|
47 |
+
|
48 |
+
|
49 |
+
class HunyuanVideoCausalConv3d(nn.Module):
|
50 |
+
def __init__(
|
51 |
+
self,
|
52 |
+
in_channels: int,
|
53 |
+
out_channels: int,
|
54 |
+
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
55 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
56 |
+
padding: Union[int, Tuple[int, int, int]] = 0,
|
57 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
58 |
+
bias: bool = True,
|
59 |
+
pad_mode: str = "replicate",
|
60 |
+
) -> None:
|
61 |
+
super().__init__()
|
62 |
+
|
63 |
+
kernel_size = (kernel_size, kernel_size, kernel_size) if isinstance(kernel_size, int) else kernel_size
|
64 |
+
|
65 |
+
self.pad_mode = pad_mode
|
66 |
+
self.time_causal_padding = (
|
67 |
+
kernel_size[0] // 2,
|
68 |
+
kernel_size[0] // 2,
|
69 |
+
kernel_size[1] // 2,
|
70 |
+
kernel_size[1] // 2,
|
71 |
+
kernel_size[2] - 1,
|
72 |
+
0,
|
73 |
+
)
|
74 |
+
|
75 |
+
self.conv = nn.Conv3d(in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias)
|
76 |
+
|
77 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
78 |
+
hidden_states = F.pad(hidden_states, self.time_causal_padding, mode=self.pad_mode)
|
79 |
+
return self.conv(hidden_states)
|
80 |
+
|
81 |
+
|
82 |
+
class HunyuanVideoUpsampleCausal3D(nn.Module):
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
in_channels: int,
|
86 |
+
out_channels: Optional[int] = None,
|
87 |
+
kernel_size: int = 3,
|
88 |
+
stride: int = 1,
|
89 |
+
bias: bool = True,
|
90 |
+
upsample_factor: Tuple[float, float, float] = (2, 2, 2),
|
91 |
+
) -> None:
|
92 |
+
super().__init__()
|
93 |
+
|
94 |
+
out_channels = out_channels or in_channels
|
95 |
+
self.upsample_factor = upsample_factor
|
96 |
+
|
97 |
+
self.conv = HunyuanVideoCausalConv3d(in_channels, out_channels, kernel_size, stride, bias=bias)
|
98 |
+
|
99 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
100 |
+
num_frames = hidden_states.size(2)
|
101 |
+
|
102 |
+
first_frame, other_frames = hidden_states.split((1, num_frames - 1), dim=2)
|
103 |
+
first_frame = F.interpolate(
|
104 |
+
first_frame.squeeze(2), scale_factor=self.upsample_factor[1:], mode="nearest"
|
105 |
+
).unsqueeze(2)
|
106 |
+
|
107 |
+
if num_frames > 1:
|
108 |
+
# See: https://github.com/pytorch/pytorch/issues/81665
|
109 |
+
# Unless you have a version of pytorch where non-contiguous implementation of F.interpolate
|
110 |
+
# is fixed, this will raise either a runtime error, or fail silently with bad outputs.
|
111 |
+
# If you are encountering an error here, make sure to try running encoding/decoding with
|
112 |
+
# `vae.enable_tiling()` first. If that doesn't work, open an issue at:
|
113 |
+
# https://github.com/huggingface/diffusers/issues
|
114 |
+
other_frames = other_frames.contiguous()
|
115 |
+
other_frames = F.interpolate(other_frames, scale_factor=self.upsample_factor, mode="nearest")
|
116 |
+
hidden_states = torch.cat((first_frame, other_frames), dim=2)
|
117 |
+
else:
|
118 |
+
hidden_states = first_frame
|
119 |
+
|
120 |
+
hidden_states = self.conv(hidden_states)
|
121 |
+
return hidden_states
|
122 |
+
|
123 |
+
|
124 |
+
class HunyuanVideoDownsampleCausal3D(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
channels: int,
|
128 |
+
out_channels: Optional[int] = None,
|
129 |
+
padding: int = 1,
|
130 |
+
kernel_size: int = 3,
|
131 |
+
bias: bool = True,
|
132 |
+
stride=2,
|
133 |
+
) -> None:
|
134 |
+
super().__init__()
|
135 |
+
out_channels = out_channels or channels
|
136 |
+
|
137 |
+
self.conv = HunyuanVideoCausalConv3d(channels, out_channels, kernel_size, stride, padding, bias=bias)
|
138 |
+
|
139 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
140 |
+
hidden_states = self.conv(hidden_states)
|
141 |
+
return hidden_states
|
142 |
+
|
143 |
+
|
144 |
+
class HunyuanVideoResnetBlockCausal3D(nn.Module):
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
in_channels: int,
|
148 |
+
out_channels: Optional[int] = None,
|
149 |
+
dropout: float = 0.0,
|
150 |
+
groups: int = 32,
|
151 |
+
eps: float = 1e-6,
|
152 |
+
non_linearity: str = "swish",
|
153 |
+
) -> None:
|
154 |
+
super().__init__()
|
155 |
+
out_channels = out_channels or in_channels
|
156 |
+
|
157 |
+
self.nonlinearity = get_activation(non_linearity)
|
158 |
+
|
159 |
+
self.norm1 = nn.GroupNorm(groups, in_channels, eps=eps, affine=True)
|
160 |
+
self.conv1 = HunyuanVideoCausalConv3d(in_channels, out_channels, 3, 1, 0)
|
161 |
+
|
162 |
+
self.norm2 = nn.GroupNorm(groups, out_channels, eps=eps, affine=True)
|
163 |
+
self.dropout = nn.Dropout(dropout)
|
164 |
+
self.conv2 = HunyuanVideoCausalConv3d(out_channels, out_channels, 3, 1, 0)
|
165 |
+
|
166 |
+
self.conv_shortcut = None
|
167 |
+
if in_channels != out_channels:
|
168 |
+
self.conv_shortcut = HunyuanVideoCausalConv3d(in_channels, out_channels, 1, 1, 0)
|
169 |
+
|
170 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
171 |
+
hidden_states = hidden_states.contiguous()
|
172 |
+
residual = hidden_states
|
173 |
+
|
174 |
+
hidden_states = self.norm1(hidden_states)
|
175 |
+
hidden_states = self.nonlinearity(hidden_states)
|
176 |
+
hidden_states = self.conv1(hidden_states)
|
177 |
+
|
178 |
+
hidden_states = self.norm2(hidden_states)
|
179 |
+
hidden_states = self.nonlinearity(hidden_states)
|
180 |
+
hidden_states = self.dropout(hidden_states)
|
181 |
+
hidden_states = self.conv2(hidden_states)
|
182 |
+
|
183 |
+
if self.conv_shortcut is not None:
|
184 |
+
residual = self.conv_shortcut(residual)
|
185 |
+
|
186 |
+
hidden_states = hidden_states + residual
|
187 |
+
return hidden_states
|
188 |
+
|
189 |
+
|
190 |
+
class HunyuanVideoMidBlock3D(nn.Module):
|
191 |
+
def __init__(
|
192 |
+
self,
|
193 |
+
in_channels: int,
|
194 |
+
dropout: float = 0.0,
|
195 |
+
num_layers: int = 1,
|
196 |
+
resnet_eps: float = 1e-6,
|
197 |
+
resnet_act_fn: str = "swish",
|
198 |
+
resnet_groups: int = 32,
|
199 |
+
add_attention: bool = True,
|
200 |
+
attention_head_dim: int = 1,
|
201 |
+
) -> None:
|
202 |
+
super().__init__()
|
203 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
204 |
+
self.add_attention = add_attention
|
205 |
+
|
206 |
+
# There is always at least one resnet
|
207 |
+
resnets = [
|
208 |
+
HunyuanVideoResnetBlockCausal3D(
|
209 |
+
in_channels=in_channels,
|
210 |
+
out_channels=in_channels,
|
211 |
+
eps=resnet_eps,
|
212 |
+
groups=resnet_groups,
|
213 |
+
dropout=dropout,
|
214 |
+
non_linearity=resnet_act_fn,
|
215 |
+
)
|
216 |
+
]
|
217 |
+
attentions = []
|
218 |
+
|
219 |
+
for _ in range(num_layers):
|
220 |
+
if self.add_attention:
|
221 |
+
attentions.append(
|
222 |
+
Attention(
|
223 |
+
in_channels,
|
224 |
+
heads=in_channels // attention_head_dim,
|
225 |
+
dim_head=attention_head_dim,
|
226 |
+
eps=resnet_eps,
|
227 |
+
norm_num_groups=resnet_groups,
|
228 |
+
residual_connection=True,
|
229 |
+
bias=True,
|
230 |
+
upcast_softmax=True,
|
231 |
+
_from_deprecated_attn_block=True,
|
232 |
+
)
|
233 |
+
)
|
234 |
+
else:
|
235 |
+
attentions.append(None)
|
236 |
+
|
237 |
+
resnets.append(
|
238 |
+
HunyuanVideoResnetBlockCausal3D(
|
239 |
+
in_channels=in_channels,
|
240 |
+
out_channels=in_channels,
|
241 |
+
eps=resnet_eps,
|
242 |
+
groups=resnet_groups,
|
243 |
+
dropout=dropout,
|
244 |
+
non_linearity=resnet_act_fn,
|
245 |
+
)
|
246 |
+
)
|
247 |
+
|
248 |
+
self.attentions = nn.ModuleList(attentions)
|
249 |
+
self.resnets = nn.ModuleList(resnets)
|
250 |
+
|
251 |
+
self.gradient_checkpointing = False
|
252 |
+
|
253 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
254 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
255 |
+
|
256 |
+
def create_custom_forward(module, return_dict=None):
|
257 |
+
def custom_forward(*inputs):
|
258 |
+
if return_dict is not None:
|
259 |
+
return module(*inputs, return_dict=return_dict)
|
260 |
+
else:
|
261 |
+
return module(*inputs)
|
262 |
+
|
263 |
+
return custom_forward
|
264 |
+
|
265 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
266 |
+
|
267 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
268 |
+
create_custom_forward(self.resnets[0]), hidden_states, **ckpt_kwargs
|
269 |
+
)
|
270 |
+
|
271 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
272 |
+
if attn is not None:
|
273 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
274 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
|
275 |
+
attention_mask = prepare_causal_attention_mask(
|
276 |
+
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
|
277 |
+
)
|
278 |
+
hidden_states = attn(hidden_states, attention_mask=attention_mask)
|
279 |
+
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
|
280 |
+
|
281 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
282 |
+
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
|
283 |
+
)
|
284 |
+
|
285 |
+
else:
|
286 |
+
hidden_states = self.resnets[0](hidden_states)
|
287 |
+
|
288 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
289 |
+
if attn is not None:
|
290 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
291 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1).flatten(1, 3)
|
292 |
+
attention_mask = prepare_causal_attention_mask(
|
293 |
+
num_frames, height * width, hidden_states.dtype, hidden_states.device, batch_size=batch_size
|
294 |
+
)
|
295 |
+
hidden_states = attn(hidden_states, attention_mask=attention_mask)
|
296 |
+
hidden_states = hidden_states.unflatten(1, (num_frames, height, width)).permute(0, 4, 1, 2, 3)
|
297 |
+
|
298 |
+
hidden_states = resnet(hidden_states)
|
299 |
+
|
300 |
+
return hidden_states
|
301 |
+
|
302 |
+
|
303 |
+
class HunyuanVideoDownBlock3D(nn.Module):
|
304 |
+
def __init__(
|
305 |
+
self,
|
306 |
+
in_channels: int,
|
307 |
+
out_channels: int,
|
308 |
+
dropout: float = 0.0,
|
309 |
+
num_layers: int = 1,
|
310 |
+
resnet_eps: float = 1e-6,
|
311 |
+
resnet_act_fn: str = "swish",
|
312 |
+
resnet_groups: int = 32,
|
313 |
+
add_downsample: bool = True,
|
314 |
+
downsample_stride: int = 2,
|
315 |
+
downsample_padding: int = 1,
|
316 |
+
) -> None:
|
317 |
+
super().__init__()
|
318 |
+
resnets = []
|
319 |
+
|
320 |
+
for i in range(num_layers):
|
321 |
+
in_channels = in_channels if i == 0 else out_channels
|
322 |
+
resnets.append(
|
323 |
+
HunyuanVideoResnetBlockCausal3D(
|
324 |
+
in_channels=in_channels,
|
325 |
+
out_channels=out_channels,
|
326 |
+
eps=resnet_eps,
|
327 |
+
groups=resnet_groups,
|
328 |
+
dropout=dropout,
|
329 |
+
non_linearity=resnet_act_fn,
|
330 |
+
)
|
331 |
+
)
|
332 |
+
|
333 |
+
self.resnets = nn.ModuleList(resnets)
|
334 |
+
|
335 |
+
if add_downsample:
|
336 |
+
self.downsamplers = nn.ModuleList(
|
337 |
+
[
|
338 |
+
HunyuanVideoDownsampleCausal3D(
|
339 |
+
out_channels,
|
340 |
+
out_channels=out_channels,
|
341 |
+
padding=downsample_padding,
|
342 |
+
stride=downsample_stride,
|
343 |
+
)
|
344 |
+
]
|
345 |
+
)
|
346 |
+
else:
|
347 |
+
self.downsamplers = None
|
348 |
+
|
349 |
+
self.gradient_checkpointing = False
|
350 |
+
|
351 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
352 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
353 |
+
|
354 |
+
def create_custom_forward(module, return_dict=None):
|
355 |
+
def custom_forward(*inputs):
|
356 |
+
if return_dict is not None:
|
357 |
+
return module(*inputs, return_dict=return_dict)
|
358 |
+
else:
|
359 |
+
return module(*inputs)
|
360 |
+
|
361 |
+
return custom_forward
|
362 |
+
|
363 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
364 |
+
|
365 |
+
for resnet in self.resnets:
|
366 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
367 |
+
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
for resnet in self.resnets:
|
371 |
+
hidden_states = resnet(hidden_states)
|
372 |
+
|
373 |
+
if self.downsamplers is not None:
|
374 |
+
for downsampler in self.downsamplers:
|
375 |
+
hidden_states = downsampler(hidden_states)
|
376 |
+
|
377 |
+
return hidden_states
|
378 |
+
|
379 |
+
|
380 |
+
class HunyuanVideoUpBlock3D(nn.Module):
|
381 |
+
def __init__(
|
382 |
+
self,
|
383 |
+
in_channels: int,
|
384 |
+
out_channels: int,
|
385 |
+
dropout: float = 0.0,
|
386 |
+
num_layers: int = 1,
|
387 |
+
resnet_eps: float = 1e-6,
|
388 |
+
resnet_act_fn: str = "swish",
|
389 |
+
resnet_groups: int = 32,
|
390 |
+
add_upsample: bool = True,
|
391 |
+
upsample_scale_factor: Tuple[int, int, int] = (2, 2, 2),
|
392 |
+
) -> None:
|
393 |
+
super().__init__()
|
394 |
+
resnets = []
|
395 |
+
|
396 |
+
for i in range(num_layers):
|
397 |
+
input_channels = in_channels if i == 0 else out_channels
|
398 |
+
|
399 |
+
resnets.append(
|
400 |
+
HunyuanVideoResnetBlockCausal3D(
|
401 |
+
in_channels=input_channels,
|
402 |
+
out_channels=out_channels,
|
403 |
+
eps=resnet_eps,
|
404 |
+
groups=resnet_groups,
|
405 |
+
dropout=dropout,
|
406 |
+
non_linearity=resnet_act_fn,
|
407 |
+
)
|
408 |
+
)
|
409 |
+
|
410 |
+
self.resnets = nn.ModuleList(resnets)
|
411 |
+
|
412 |
+
if add_upsample:
|
413 |
+
self.upsamplers = nn.ModuleList(
|
414 |
+
[
|
415 |
+
HunyuanVideoUpsampleCausal3D(
|
416 |
+
out_channels,
|
417 |
+
out_channels=out_channels,
|
418 |
+
upsample_factor=upsample_scale_factor,
|
419 |
+
)
|
420 |
+
]
|
421 |
+
)
|
422 |
+
else:
|
423 |
+
self.upsamplers = None
|
424 |
+
|
425 |
+
self.gradient_checkpointing = False
|
426 |
+
|
427 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
428 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
429 |
+
|
430 |
+
def create_custom_forward(module, return_dict=None):
|
431 |
+
def custom_forward(*inputs):
|
432 |
+
if return_dict is not None:
|
433 |
+
return module(*inputs, return_dict=return_dict)
|
434 |
+
else:
|
435 |
+
return module(*inputs)
|
436 |
+
|
437 |
+
return custom_forward
|
438 |
+
|
439 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
440 |
+
|
441 |
+
for resnet in self.resnets:
|
442 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
443 |
+
create_custom_forward(resnet), hidden_states, **ckpt_kwargs
|
444 |
+
)
|
445 |
+
|
446 |
+
else:
|
447 |
+
for resnet in self.resnets:
|
448 |
+
hidden_states = resnet(hidden_states)
|
449 |
+
|
450 |
+
if self.upsamplers is not None:
|
451 |
+
for upsampler in self.upsamplers:
|
452 |
+
hidden_states = upsampler(hidden_states)
|
453 |
+
|
454 |
+
return hidden_states
|
455 |
+
|
456 |
+
|
457 |
+
class HunyuanVideoEncoder3D(nn.Module):
|
458 |
+
r"""
|
459 |
+
Causal encoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
|
460 |
+
"""
|
461 |
+
|
462 |
+
def __init__(
|
463 |
+
self,
|
464 |
+
in_channels: int = 3,
|
465 |
+
out_channels: int = 3,
|
466 |
+
down_block_types: Tuple[str, ...] = (
|
467 |
+
"HunyuanVideoDownBlock3D",
|
468 |
+
"HunyuanVideoDownBlock3D",
|
469 |
+
"HunyuanVideoDownBlock3D",
|
470 |
+
"HunyuanVideoDownBlock3D",
|
471 |
+
),
|
472 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
473 |
+
layers_per_block: int = 2,
|
474 |
+
norm_num_groups: int = 32,
|
475 |
+
act_fn: str = "silu",
|
476 |
+
double_z: bool = True,
|
477 |
+
mid_block_add_attention=True,
|
478 |
+
temporal_compression_ratio: int = 4,
|
479 |
+
spatial_compression_ratio: int = 8,
|
480 |
+
) -> None:
|
481 |
+
super().__init__()
|
482 |
+
|
483 |
+
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
|
484 |
+
self.mid_block = None
|
485 |
+
self.down_blocks = nn.ModuleList([])
|
486 |
+
|
487 |
+
output_channel = block_out_channels[0]
|
488 |
+
for i, down_block_type in enumerate(down_block_types):
|
489 |
+
if down_block_type != "HunyuanVideoDownBlock3D":
|
490 |
+
raise ValueError(f"Unsupported down_block_type: {down_block_type}")
|
491 |
+
|
492 |
+
input_channel = output_channel
|
493 |
+
output_channel = block_out_channels[i]
|
494 |
+
is_final_block = i == len(block_out_channels) - 1
|
495 |
+
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
|
496 |
+
num_time_downsample_layers = int(np.log2(temporal_compression_ratio))
|
497 |
+
|
498 |
+
if temporal_compression_ratio == 4:
|
499 |
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
500 |
+
add_time_downsample = bool(
|
501 |
+
i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block
|
502 |
+
)
|
503 |
+
elif temporal_compression_ratio == 8:
|
504 |
+
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
|
505 |
+
add_time_downsample = bool(i < num_time_downsample_layers)
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unsupported time_compression_ratio: {temporal_compression_ratio}")
|
508 |
+
|
509 |
+
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
|
510 |
+
downsample_stride_T = (2,) if add_time_downsample else (1,)
|
511 |
+
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
|
512 |
+
|
513 |
+
down_block = HunyuanVideoDownBlock3D(
|
514 |
+
num_layers=layers_per_block,
|
515 |
+
in_channels=input_channel,
|
516 |
+
out_channels=output_channel,
|
517 |
+
add_downsample=bool(add_spatial_downsample or add_time_downsample),
|
518 |
+
resnet_eps=1e-6,
|
519 |
+
resnet_act_fn=act_fn,
|
520 |
+
resnet_groups=norm_num_groups,
|
521 |
+
downsample_stride=downsample_stride,
|
522 |
+
downsample_padding=0,
|
523 |
+
)
|
524 |
+
|
525 |
+
self.down_blocks.append(down_block)
|
526 |
+
|
527 |
+
self.mid_block = HunyuanVideoMidBlock3D(
|
528 |
+
in_channels=block_out_channels[-1],
|
529 |
+
resnet_eps=1e-6,
|
530 |
+
resnet_act_fn=act_fn,
|
531 |
+
attention_head_dim=block_out_channels[-1],
|
532 |
+
resnet_groups=norm_num_groups,
|
533 |
+
add_attention=mid_block_add_attention,
|
534 |
+
)
|
535 |
+
|
536 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
537 |
+
self.conv_act = nn.SiLU()
|
538 |
+
|
539 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
540 |
+
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
|
541 |
+
|
542 |
+
self.gradient_checkpointing = False
|
543 |
+
|
544 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
545 |
+
hidden_states = self.conv_in(hidden_states)
|
546 |
+
|
547 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
548 |
+
|
549 |
+
def create_custom_forward(module, return_dict=None):
|
550 |
+
def custom_forward(*inputs):
|
551 |
+
if return_dict is not None:
|
552 |
+
return module(*inputs, return_dict=return_dict)
|
553 |
+
else:
|
554 |
+
return module(*inputs)
|
555 |
+
|
556 |
+
return custom_forward
|
557 |
+
|
558 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
559 |
+
|
560 |
+
for down_block in self.down_blocks:
|
561 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
562 |
+
create_custom_forward(down_block), hidden_states, **ckpt_kwargs
|
563 |
+
)
|
564 |
+
|
565 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
566 |
+
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs
|
567 |
+
)
|
568 |
+
else:
|
569 |
+
for down_block in self.down_blocks:
|
570 |
+
hidden_states = down_block(hidden_states)
|
571 |
+
|
572 |
+
hidden_states = self.mid_block(hidden_states)
|
573 |
+
|
574 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
575 |
+
hidden_states = self.conv_act(hidden_states)
|
576 |
+
hidden_states = self.conv_out(hidden_states)
|
577 |
+
|
578 |
+
return hidden_states
|
579 |
+
|
580 |
+
|
581 |
+
class HunyuanVideoDecoder3D(nn.Module):
|
582 |
+
r"""
|
583 |
+
Causal decoder for 3D video-like data introduced in [Hunyuan Video](https://huggingface.co/papers/2412.03603).
|
584 |
+
"""
|
585 |
+
|
586 |
+
def __init__(
|
587 |
+
self,
|
588 |
+
in_channels: int = 3,
|
589 |
+
out_channels: int = 3,
|
590 |
+
up_block_types: Tuple[str, ...] = (
|
591 |
+
"HunyuanVideoUpBlock3D",
|
592 |
+
"HunyuanVideoUpBlock3D",
|
593 |
+
"HunyuanVideoUpBlock3D",
|
594 |
+
"HunyuanVideoUpBlock3D",
|
595 |
+
),
|
596 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
597 |
+
layers_per_block: int = 2,
|
598 |
+
norm_num_groups: int = 32,
|
599 |
+
act_fn: str = "silu",
|
600 |
+
mid_block_add_attention=True,
|
601 |
+
time_compression_ratio: int = 4,
|
602 |
+
spatial_compression_ratio: int = 8,
|
603 |
+
):
|
604 |
+
super().__init__()
|
605 |
+
self.layers_per_block = layers_per_block
|
606 |
+
|
607 |
+
self.conv_in = HunyuanVideoCausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
|
608 |
+
self.up_blocks = nn.ModuleList([])
|
609 |
+
|
610 |
+
# mid
|
611 |
+
self.mid_block = HunyuanVideoMidBlock3D(
|
612 |
+
in_channels=block_out_channels[-1],
|
613 |
+
resnet_eps=1e-6,
|
614 |
+
resnet_act_fn=act_fn,
|
615 |
+
attention_head_dim=block_out_channels[-1],
|
616 |
+
resnet_groups=norm_num_groups,
|
617 |
+
add_attention=mid_block_add_attention,
|
618 |
+
)
|
619 |
+
|
620 |
+
# up
|
621 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
622 |
+
output_channel = reversed_block_out_channels[0]
|
623 |
+
for i, up_block_type in enumerate(up_block_types):
|
624 |
+
if up_block_type != "HunyuanVideoUpBlock3D":
|
625 |
+
raise ValueError(f"Unsupported up_block_type: {up_block_type}")
|
626 |
+
|
627 |
+
prev_output_channel = output_channel
|
628 |
+
output_channel = reversed_block_out_channels[i]
|
629 |
+
is_final_block = i == len(block_out_channels) - 1
|
630 |
+
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
|
631 |
+
num_time_upsample_layers = int(np.log2(time_compression_ratio))
|
632 |
+
|
633 |
+
if time_compression_ratio == 4:
|
634 |
+
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
|
635 |
+
add_time_upsample = bool(
|
636 |
+
i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block
|
637 |
+
)
|
638 |
+
else:
|
639 |
+
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}")
|
640 |
+
|
641 |
+
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
|
642 |
+
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
|
643 |
+
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
|
644 |
+
|
645 |
+
up_block = HunyuanVideoUpBlock3D(
|
646 |
+
num_layers=self.layers_per_block + 1,
|
647 |
+
in_channels=prev_output_channel,
|
648 |
+
out_channels=output_channel,
|
649 |
+
add_upsample=bool(add_spatial_upsample or add_time_upsample),
|
650 |
+
upsample_scale_factor=upsample_scale_factor,
|
651 |
+
resnet_eps=1e-6,
|
652 |
+
resnet_act_fn=act_fn,
|
653 |
+
resnet_groups=norm_num_groups,
|
654 |
+
)
|
655 |
+
|
656 |
+
self.up_blocks.append(up_block)
|
657 |
+
prev_output_channel = output_channel
|
658 |
+
|
659 |
+
# out
|
660 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
661 |
+
self.conv_act = nn.SiLU()
|
662 |
+
self.conv_out = HunyuanVideoCausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
|
663 |
+
|
664 |
+
self.gradient_checkpointing = False
|
665 |
+
|
666 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
667 |
+
hidden_states = self.conv_in(hidden_states)
|
668 |
+
|
669 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
670 |
+
|
671 |
+
def create_custom_forward(module, return_dict=None):
|
672 |
+
def custom_forward(*inputs):
|
673 |
+
if return_dict is not None:
|
674 |
+
return module(*inputs, return_dict=return_dict)
|
675 |
+
else:
|
676 |
+
return module(*inputs)
|
677 |
+
|
678 |
+
return custom_forward
|
679 |
+
|
680 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
681 |
+
|
682 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
683 |
+
create_custom_forward(self.mid_block), hidden_states, **ckpt_kwargs
|
684 |
+
)
|
685 |
+
|
686 |
+
for up_block in self.up_blocks:
|
687 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
688 |
+
create_custom_forward(up_block), hidden_states, **ckpt_kwargs
|
689 |
+
)
|
690 |
+
else:
|
691 |
+
hidden_states = self.mid_block(hidden_states)
|
692 |
+
|
693 |
+
for up_block in self.up_blocks:
|
694 |
+
hidden_states = up_block(hidden_states)
|
695 |
+
|
696 |
+
# post-process
|
697 |
+
hidden_states = self.conv_norm_out(hidden_states)
|
698 |
+
hidden_states = self.conv_act(hidden_states)
|
699 |
+
hidden_states = self.conv_out(hidden_states)
|
700 |
+
|
701 |
+
return hidden_states
|
702 |
+
|
703 |
+
|
704 |
+
class AutoencoderKLHunyuanVideo(ModelMixin, ConfigMixin):
|
705 |
+
r"""
|
706 |
+
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
707 |
+
Introduced in [HunyuanVideo](https://huggingface.co/papers/2412.03603).
|
708 |
+
|
709 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
710 |
+
for all models (such as downloading or saving).
|
711 |
+
"""
|
712 |
+
|
713 |
+
_supports_gradient_checkpointing = True
|
714 |
+
|
715 |
+
@register_to_config
|
716 |
+
def __init__(
|
717 |
+
self,
|
718 |
+
in_channels: int = 3,
|
719 |
+
out_channels: int = 3,
|
720 |
+
latent_channels: int = 16,
|
721 |
+
down_block_types: Tuple[str, ...] = (
|
722 |
+
"HunyuanVideoDownBlock3D",
|
723 |
+
"HunyuanVideoDownBlock3D",
|
724 |
+
"HunyuanVideoDownBlock3D",
|
725 |
+
"HunyuanVideoDownBlock3D",
|
726 |
+
),
|
727 |
+
up_block_types: Tuple[str, ...] = (
|
728 |
+
"HunyuanVideoUpBlock3D",
|
729 |
+
"HunyuanVideoUpBlock3D",
|
730 |
+
"HunyuanVideoUpBlock3D",
|
731 |
+
"HunyuanVideoUpBlock3D",
|
732 |
+
),
|
733 |
+
block_out_channels: Tuple[int] = (128, 256, 512, 512),
|
734 |
+
layers_per_block: int = 2,
|
735 |
+
act_fn: str = "silu",
|
736 |
+
norm_num_groups: int = 32,
|
737 |
+
scaling_factor: float = 0.476986,
|
738 |
+
spatial_compression_ratio: int = 8,
|
739 |
+
temporal_compression_ratio: int = 4,
|
740 |
+
mid_block_add_attention: bool = True,
|
741 |
+
) -> None:
|
742 |
+
super().__init__()
|
743 |
+
|
744 |
+
self.time_compression_ratio = temporal_compression_ratio
|
745 |
+
|
746 |
+
self.encoder = HunyuanVideoEncoder3D(
|
747 |
+
in_channels=in_channels,
|
748 |
+
out_channels=latent_channels,
|
749 |
+
down_block_types=down_block_types,
|
750 |
+
block_out_channels=block_out_channels,
|
751 |
+
layers_per_block=layers_per_block,
|
752 |
+
norm_num_groups=norm_num_groups,
|
753 |
+
act_fn=act_fn,
|
754 |
+
double_z=True,
|
755 |
+
mid_block_add_attention=mid_block_add_attention,
|
756 |
+
temporal_compression_ratio=temporal_compression_ratio,
|
757 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
758 |
+
)
|
759 |
+
|
760 |
+
self.decoder = HunyuanVideoDecoder3D(
|
761 |
+
in_channels=latent_channels,
|
762 |
+
out_channels=out_channels,
|
763 |
+
up_block_types=up_block_types,
|
764 |
+
block_out_channels=block_out_channels,
|
765 |
+
layers_per_block=layers_per_block,
|
766 |
+
norm_num_groups=norm_num_groups,
|
767 |
+
act_fn=act_fn,
|
768 |
+
time_compression_ratio=temporal_compression_ratio,
|
769 |
+
spatial_compression_ratio=spatial_compression_ratio,
|
770 |
+
mid_block_add_attention=mid_block_add_attention,
|
771 |
+
)
|
772 |
+
|
773 |
+
self.quant_conv = nn.Conv3d(2 * latent_channels, 2 * latent_channels, kernel_size=1)
|
774 |
+
self.post_quant_conv = nn.Conv3d(latent_channels, latent_channels, kernel_size=1)
|
775 |
+
|
776 |
+
self.spatial_compression_ratio = spatial_compression_ratio
|
777 |
+
self.temporal_compression_ratio = temporal_compression_ratio
|
778 |
+
|
779 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
780 |
+
# to perform decoding of a single video latent at a time.
|
781 |
+
self.use_slicing = False
|
782 |
+
|
783 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
784 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
785 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
786 |
+
self.use_tiling = False
|
787 |
+
|
788 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
789 |
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
|
790 |
+
self.use_framewise_encoding = True
|
791 |
+
self.use_framewise_decoding = True
|
792 |
+
|
793 |
+
# The minimal tile height and width for spatial tiling to be used
|
794 |
+
self.tile_sample_min_height = 256
|
795 |
+
self.tile_sample_min_width = 256
|
796 |
+
self.tile_sample_min_num_frames = 16
|
797 |
+
|
798 |
+
# The minimal distance between two spatial tiles
|
799 |
+
self.tile_sample_stride_height = 192
|
800 |
+
self.tile_sample_stride_width = 192
|
801 |
+
self.tile_sample_stride_num_frames = 12
|
802 |
+
|
803 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
804 |
+
if isinstance(module, (HunyuanVideoEncoder3D, HunyuanVideoDecoder3D)):
|
805 |
+
module.gradient_checkpointing = value
|
806 |
+
|
807 |
+
def enable_tiling(
|
808 |
+
self,
|
809 |
+
tile_sample_min_height: Optional[int] = None,
|
810 |
+
tile_sample_min_width: Optional[int] = None,
|
811 |
+
tile_sample_min_num_frames: Optional[int] = None,
|
812 |
+
tile_sample_stride_height: Optional[float] = None,
|
813 |
+
tile_sample_stride_width: Optional[float] = None,
|
814 |
+
tile_sample_stride_num_frames: Optional[float] = None,
|
815 |
+
) -> None:
|
816 |
+
r"""
|
817 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
818 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
819 |
+
processing larger images.
|
820 |
+
|
821 |
+
Args:
|
822 |
+
tile_sample_min_height (`int`, *optional*):
|
823 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
824 |
+
tile_sample_min_width (`int`, *optional*):
|
825 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
826 |
+
tile_sample_min_num_frames (`int`, *optional*):
|
827 |
+
The minimum number of frames required for a sample to be separated into tiles across the frame
|
828 |
+
dimension.
|
829 |
+
tile_sample_stride_height (`int`, *optional*):
|
830 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
831 |
+
no tiling artifacts produced across the height dimension.
|
832 |
+
tile_sample_stride_width (`int`, *optional*):
|
833 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
834 |
+
artifacts produced across the width dimension.
|
835 |
+
tile_sample_stride_num_frames (`int`, *optional*):
|
836 |
+
The stride between two consecutive frame tiles. This is to ensure that there are no tiling artifacts
|
837 |
+
produced across the frame dimension.
|
838 |
+
"""
|
839 |
+
self.use_tiling = True
|
840 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
841 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
842 |
+
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
|
843 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
844 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
845 |
+
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
|
846 |
+
|
847 |
+
def disable_tiling(self) -> None:
|
848 |
+
r"""
|
849 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
850 |
+
decoding in one step.
|
851 |
+
"""
|
852 |
+
self.use_tiling = False
|
853 |
+
|
854 |
+
def enable_slicing(self) -> None:
|
855 |
+
r"""
|
856 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
857 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
858 |
+
"""
|
859 |
+
self.use_slicing = True
|
860 |
+
|
861 |
+
def disable_slicing(self) -> None:
|
862 |
+
r"""
|
863 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
864 |
+
decoding in one step.
|
865 |
+
"""
|
866 |
+
self.use_slicing = False
|
867 |
+
|
868 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
869 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
870 |
+
|
871 |
+
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
|
872 |
+
return self._temporal_tiled_encode(x)
|
873 |
+
|
874 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
875 |
+
return self.tiled_encode(x)
|
876 |
+
|
877 |
+
x = self.encoder(x)
|
878 |
+
enc = self.quant_conv(x)
|
879 |
+
return enc
|
880 |
+
|
881 |
+
@apply_forward_hook
|
882 |
+
def encode(
|
883 |
+
self, x: torch.Tensor, return_dict: bool = True
|
884 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
885 |
+
r"""
|
886 |
+
Encode a batch of images into latents.
|
887 |
+
|
888 |
+
Args:
|
889 |
+
x (`torch.Tensor`): Input batch of images.
|
890 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
891 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
892 |
+
|
893 |
+
Returns:
|
894 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
895 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
896 |
+
"""
|
897 |
+
if self.use_slicing and x.shape[0] > 1:
|
898 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
899 |
+
h = torch.cat(encoded_slices)
|
900 |
+
else:
|
901 |
+
h = self._encode(x)
|
902 |
+
|
903 |
+
posterior = DiagonalGaussianDistribution(h)
|
904 |
+
|
905 |
+
if not return_dict:
|
906 |
+
return (posterior,)
|
907 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
908 |
+
|
909 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
910 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
911 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
912 |
+
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
913 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
914 |
+
|
915 |
+
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
|
916 |
+
return self._temporal_tiled_decode(z, return_dict=return_dict)
|
917 |
+
|
918 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
919 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
920 |
+
|
921 |
+
z = self.post_quant_conv(z)
|
922 |
+
dec = self.decoder(z)
|
923 |
+
|
924 |
+
if not return_dict:
|
925 |
+
return (dec,)
|
926 |
+
|
927 |
+
return DecoderOutput(sample=dec)
|
928 |
+
|
929 |
+
@apply_forward_hook
|
930 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
931 |
+
r"""
|
932 |
+
Decode a batch of images.
|
933 |
+
|
934 |
+
Args:
|
935 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
936 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
937 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
938 |
+
|
939 |
+
Returns:
|
940 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
941 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
942 |
+
returned.
|
943 |
+
"""
|
944 |
+
if self.use_slicing and z.shape[0] > 1:
|
945 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
946 |
+
decoded = torch.cat(decoded_slices)
|
947 |
+
else:
|
948 |
+
decoded = self._decode(z).sample
|
949 |
+
|
950 |
+
if not return_dict:
|
951 |
+
return (decoded,)
|
952 |
+
|
953 |
+
return DecoderOutput(sample=decoded)
|
954 |
+
|
955 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
956 |
+
blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
|
957 |
+
for y in range(blend_extent):
|
958 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
959 |
+
y / blend_extent
|
960 |
+
)
|
961 |
+
return b
|
962 |
+
|
963 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
964 |
+
blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
|
965 |
+
for x in range(blend_extent):
|
966 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
967 |
+
x / blend_extent
|
968 |
+
)
|
969 |
+
return b
|
970 |
+
|
971 |
+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
972 |
+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
|
973 |
+
for x in range(blend_extent):
|
974 |
+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
|
975 |
+
x / blend_extent
|
976 |
+
)
|
977 |
+
return b
|
978 |
+
|
979 |
+
def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
980 |
+
r"""Encode a batch of images using a tiled encoder.
|
981 |
+
|
982 |
+
Args:
|
983 |
+
x (`torch.Tensor`): Input batch of videos.
|
984 |
+
|
985 |
+
Returns:
|
986 |
+
`torch.Tensor`:
|
987 |
+
The latent representation of the encoded videos.
|
988 |
+
"""
|
989 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
990 |
+
latent_height = height // self.spatial_compression_ratio
|
991 |
+
latent_width = width // self.spatial_compression_ratio
|
992 |
+
|
993 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
994 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
995 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
996 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
997 |
+
|
998 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
999 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
1000 |
+
|
1001 |
+
# Split x into overlapping tiles and encode them separately.
|
1002 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1003 |
+
rows = []
|
1004 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
1005 |
+
row = []
|
1006 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
1007 |
+
tile = x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
1008 |
+
tile = self.encoder(tile)
|
1009 |
+
tile = self.quant_conv(tile)
|
1010 |
+
row.append(tile)
|
1011 |
+
rows.append(row)
|
1012 |
+
|
1013 |
+
result_rows = []
|
1014 |
+
for i, row in enumerate(rows):
|
1015 |
+
result_row = []
|
1016 |
+
for j, tile in enumerate(row):
|
1017 |
+
# blend the above tile and the left tile
|
1018 |
+
# to the current tile and add the current tile to the result row
|
1019 |
+
if i > 0:
|
1020 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1021 |
+
if j > 0:
|
1022 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1023 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
1024 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
1025 |
+
|
1026 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
1027 |
+
return enc
|
1028 |
+
|
1029 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1030 |
+
r"""
|
1031 |
+
Decode a batch of images using a tiled decoder.
|
1032 |
+
|
1033 |
+
Args:
|
1034 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
1035 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1036 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
1037 |
+
|
1038 |
+
Returns:
|
1039 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
1040 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
1041 |
+
returned.
|
1042 |
+
"""
|
1043 |
+
|
1044 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1045 |
+
sample_height = height * self.spatial_compression_ratio
|
1046 |
+
sample_width = width * self.spatial_compression_ratio
|
1047 |
+
|
1048 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1049 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1050 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
1051 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
1052 |
+
|
1053 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
1054 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
1055 |
+
|
1056 |
+
# Split z into overlapping tiles and decode them separately.
|
1057 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1058 |
+
rows = []
|
1059 |
+
for i in range(0, height, tile_latent_stride_height):
|
1060 |
+
row = []
|
1061 |
+
for j in range(0, width, tile_latent_stride_width):
|
1062 |
+
tile = z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
|
1063 |
+
tile = self.post_quant_conv(tile)
|
1064 |
+
decoded = self.decoder(tile)
|
1065 |
+
row.append(decoded)
|
1066 |
+
rows.append(row)
|
1067 |
+
|
1068 |
+
result_rows = []
|
1069 |
+
for i, row in enumerate(rows):
|
1070 |
+
result_row = []
|
1071 |
+
for j, tile in enumerate(row):
|
1072 |
+
# blend the above tile and the left tile
|
1073 |
+
# to the current tile and add the current tile to the result row
|
1074 |
+
if i > 0:
|
1075 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1076 |
+
if j > 0:
|
1077 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1078 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
1079 |
+
result_rows.append(torch.cat(result_row, dim=-1))
|
1080 |
+
|
1081 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
1082 |
+
|
1083 |
+
if not return_dict:
|
1084 |
+
return (dec,)
|
1085 |
+
return DecoderOutput(sample=dec)
|
1086 |
+
|
1087 |
+
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
|
1088 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
1089 |
+
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
|
1090 |
+
|
1091 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
1092 |
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
1093 |
+
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
|
1094 |
+
|
1095 |
+
row = []
|
1096 |
+
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
|
1097 |
+
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
|
1098 |
+
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
|
1099 |
+
tile = self.tiled_encode(tile)
|
1100 |
+
else:
|
1101 |
+
tile = self.encoder(tile)
|
1102 |
+
tile = self.quant_conv(tile)
|
1103 |
+
if i > 0:
|
1104 |
+
tile = tile[:, :, 1:, :, :]
|
1105 |
+
row.append(tile)
|
1106 |
+
|
1107 |
+
result_row = []
|
1108 |
+
for i, tile in enumerate(row):
|
1109 |
+
if i > 0:
|
1110 |
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
1111 |
+
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
|
1112 |
+
else:
|
1113 |
+
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
|
1114 |
+
|
1115 |
+
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
|
1116 |
+
return enc
|
1117 |
+
|
1118 |
+
def _temporal_tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1119 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1120 |
+
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
|
1121 |
+
|
1122 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1123 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1124 |
+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
|
1125 |
+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
|
1126 |
+
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames
|
1127 |
+
|
1128 |
+
row = []
|
1129 |
+
for i in range(0, num_frames, tile_latent_stride_num_frames):
|
1130 |
+
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
|
1131 |
+
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
|
1132 |
+
decoded = self.tiled_decode(tile, return_dict=True).sample
|
1133 |
+
else:
|
1134 |
+
tile = self.post_quant_conv(tile)
|
1135 |
+
decoded = self.decoder(tile)
|
1136 |
+
if i > 0:
|
1137 |
+
decoded = decoded[:, :, 1:, :, :]
|
1138 |
+
row.append(decoded)
|
1139 |
+
|
1140 |
+
result_row = []
|
1141 |
+
for i, tile in enumerate(row):
|
1142 |
+
if i > 0:
|
1143 |
+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
|
1144 |
+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames, :, :])
|
1145 |
+
else:
|
1146 |
+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
|
1147 |
+
|
1148 |
+
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]
|
1149 |
+
|
1150 |
+
if not return_dict:
|
1151 |
+
return (dec,)
|
1152 |
+
return DecoderOutput(sample=dec)
|
1153 |
+
|
1154 |
+
def forward(
|
1155 |
+
self,
|
1156 |
+
sample: torch.Tensor,
|
1157 |
+
sample_posterior: bool = False,
|
1158 |
+
return_dict: bool = True,
|
1159 |
+
generator: Optional[torch.Generator] = None,
|
1160 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
1161 |
+
r"""
|
1162 |
+
Args:
|
1163 |
+
sample (`torch.Tensor`): Input sample.
|
1164 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
1165 |
+
Whether to sample from the posterior.
|
1166 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1167 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
1168 |
+
"""
|
1169 |
+
x = sample
|
1170 |
+
posterior = self.encode(x).latent_dist
|
1171 |
+
if sample_posterior:
|
1172 |
+
z = posterior.sample(generator=generator)
|
1173 |
+
else:
|
1174 |
+
z = posterior.mode()
|
1175 |
+
dec = self.decode(z, return_dict=return_dict)
|
1176 |
+
return dec
|
icedit/diffusers/models/autoencoders/autoencoder_kl_ltx.py
ADDED
@@ -0,0 +1,1338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The Lightricks team and The HuggingFace Team.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from ...loaders import FromOriginalModelMixin
|
23 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
24 |
+
from ..activations import get_activation
|
25 |
+
from ..embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings
|
26 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
27 |
+
from ..modeling_utils import ModelMixin
|
28 |
+
from ..normalization import RMSNorm
|
29 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
30 |
+
|
31 |
+
|
32 |
+
class LTXVideoCausalConv3d(nn.Module):
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
in_channels: int,
|
36 |
+
out_channels: int,
|
37 |
+
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
38 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
39 |
+
dilation: Union[int, Tuple[int, int, int]] = 1,
|
40 |
+
groups: int = 1,
|
41 |
+
padding_mode: str = "zeros",
|
42 |
+
is_causal: bool = True,
|
43 |
+
):
|
44 |
+
super().__init__()
|
45 |
+
|
46 |
+
self.in_channels = in_channels
|
47 |
+
self.out_channels = out_channels
|
48 |
+
self.is_causal = is_causal
|
49 |
+
self.kernel_size = kernel_size if isinstance(kernel_size, tuple) else (kernel_size, kernel_size, kernel_size)
|
50 |
+
|
51 |
+
dilation = dilation if isinstance(dilation, tuple) else (dilation, 1, 1)
|
52 |
+
stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
|
53 |
+
height_pad = self.kernel_size[1] // 2
|
54 |
+
width_pad = self.kernel_size[2] // 2
|
55 |
+
padding = (0, height_pad, width_pad)
|
56 |
+
|
57 |
+
self.conv = nn.Conv3d(
|
58 |
+
in_channels,
|
59 |
+
out_channels,
|
60 |
+
self.kernel_size,
|
61 |
+
stride=stride,
|
62 |
+
dilation=dilation,
|
63 |
+
groups=groups,
|
64 |
+
padding=padding,
|
65 |
+
padding_mode=padding_mode,
|
66 |
+
)
|
67 |
+
|
68 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
69 |
+
time_kernel_size = self.kernel_size[0]
|
70 |
+
|
71 |
+
if self.is_causal:
|
72 |
+
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, time_kernel_size - 1, 1, 1))
|
73 |
+
hidden_states = torch.concatenate([pad_left, hidden_states], dim=2)
|
74 |
+
else:
|
75 |
+
pad_left = hidden_states[:, :, :1, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
|
76 |
+
pad_right = hidden_states[:, :, -1:, :, :].repeat((1, 1, (time_kernel_size - 1) // 2, 1, 1))
|
77 |
+
hidden_states = torch.concatenate([pad_left, hidden_states, pad_right], dim=2)
|
78 |
+
|
79 |
+
hidden_states = self.conv(hidden_states)
|
80 |
+
return hidden_states
|
81 |
+
|
82 |
+
|
83 |
+
class LTXVideoResnetBlock3d(nn.Module):
|
84 |
+
r"""
|
85 |
+
A 3D ResNet block used in the LTXVideo model.
|
86 |
+
|
87 |
+
Args:
|
88 |
+
in_channels (`int`):
|
89 |
+
Number of input channels.
|
90 |
+
out_channels (`int`, *optional*):
|
91 |
+
Number of output channels. If None, defaults to `in_channels`.
|
92 |
+
dropout (`float`, defaults to `0.0`):
|
93 |
+
Dropout rate.
|
94 |
+
eps (`float`, defaults to `1e-6`):
|
95 |
+
Epsilon value for normalization layers.
|
96 |
+
elementwise_affine (`bool`, defaults to `False`):
|
97 |
+
Whether to enable elementwise affinity in the normalization layers.
|
98 |
+
non_linearity (`str`, defaults to `"swish"`):
|
99 |
+
Activation function to use.
|
100 |
+
conv_shortcut (bool, defaults to `False`):
|
101 |
+
Whether or not to use a convolution shortcut.
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
in_channels: int,
|
107 |
+
out_channels: Optional[int] = None,
|
108 |
+
dropout: float = 0.0,
|
109 |
+
eps: float = 1e-6,
|
110 |
+
elementwise_affine: bool = False,
|
111 |
+
non_linearity: str = "swish",
|
112 |
+
is_causal: bool = True,
|
113 |
+
inject_noise: bool = False,
|
114 |
+
timestep_conditioning: bool = False,
|
115 |
+
) -> None:
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
out_channels = out_channels or in_channels
|
119 |
+
|
120 |
+
self.nonlinearity = get_activation(non_linearity)
|
121 |
+
|
122 |
+
self.norm1 = RMSNorm(in_channels, eps=1e-8, elementwise_affine=elementwise_affine)
|
123 |
+
self.conv1 = LTXVideoCausalConv3d(
|
124 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
|
125 |
+
)
|
126 |
+
|
127 |
+
self.norm2 = RMSNorm(out_channels, eps=1e-8, elementwise_affine=elementwise_affine)
|
128 |
+
self.dropout = nn.Dropout(dropout)
|
129 |
+
self.conv2 = LTXVideoCausalConv3d(
|
130 |
+
in_channels=out_channels, out_channels=out_channels, kernel_size=3, is_causal=is_causal
|
131 |
+
)
|
132 |
+
|
133 |
+
self.norm3 = None
|
134 |
+
self.conv_shortcut = None
|
135 |
+
if in_channels != out_channels:
|
136 |
+
self.norm3 = nn.LayerNorm(in_channels, eps=eps, elementwise_affine=True, bias=True)
|
137 |
+
self.conv_shortcut = LTXVideoCausalConv3d(
|
138 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=1, is_causal=is_causal
|
139 |
+
)
|
140 |
+
|
141 |
+
self.per_channel_scale1 = None
|
142 |
+
self.per_channel_scale2 = None
|
143 |
+
if inject_noise:
|
144 |
+
self.per_channel_scale1 = nn.Parameter(torch.zeros(in_channels, 1, 1))
|
145 |
+
self.per_channel_scale2 = nn.Parameter(torch.zeros(in_channels, 1, 1))
|
146 |
+
|
147 |
+
self.scale_shift_table = None
|
148 |
+
if timestep_conditioning:
|
149 |
+
self.scale_shift_table = nn.Parameter(torch.randn(4, in_channels) / in_channels**0.5)
|
150 |
+
|
151 |
+
def forward(
|
152 |
+
self, inputs: torch.Tensor, temb: Optional[torch.Tensor] = None, generator: Optional[torch.Generator] = None
|
153 |
+
) -> torch.Tensor:
|
154 |
+
hidden_states = inputs
|
155 |
+
|
156 |
+
hidden_states = self.norm1(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
157 |
+
|
158 |
+
if self.scale_shift_table is not None:
|
159 |
+
temb = temb.unflatten(1, (4, -1)) + self.scale_shift_table[None, ..., None, None, None]
|
160 |
+
shift_1, scale_1, shift_2, scale_2 = temb.unbind(dim=1)
|
161 |
+
hidden_states = hidden_states * (1 + scale_1) + shift_1
|
162 |
+
|
163 |
+
hidden_states = self.nonlinearity(hidden_states)
|
164 |
+
hidden_states = self.conv1(hidden_states)
|
165 |
+
|
166 |
+
if self.per_channel_scale1 is not None:
|
167 |
+
spatial_shape = hidden_states.shape[-2:]
|
168 |
+
spatial_noise = torch.randn(
|
169 |
+
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
|
170 |
+
)[None]
|
171 |
+
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale1)[None, :, None, ...]
|
172 |
+
|
173 |
+
hidden_states = self.norm2(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
174 |
+
|
175 |
+
if self.scale_shift_table is not None:
|
176 |
+
hidden_states = hidden_states * (1 + scale_2) + shift_2
|
177 |
+
|
178 |
+
hidden_states = self.nonlinearity(hidden_states)
|
179 |
+
hidden_states = self.dropout(hidden_states)
|
180 |
+
hidden_states = self.conv2(hidden_states)
|
181 |
+
|
182 |
+
if self.per_channel_scale2 is not None:
|
183 |
+
spatial_shape = hidden_states.shape[-2:]
|
184 |
+
spatial_noise = torch.randn(
|
185 |
+
spatial_shape, generator=generator, device=hidden_states.device, dtype=hidden_states.dtype
|
186 |
+
)[None]
|
187 |
+
hidden_states = hidden_states + (spatial_noise * self.per_channel_scale2)[None, :, None, ...]
|
188 |
+
|
189 |
+
if self.norm3 is not None:
|
190 |
+
inputs = self.norm3(inputs.movedim(1, -1)).movedim(-1, 1)
|
191 |
+
|
192 |
+
if self.conv_shortcut is not None:
|
193 |
+
inputs = self.conv_shortcut(inputs)
|
194 |
+
|
195 |
+
hidden_states = hidden_states + inputs
|
196 |
+
return hidden_states
|
197 |
+
|
198 |
+
|
199 |
+
class LTXVideoUpsampler3d(nn.Module):
|
200 |
+
def __init__(
|
201 |
+
self,
|
202 |
+
in_channels: int,
|
203 |
+
stride: Union[int, Tuple[int, int, int]] = 1,
|
204 |
+
is_causal: bool = True,
|
205 |
+
residual: bool = False,
|
206 |
+
upscale_factor: int = 1,
|
207 |
+
) -> None:
|
208 |
+
super().__init__()
|
209 |
+
|
210 |
+
self.stride = stride if isinstance(stride, tuple) else (stride, stride, stride)
|
211 |
+
self.residual = residual
|
212 |
+
self.upscale_factor = upscale_factor
|
213 |
+
|
214 |
+
out_channels = (in_channels * stride[0] * stride[1] * stride[2]) // upscale_factor
|
215 |
+
|
216 |
+
self.conv = LTXVideoCausalConv3d(
|
217 |
+
in_channels=in_channels,
|
218 |
+
out_channels=out_channels,
|
219 |
+
kernel_size=3,
|
220 |
+
stride=1,
|
221 |
+
is_causal=is_causal,
|
222 |
+
)
|
223 |
+
|
224 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
225 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
226 |
+
|
227 |
+
if self.residual:
|
228 |
+
residual = hidden_states.reshape(
|
229 |
+
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
|
230 |
+
)
|
231 |
+
residual = residual.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
232 |
+
repeats = (self.stride[0] * self.stride[1] * self.stride[2]) // self.upscale_factor
|
233 |
+
residual = residual.repeat(1, repeats, 1, 1, 1)
|
234 |
+
residual = residual[:, :, self.stride[0] - 1 :]
|
235 |
+
|
236 |
+
hidden_states = self.conv(hidden_states)
|
237 |
+
hidden_states = hidden_states.reshape(
|
238 |
+
batch_size, -1, self.stride[0], self.stride[1], self.stride[2], num_frames, height, width
|
239 |
+
)
|
240 |
+
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
241 |
+
hidden_states = hidden_states[:, :, self.stride[0] - 1 :]
|
242 |
+
|
243 |
+
if self.residual:
|
244 |
+
hidden_states = hidden_states + residual
|
245 |
+
|
246 |
+
return hidden_states
|
247 |
+
|
248 |
+
|
249 |
+
class LTXVideoDownBlock3D(nn.Module):
|
250 |
+
r"""
|
251 |
+
Down block used in the LTXVideo model.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
in_channels (`int`):
|
255 |
+
Number of input channels.
|
256 |
+
out_channels (`int`, *optional*):
|
257 |
+
Number of output channels. If None, defaults to `in_channels`.
|
258 |
+
num_layers (`int`, defaults to `1`):
|
259 |
+
Number of resnet layers.
|
260 |
+
dropout (`float`, defaults to `0.0`):
|
261 |
+
Dropout rate.
|
262 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
263 |
+
Epsilon value for normalization layers.
|
264 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
265 |
+
Activation function to use.
|
266 |
+
spatio_temporal_scale (`bool`, defaults to `True`):
|
267 |
+
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
|
268 |
+
Whether or not to downsample across temporal dimension.
|
269 |
+
is_causal (`bool`, defaults to `True`):
|
270 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
271 |
+
"""
|
272 |
+
|
273 |
+
_supports_gradient_checkpointing = True
|
274 |
+
|
275 |
+
def __init__(
|
276 |
+
self,
|
277 |
+
in_channels: int,
|
278 |
+
out_channels: Optional[int] = None,
|
279 |
+
num_layers: int = 1,
|
280 |
+
dropout: float = 0.0,
|
281 |
+
resnet_eps: float = 1e-6,
|
282 |
+
resnet_act_fn: str = "swish",
|
283 |
+
spatio_temporal_scale: bool = True,
|
284 |
+
is_causal: bool = True,
|
285 |
+
):
|
286 |
+
super().__init__()
|
287 |
+
|
288 |
+
out_channels = out_channels or in_channels
|
289 |
+
|
290 |
+
resnets = []
|
291 |
+
for _ in range(num_layers):
|
292 |
+
resnets.append(
|
293 |
+
LTXVideoResnetBlock3d(
|
294 |
+
in_channels=in_channels,
|
295 |
+
out_channels=in_channels,
|
296 |
+
dropout=dropout,
|
297 |
+
eps=resnet_eps,
|
298 |
+
non_linearity=resnet_act_fn,
|
299 |
+
is_causal=is_causal,
|
300 |
+
)
|
301 |
+
)
|
302 |
+
self.resnets = nn.ModuleList(resnets)
|
303 |
+
|
304 |
+
self.downsamplers = None
|
305 |
+
if spatio_temporal_scale:
|
306 |
+
self.downsamplers = nn.ModuleList(
|
307 |
+
[
|
308 |
+
LTXVideoCausalConv3d(
|
309 |
+
in_channels=in_channels,
|
310 |
+
out_channels=in_channels,
|
311 |
+
kernel_size=3,
|
312 |
+
stride=(2, 2, 2),
|
313 |
+
is_causal=is_causal,
|
314 |
+
)
|
315 |
+
]
|
316 |
+
)
|
317 |
+
|
318 |
+
self.conv_out = None
|
319 |
+
if in_channels != out_channels:
|
320 |
+
self.conv_out = LTXVideoResnetBlock3d(
|
321 |
+
in_channels=in_channels,
|
322 |
+
out_channels=out_channels,
|
323 |
+
dropout=dropout,
|
324 |
+
eps=resnet_eps,
|
325 |
+
non_linearity=resnet_act_fn,
|
326 |
+
is_causal=is_causal,
|
327 |
+
)
|
328 |
+
|
329 |
+
self.gradient_checkpointing = False
|
330 |
+
|
331 |
+
def forward(
|
332 |
+
self,
|
333 |
+
hidden_states: torch.Tensor,
|
334 |
+
temb: Optional[torch.Tensor] = None,
|
335 |
+
generator: Optional[torch.Generator] = None,
|
336 |
+
) -> torch.Tensor:
|
337 |
+
r"""Forward method of the `LTXDownBlock3D` class."""
|
338 |
+
|
339 |
+
for i, resnet in enumerate(self.resnets):
|
340 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
341 |
+
|
342 |
+
def create_custom_forward(module):
|
343 |
+
def create_forward(*inputs):
|
344 |
+
return module(*inputs)
|
345 |
+
|
346 |
+
return create_forward
|
347 |
+
|
348 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
349 |
+
create_custom_forward(resnet), hidden_states, temb, generator
|
350 |
+
)
|
351 |
+
else:
|
352 |
+
hidden_states = resnet(hidden_states, temb, generator)
|
353 |
+
|
354 |
+
if self.downsamplers is not None:
|
355 |
+
for downsampler in self.downsamplers:
|
356 |
+
hidden_states = downsampler(hidden_states)
|
357 |
+
|
358 |
+
if self.conv_out is not None:
|
359 |
+
hidden_states = self.conv_out(hidden_states, temb, generator)
|
360 |
+
|
361 |
+
return hidden_states
|
362 |
+
|
363 |
+
|
364 |
+
# Adapted from diffusers.models.autoencoders.autoencoder_kl_cogvideox.CogVideoMidBlock3d
|
365 |
+
class LTXVideoMidBlock3d(nn.Module):
|
366 |
+
r"""
|
367 |
+
A middle block used in the LTXVideo model.
|
368 |
+
|
369 |
+
Args:
|
370 |
+
in_channels (`int`):
|
371 |
+
Number of input channels.
|
372 |
+
num_layers (`int`, defaults to `1`):
|
373 |
+
Number of resnet layers.
|
374 |
+
dropout (`float`, defaults to `0.0`):
|
375 |
+
Dropout rate.
|
376 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
377 |
+
Epsilon value for normalization layers.
|
378 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
379 |
+
Activation function to use.
|
380 |
+
is_causal (`bool`, defaults to `True`):
|
381 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
382 |
+
"""
|
383 |
+
|
384 |
+
_supports_gradient_checkpointing = True
|
385 |
+
|
386 |
+
def __init__(
|
387 |
+
self,
|
388 |
+
in_channels: int,
|
389 |
+
num_layers: int = 1,
|
390 |
+
dropout: float = 0.0,
|
391 |
+
resnet_eps: float = 1e-6,
|
392 |
+
resnet_act_fn: str = "swish",
|
393 |
+
is_causal: bool = True,
|
394 |
+
inject_noise: bool = False,
|
395 |
+
timestep_conditioning: bool = False,
|
396 |
+
) -> None:
|
397 |
+
super().__init__()
|
398 |
+
|
399 |
+
self.time_embedder = None
|
400 |
+
if timestep_conditioning:
|
401 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
|
402 |
+
|
403 |
+
resnets = []
|
404 |
+
for _ in range(num_layers):
|
405 |
+
resnets.append(
|
406 |
+
LTXVideoResnetBlock3d(
|
407 |
+
in_channels=in_channels,
|
408 |
+
out_channels=in_channels,
|
409 |
+
dropout=dropout,
|
410 |
+
eps=resnet_eps,
|
411 |
+
non_linearity=resnet_act_fn,
|
412 |
+
is_causal=is_causal,
|
413 |
+
inject_noise=inject_noise,
|
414 |
+
timestep_conditioning=timestep_conditioning,
|
415 |
+
)
|
416 |
+
)
|
417 |
+
self.resnets = nn.ModuleList(resnets)
|
418 |
+
|
419 |
+
self.gradient_checkpointing = False
|
420 |
+
|
421 |
+
def forward(
|
422 |
+
self,
|
423 |
+
hidden_states: torch.Tensor,
|
424 |
+
temb: Optional[torch.Tensor] = None,
|
425 |
+
generator: Optional[torch.Generator] = None,
|
426 |
+
) -> torch.Tensor:
|
427 |
+
r"""Forward method of the `LTXMidBlock3D` class."""
|
428 |
+
|
429 |
+
if self.time_embedder is not None:
|
430 |
+
temb = self.time_embedder(
|
431 |
+
timestep=temb.flatten(),
|
432 |
+
resolution=None,
|
433 |
+
aspect_ratio=None,
|
434 |
+
batch_size=hidden_states.size(0),
|
435 |
+
hidden_dtype=hidden_states.dtype,
|
436 |
+
)
|
437 |
+
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
|
438 |
+
|
439 |
+
for i, resnet in enumerate(self.resnets):
|
440 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
441 |
+
|
442 |
+
def create_custom_forward(module):
|
443 |
+
def create_forward(*inputs):
|
444 |
+
return module(*inputs)
|
445 |
+
|
446 |
+
return create_forward
|
447 |
+
|
448 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
449 |
+
create_custom_forward(resnet), hidden_states, temb, generator
|
450 |
+
)
|
451 |
+
else:
|
452 |
+
hidden_states = resnet(hidden_states, temb, generator)
|
453 |
+
|
454 |
+
return hidden_states
|
455 |
+
|
456 |
+
|
457 |
+
class LTXVideoUpBlock3d(nn.Module):
|
458 |
+
r"""
|
459 |
+
Up block used in the LTXVideo model.
|
460 |
+
|
461 |
+
Args:
|
462 |
+
in_channels (`int`):
|
463 |
+
Number of input channels.
|
464 |
+
out_channels (`int`, *optional*):
|
465 |
+
Number of output channels. If None, defaults to `in_channels`.
|
466 |
+
num_layers (`int`, defaults to `1`):
|
467 |
+
Number of resnet layers.
|
468 |
+
dropout (`float`, defaults to `0.0`):
|
469 |
+
Dropout rate.
|
470 |
+
resnet_eps (`float`, defaults to `1e-6`):
|
471 |
+
Epsilon value for normalization layers.
|
472 |
+
resnet_act_fn (`str`, defaults to `"swish"`):
|
473 |
+
Activation function to use.
|
474 |
+
spatio_temporal_scale (`bool`, defaults to `True`):
|
475 |
+
Whether or not to use a downsampling layer. If not used, output dimension would be same as input dimension.
|
476 |
+
Whether or not to downsample across temporal dimension.
|
477 |
+
is_causal (`bool`, defaults to `True`):
|
478 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
479 |
+
"""
|
480 |
+
|
481 |
+
_supports_gradient_checkpointing = True
|
482 |
+
|
483 |
+
def __init__(
|
484 |
+
self,
|
485 |
+
in_channels: int,
|
486 |
+
out_channels: Optional[int] = None,
|
487 |
+
num_layers: int = 1,
|
488 |
+
dropout: float = 0.0,
|
489 |
+
resnet_eps: float = 1e-6,
|
490 |
+
resnet_act_fn: str = "swish",
|
491 |
+
spatio_temporal_scale: bool = True,
|
492 |
+
is_causal: bool = True,
|
493 |
+
inject_noise: bool = False,
|
494 |
+
timestep_conditioning: bool = False,
|
495 |
+
upsample_residual: bool = False,
|
496 |
+
upscale_factor: int = 1,
|
497 |
+
):
|
498 |
+
super().__init__()
|
499 |
+
|
500 |
+
out_channels = out_channels or in_channels
|
501 |
+
|
502 |
+
self.time_embedder = None
|
503 |
+
if timestep_conditioning:
|
504 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(in_channels * 4, 0)
|
505 |
+
|
506 |
+
self.conv_in = None
|
507 |
+
if in_channels != out_channels:
|
508 |
+
self.conv_in = LTXVideoResnetBlock3d(
|
509 |
+
in_channels=in_channels,
|
510 |
+
out_channels=out_channels,
|
511 |
+
dropout=dropout,
|
512 |
+
eps=resnet_eps,
|
513 |
+
non_linearity=resnet_act_fn,
|
514 |
+
is_causal=is_causal,
|
515 |
+
inject_noise=inject_noise,
|
516 |
+
timestep_conditioning=timestep_conditioning,
|
517 |
+
)
|
518 |
+
|
519 |
+
self.upsamplers = None
|
520 |
+
if spatio_temporal_scale:
|
521 |
+
self.upsamplers = nn.ModuleList(
|
522 |
+
[
|
523 |
+
LTXVideoUpsampler3d(
|
524 |
+
out_channels * upscale_factor,
|
525 |
+
stride=(2, 2, 2),
|
526 |
+
is_causal=is_causal,
|
527 |
+
residual=upsample_residual,
|
528 |
+
upscale_factor=upscale_factor,
|
529 |
+
)
|
530 |
+
]
|
531 |
+
)
|
532 |
+
|
533 |
+
resnets = []
|
534 |
+
for _ in range(num_layers):
|
535 |
+
resnets.append(
|
536 |
+
LTXVideoResnetBlock3d(
|
537 |
+
in_channels=out_channels,
|
538 |
+
out_channels=out_channels,
|
539 |
+
dropout=dropout,
|
540 |
+
eps=resnet_eps,
|
541 |
+
non_linearity=resnet_act_fn,
|
542 |
+
is_causal=is_causal,
|
543 |
+
inject_noise=inject_noise,
|
544 |
+
timestep_conditioning=timestep_conditioning,
|
545 |
+
)
|
546 |
+
)
|
547 |
+
self.resnets = nn.ModuleList(resnets)
|
548 |
+
|
549 |
+
self.gradient_checkpointing = False
|
550 |
+
|
551 |
+
def forward(
|
552 |
+
self,
|
553 |
+
hidden_states: torch.Tensor,
|
554 |
+
temb: Optional[torch.Tensor] = None,
|
555 |
+
generator: Optional[torch.Generator] = None,
|
556 |
+
) -> torch.Tensor:
|
557 |
+
if self.conv_in is not None:
|
558 |
+
hidden_states = self.conv_in(hidden_states, temb, generator)
|
559 |
+
|
560 |
+
if self.time_embedder is not None:
|
561 |
+
temb = self.time_embedder(
|
562 |
+
timestep=temb.flatten(),
|
563 |
+
resolution=None,
|
564 |
+
aspect_ratio=None,
|
565 |
+
batch_size=hidden_states.size(0),
|
566 |
+
hidden_dtype=hidden_states.dtype,
|
567 |
+
)
|
568 |
+
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1)
|
569 |
+
|
570 |
+
if self.upsamplers is not None:
|
571 |
+
for upsampler in self.upsamplers:
|
572 |
+
hidden_states = upsampler(hidden_states)
|
573 |
+
|
574 |
+
for i, resnet in enumerate(self.resnets):
|
575 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
576 |
+
|
577 |
+
def create_custom_forward(module):
|
578 |
+
def create_forward(*inputs):
|
579 |
+
return module(*inputs)
|
580 |
+
|
581 |
+
return create_forward
|
582 |
+
|
583 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
584 |
+
create_custom_forward(resnet), hidden_states, temb, generator
|
585 |
+
)
|
586 |
+
else:
|
587 |
+
hidden_states = resnet(hidden_states, temb, generator)
|
588 |
+
|
589 |
+
return hidden_states
|
590 |
+
|
591 |
+
|
592 |
+
class LTXVideoEncoder3d(nn.Module):
|
593 |
+
r"""
|
594 |
+
The `LTXVideoEncoder3d` layer of a variational autoencoder that encodes input video samples to its latent
|
595 |
+
representation.
|
596 |
+
|
597 |
+
Args:
|
598 |
+
in_channels (`int`, defaults to 3):
|
599 |
+
Number of input channels.
|
600 |
+
out_channels (`int`, defaults to 128):
|
601 |
+
Number of latent channels.
|
602 |
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
603 |
+
The number of output channels for each block.
|
604 |
+
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
|
605 |
+
Whether a block should contain spatio-temporal downscaling layers or not.
|
606 |
+
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
|
607 |
+
The number of layers per block.
|
608 |
+
patch_size (`int`, defaults to `4`):
|
609 |
+
The size of spatial patches.
|
610 |
+
patch_size_t (`int`, defaults to `1`):
|
611 |
+
The size of temporal patches.
|
612 |
+
resnet_norm_eps (`float`, defaults to `1e-6`):
|
613 |
+
Epsilon value for ResNet normalization layers.
|
614 |
+
is_causal (`bool`, defaults to `True`):
|
615 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
616 |
+
"""
|
617 |
+
|
618 |
+
def __init__(
|
619 |
+
self,
|
620 |
+
in_channels: int = 3,
|
621 |
+
out_channels: int = 128,
|
622 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
623 |
+
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
624 |
+
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
625 |
+
patch_size: int = 4,
|
626 |
+
patch_size_t: int = 1,
|
627 |
+
resnet_norm_eps: float = 1e-6,
|
628 |
+
is_causal: bool = True,
|
629 |
+
):
|
630 |
+
super().__init__()
|
631 |
+
|
632 |
+
self.patch_size = patch_size
|
633 |
+
self.patch_size_t = patch_size_t
|
634 |
+
self.in_channels = in_channels * patch_size**2
|
635 |
+
|
636 |
+
output_channel = block_out_channels[0]
|
637 |
+
|
638 |
+
self.conv_in = LTXVideoCausalConv3d(
|
639 |
+
in_channels=self.in_channels,
|
640 |
+
out_channels=output_channel,
|
641 |
+
kernel_size=3,
|
642 |
+
stride=1,
|
643 |
+
is_causal=is_causal,
|
644 |
+
)
|
645 |
+
|
646 |
+
# down blocks
|
647 |
+
num_block_out_channels = len(block_out_channels)
|
648 |
+
self.down_blocks = nn.ModuleList([])
|
649 |
+
for i in range(num_block_out_channels):
|
650 |
+
input_channel = output_channel
|
651 |
+
output_channel = block_out_channels[i + 1] if i + 1 < num_block_out_channels else block_out_channels[i]
|
652 |
+
|
653 |
+
down_block = LTXVideoDownBlock3D(
|
654 |
+
in_channels=input_channel,
|
655 |
+
out_channels=output_channel,
|
656 |
+
num_layers=layers_per_block[i],
|
657 |
+
resnet_eps=resnet_norm_eps,
|
658 |
+
spatio_temporal_scale=spatio_temporal_scaling[i],
|
659 |
+
is_causal=is_causal,
|
660 |
+
)
|
661 |
+
|
662 |
+
self.down_blocks.append(down_block)
|
663 |
+
|
664 |
+
# mid block
|
665 |
+
self.mid_block = LTXVideoMidBlock3d(
|
666 |
+
in_channels=output_channel,
|
667 |
+
num_layers=layers_per_block[-1],
|
668 |
+
resnet_eps=resnet_norm_eps,
|
669 |
+
is_causal=is_causal,
|
670 |
+
)
|
671 |
+
|
672 |
+
# out
|
673 |
+
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
|
674 |
+
self.conv_act = nn.SiLU()
|
675 |
+
self.conv_out = LTXVideoCausalConv3d(
|
676 |
+
in_channels=output_channel, out_channels=out_channels + 1, kernel_size=3, stride=1, is_causal=is_causal
|
677 |
+
)
|
678 |
+
|
679 |
+
self.gradient_checkpointing = False
|
680 |
+
|
681 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
682 |
+
r"""The forward method of the `LTXVideoEncoder3d` class."""
|
683 |
+
|
684 |
+
p = self.patch_size
|
685 |
+
p_t = self.patch_size_t
|
686 |
+
|
687 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
688 |
+
post_patch_num_frames = num_frames // p_t
|
689 |
+
post_patch_height = height // p
|
690 |
+
post_patch_width = width // p
|
691 |
+
|
692 |
+
hidden_states = hidden_states.reshape(
|
693 |
+
batch_size, num_channels, post_patch_num_frames, p_t, post_patch_height, p, post_patch_width, p
|
694 |
+
)
|
695 |
+
# Thanks for driving me insane with the weird patching order :(
|
696 |
+
hidden_states = hidden_states.permute(0, 1, 3, 7, 5, 2, 4, 6).flatten(1, 4)
|
697 |
+
hidden_states = self.conv_in(hidden_states)
|
698 |
+
|
699 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
700 |
+
|
701 |
+
def create_custom_forward(module):
|
702 |
+
def create_forward(*inputs):
|
703 |
+
return module(*inputs)
|
704 |
+
|
705 |
+
return create_forward
|
706 |
+
|
707 |
+
for down_block in self.down_blocks:
|
708 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), hidden_states)
|
709 |
+
|
710 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), hidden_states)
|
711 |
+
else:
|
712 |
+
for down_block in self.down_blocks:
|
713 |
+
hidden_states = down_block(hidden_states)
|
714 |
+
|
715 |
+
hidden_states = self.mid_block(hidden_states)
|
716 |
+
|
717 |
+
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
718 |
+
hidden_states = self.conv_act(hidden_states)
|
719 |
+
hidden_states = self.conv_out(hidden_states)
|
720 |
+
|
721 |
+
last_channel = hidden_states[:, -1:]
|
722 |
+
last_channel = last_channel.repeat(1, hidden_states.size(1) - 2, 1, 1, 1)
|
723 |
+
hidden_states = torch.cat([hidden_states, last_channel], dim=1)
|
724 |
+
|
725 |
+
return hidden_states
|
726 |
+
|
727 |
+
|
728 |
+
class LTXVideoDecoder3d(nn.Module):
|
729 |
+
r"""
|
730 |
+
The `LTXVideoDecoder3d` layer of a variational autoencoder that decodes its latent representation into an output
|
731 |
+
sample.
|
732 |
+
|
733 |
+
Args:
|
734 |
+
in_channels (`int`, defaults to 128):
|
735 |
+
Number of latent channels.
|
736 |
+
out_channels (`int`, defaults to 3):
|
737 |
+
Number of output channels.
|
738 |
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
739 |
+
The number of output channels for each block.
|
740 |
+
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
|
741 |
+
Whether a block should contain spatio-temporal upscaling layers or not.
|
742 |
+
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
|
743 |
+
The number of layers per block.
|
744 |
+
patch_size (`int`, defaults to `4`):
|
745 |
+
The size of spatial patches.
|
746 |
+
patch_size_t (`int`, defaults to `1`):
|
747 |
+
The size of temporal patches.
|
748 |
+
resnet_norm_eps (`float`, defaults to `1e-6`):
|
749 |
+
Epsilon value for ResNet normalization layers.
|
750 |
+
is_causal (`bool`, defaults to `False`):
|
751 |
+
Whether this layer behaves causally (future frames depend only on past frames) or not.
|
752 |
+
timestep_conditioning (`bool`, defaults to `False`):
|
753 |
+
Whether to condition the model on timesteps.
|
754 |
+
"""
|
755 |
+
|
756 |
+
def __init__(
|
757 |
+
self,
|
758 |
+
in_channels: int = 128,
|
759 |
+
out_channels: int = 3,
|
760 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
761 |
+
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
762 |
+
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
763 |
+
patch_size: int = 4,
|
764 |
+
patch_size_t: int = 1,
|
765 |
+
resnet_norm_eps: float = 1e-6,
|
766 |
+
is_causal: bool = False,
|
767 |
+
inject_noise: Tuple[bool, ...] = (False, False, False, False),
|
768 |
+
timestep_conditioning: bool = False,
|
769 |
+
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
|
770 |
+
upsample_factor: Tuple[bool, ...] = (1, 1, 1, 1),
|
771 |
+
) -> None:
|
772 |
+
super().__init__()
|
773 |
+
|
774 |
+
self.patch_size = patch_size
|
775 |
+
self.patch_size_t = patch_size_t
|
776 |
+
self.out_channels = out_channels * patch_size**2
|
777 |
+
|
778 |
+
block_out_channels = tuple(reversed(block_out_channels))
|
779 |
+
spatio_temporal_scaling = tuple(reversed(spatio_temporal_scaling))
|
780 |
+
layers_per_block = tuple(reversed(layers_per_block))
|
781 |
+
inject_noise = tuple(reversed(inject_noise))
|
782 |
+
upsample_residual = tuple(reversed(upsample_residual))
|
783 |
+
upsample_factor = tuple(reversed(upsample_factor))
|
784 |
+
output_channel = block_out_channels[0]
|
785 |
+
|
786 |
+
self.conv_in = LTXVideoCausalConv3d(
|
787 |
+
in_channels=in_channels, out_channels=output_channel, kernel_size=3, stride=1, is_causal=is_causal
|
788 |
+
)
|
789 |
+
|
790 |
+
self.mid_block = LTXVideoMidBlock3d(
|
791 |
+
in_channels=output_channel,
|
792 |
+
num_layers=layers_per_block[0],
|
793 |
+
resnet_eps=resnet_norm_eps,
|
794 |
+
is_causal=is_causal,
|
795 |
+
inject_noise=inject_noise[0],
|
796 |
+
timestep_conditioning=timestep_conditioning,
|
797 |
+
)
|
798 |
+
|
799 |
+
# up blocks
|
800 |
+
num_block_out_channels = len(block_out_channels)
|
801 |
+
self.up_blocks = nn.ModuleList([])
|
802 |
+
for i in range(num_block_out_channels):
|
803 |
+
input_channel = output_channel // upsample_factor[i]
|
804 |
+
output_channel = block_out_channels[i] // upsample_factor[i]
|
805 |
+
|
806 |
+
up_block = LTXVideoUpBlock3d(
|
807 |
+
in_channels=input_channel,
|
808 |
+
out_channels=output_channel,
|
809 |
+
num_layers=layers_per_block[i + 1],
|
810 |
+
resnet_eps=resnet_norm_eps,
|
811 |
+
spatio_temporal_scale=spatio_temporal_scaling[i],
|
812 |
+
is_causal=is_causal,
|
813 |
+
inject_noise=inject_noise[i + 1],
|
814 |
+
timestep_conditioning=timestep_conditioning,
|
815 |
+
upsample_residual=upsample_residual[i],
|
816 |
+
upscale_factor=upsample_factor[i],
|
817 |
+
)
|
818 |
+
|
819 |
+
self.up_blocks.append(up_block)
|
820 |
+
|
821 |
+
# out
|
822 |
+
self.norm_out = RMSNorm(out_channels, eps=1e-8, elementwise_affine=False)
|
823 |
+
self.conv_act = nn.SiLU()
|
824 |
+
self.conv_out = LTXVideoCausalConv3d(
|
825 |
+
in_channels=output_channel, out_channels=self.out_channels, kernel_size=3, stride=1, is_causal=is_causal
|
826 |
+
)
|
827 |
+
|
828 |
+
# timestep embedding
|
829 |
+
self.time_embedder = None
|
830 |
+
self.scale_shift_table = None
|
831 |
+
if timestep_conditioning:
|
832 |
+
self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings(output_channel * 2, 0)
|
833 |
+
self.scale_shift_table = nn.Parameter(torch.randn(2, output_channel) / output_channel**0.5)
|
834 |
+
|
835 |
+
self.gradient_checkpointing = False
|
836 |
+
|
837 |
+
def forward(self, hidden_states: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
|
838 |
+
hidden_states = self.conv_in(hidden_states)
|
839 |
+
|
840 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
841 |
+
|
842 |
+
def create_custom_forward(module):
|
843 |
+
def create_forward(*inputs):
|
844 |
+
return module(*inputs)
|
845 |
+
|
846 |
+
return create_forward
|
847 |
+
|
848 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
849 |
+
create_custom_forward(self.mid_block), hidden_states, temb
|
850 |
+
)
|
851 |
+
|
852 |
+
for up_block in self.up_blocks:
|
853 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), hidden_states, temb)
|
854 |
+
else:
|
855 |
+
hidden_states = self.mid_block(hidden_states, temb)
|
856 |
+
|
857 |
+
for up_block in self.up_blocks:
|
858 |
+
hidden_states = up_block(hidden_states, temb)
|
859 |
+
|
860 |
+
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
|
861 |
+
|
862 |
+
if self.time_embedder is not None:
|
863 |
+
temb = self.time_embedder(
|
864 |
+
timestep=temb.flatten(),
|
865 |
+
resolution=None,
|
866 |
+
aspect_ratio=None,
|
867 |
+
batch_size=hidden_states.size(0),
|
868 |
+
hidden_dtype=hidden_states.dtype,
|
869 |
+
)
|
870 |
+
temb = temb.view(hidden_states.size(0), -1, 1, 1, 1).unflatten(1, (2, -1))
|
871 |
+
temb = temb + self.scale_shift_table[None, ..., None, None, None]
|
872 |
+
shift, scale = temb.unbind(dim=1)
|
873 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
874 |
+
|
875 |
+
hidden_states = self.conv_act(hidden_states)
|
876 |
+
hidden_states = self.conv_out(hidden_states)
|
877 |
+
|
878 |
+
p = self.patch_size
|
879 |
+
p_t = self.patch_size_t
|
880 |
+
|
881 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
882 |
+
hidden_states = hidden_states.reshape(batch_size, -1, p_t, p, p, num_frames, height, width)
|
883 |
+
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 4, 7, 3).flatten(6, 7).flatten(4, 5).flatten(2, 3)
|
884 |
+
|
885 |
+
return hidden_states
|
886 |
+
|
887 |
+
|
888 |
+
class AutoencoderKLLTXVideo(ModelMixin, ConfigMixin, FromOriginalModelMixin):
|
889 |
+
r"""
|
890 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
|
891 |
+
[LTX](https://huggingface.co/Lightricks/LTX-Video).
|
892 |
+
|
893 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
894 |
+
for all models (such as downloading or saving).
|
895 |
+
|
896 |
+
Args:
|
897 |
+
in_channels (`int`, defaults to `3`):
|
898 |
+
Number of input channels.
|
899 |
+
out_channels (`int`, defaults to `3`):
|
900 |
+
Number of output channels.
|
901 |
+
latent_channels (`int`, defaults to `128`):
|
902 |
+
Number of latent channels.
|
903 |
+
block_out_channels (`Tuple[int, ...]`, defaults to `(128, 256, 512, 512)`):
|
904 |
+
The number of output channels for each block.
|
905 |
+
spatio_temporal_scaling (`Tuple[bool, ...], defaults to `(True, True, True, False)`:
|
906 |
+
Whether a block should contain spatio-temporal downscaling or not.
|
907 |
+
layers_per_block (`Tuple[int, ...]`, defaults to `(4, 3, 3, 3, 4)`):
|
908 |
+
The number of layers per block.
|
909 |
+
patch_size (`int`, defaults to `4`):
|
910 |
+
The size of spatial patches.
|
911 |
+
patch_size_t (`int`, defaults to `1`):
|
912 |
+
The size of temporal patches.
|
913 |
+
resnet_norm_eps (`float`, defaults to `1e-6`):
|
914 |
+
Epsilon value for ResNet normalization layers.
|
915 |
+
scaling_factor (`float`, *optional*, defaults to `1.0`):
|
916 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
917 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
918 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
919 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
920 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
921 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
922 |
+
encoder_causal (`bool`, defaults to `True`):
|
923 |
+
Whether the encoder should behave causally (future frames depend only on past frames) or not.
|
924 |
+
decoder_causal (`bool`, defaults to `False`):
|
925 |
+
Whether the decoder should behave causally (future frames depend only on past frames) or not.
|
926 |
+
"""
|
927 |
+
|
928 |
+
_supports_gradient_checkpointing = True
|
929 |
+
|
930 |
+
@register_to_config
|
931 |
+
def __init__(
|
932 |
+
self,
|
933 |
+
in_channels: int = 3,
|
934 |
+
out_channels: int = 3,
|
935 |
+
latent_channels: int = 128,
|
936 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
937 |
+
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
938 |
+
layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
939 |
+
decoder_layers_per_block: Tuple[int, ...] = (4, 3, 3, 3, 4),
|
940 |
+
spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
941 |
+
decoder_spatio_temporal_scaling: Tuple[bool, ...] = (True, True, True, False),
|
942 |
+
decoder_inject_noise: Tuple[bool, ...] = (False, False, False, False, False),
|
943 |
+
upsample_residual: Tuple[bool, ...] = (False, False, False, False),
|
944 |
+
upsample_factor: Tuple[int, ...] = (1, 1, 1, 1),
|
945 |
+
timestep_conditioning: bool = False,
|
946 |
+
patch_size: int = 4,
|
947 |
+
patch_size_t: int = 1,
|
948 |
+
resnet_norm_eps: float = 1e-6,
|
949 |
+
scaling_factor: float = 1.0,
|
950 |
+
encoder_causal: bool = True,
|
951 |
+
decoder_causal: bool = False,
|
952 |
+
) -> None:
|
953 |
+
super().__init__()
|
954 |
+
|
955 |
+
self.encoder = LTXVideoEncoder3d(
|
956 |
+
in_channels=in_channels,
|
957 |
+
out_channels=latent_channels,
|
958 |
+
block_out_channels=block_out_channels,
|
959 |
+
spatio_temporal_scaling=spatio_temporal_scaling,
|
960 |
+
layers_per_block=layers_per_block,
|
961 |
+
patch_size=patch_size,
|
962 |
+
patch_size_t=patch_size_t,
|
963 |
+
resnet_norm_eps=resnet_norm_eps,
|
964 |
+
is_causal=encoder_causal,
|
965 |
+
)
|
966 |
+
self.decoder = LTXVideoDecoder3d(
|
967 |
+
in_channels=latent_channels,
|
968 |
+
out_channels=out_channels,
|
969 |
+
block_out_channels=decoder_block_out_channels,
|
970 |
+
spatio_temporal_scaling=decoder_spatio_temporal_scaling,
|
971 |
+
layers_per_block=decoder_layers_per_block,
|
972 |
+
patch_size=patch_size,
|
973 |
+
patch_size_t=patch_size_t,
|
974 |
+
resnet_norm_eps=resnet_norm_eps,
|
975 |
+
is_causal=decoder_causal,
|
976 |
+
timestep_conditioning=timestep_conditioning,
|
977 |
+
inject_noise=decoder_inject_noise,
|
978 |
+
upsample_residual=upsample_residual,
|
979 |
+
upsample_factor=upsample_factor,
|
980 |
+
)
|
981 |
+
|
982 |
+
latents_mean = torch.zeros((latent_channels,), requires_grad=False)
|
983 |
+
latents_std = torch.ones((latent_channels,), requires_grad=False)
|
984 |
+
self.register_buffer("latents_mean", latents_mean, persistent=True)
|
985 |
+
self.register_buffer("latents_std", latents_std, persistent=True)
|
986 |
+
|
987 |
+
self.spatial_compression_ratio = patch_size * 2 ** sum(spatio_temporal_scaling)
|
988 |
+
self.temporal_compression_ratio = patch_size_t * 2 ** sum(spatio_temporal_scaling)
|
989 |
+
|
990 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
991 |
+
# to perform decoding of a single video latent at a time.
|
992 |
+
self.use_slicing = False
|
993 |
+
|
994 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
995 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
996 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
997 |
+
self.use_tiling = False
|
998 |
+
|
999 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
1000 |
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
|
1001 |
+
self.use_framewise_encoding = False
|
1002 |
+
self.use_framewise_decoding = False
|
1003 |
+
|
1004 |
+
# This can be configured based on the amount of GPU memory available.
|
1005 |
+
# `16` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
|
1006 |
+
# Setting it to higher values results in higher memory usage.
|
1007 |
+
self.num_sample_frames_batch_size = 16
|
1008 |
+
self.num_latent_frames_batch_size = 2
|
1009 |
+
|
1010 |
+
# The minimal tile height and width for spatial tiling to be used
|
1011 |
+
self.tile_sample_min_height = 512
|
1012 |
+
self.tile_sample_min_width = 512
|
1013 |
+
|
1014 |
+
# The minimal distance between two spatial tiles
|
1015 |
+
self.tile_sample_stride_height = 448
|
1016 |
+
self.tile_sample_stride_width = 448
|
1017 |
+
|
1018 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
1019 |
+
if isinstance(module, (LTXVideoEncoder3d, LTXVideoDecoder3d)):
|
1020 |
+
module.gradient_checkpointing = value
|
1021 |
+
|
1022 |
+
def enable_tiling(
|
1023 |
+
self,
|
1024 |
+
tile_sample_min_height: Optional[int] = None,
|
1025 |
+
tile_sample_min_width: Optional[int] = None,
|
1026 |
+
tile_sample_stride_height: Optional[float] = None,
|
1027 |
+
tile_sample_stride_width: Optional[float] = None,
|
1028 |
+
) -> None:
|
1029 |
+
r"""
|
1030 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
1031 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
1032 |
+
processing larger images.
|
1033 |
+
|
1034 |
+
Args:
|
1035 |
+
tile_sample_min_height (`int`, *optional*):
|
1036 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
1037 |
+
tile_sample_min_width (`int`, *optional*):
|
1038 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
1039 |
+
tile_sample_stride_height (`int`, *optional*):
|
1040 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
1041 |
+
no tiling artifacts produced across the height dimension.
|
1042 |
+
tile_sample_stride_width (`int`, *optional*):
|
1043 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
1044 |
+
artifacts produced across the width dimension.
|
1045 |
+
"""
|
1046 |
+
self.use_tiling = True
|
1047 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
1048 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
1049 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
1050 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
1051 |
+
|
1052 |
+
def disable_tiling(self) -> None:
|
1053 |
+
r"""
|
1054 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
1055 |
+
decoding in one step.
|
1056 |
+
"""
|
1057 |
+
self.use_tiling = False
|
1058 |
+
|
1059 |
+
def enable_slicing(self) -> None:
|
1060 |
+
r"""
|
1061 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
1062 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
1063 |
+
"""
|
1064 |
+
self.use_slicing = True
|
1065 |
+
|
1066 |
+
def disable_slicing(self) -> None:
|
1067 |
+
r"""
|
1068 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
1069 |
+
decoding in one step.
|
1070 |
+
"""
|
1071 |
+
self.use_slicing = False
|
1072 |
+
|
1073 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
1074 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
1075 |
+
|
1076 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
1077 |
+
return self.tiled_encode(x)
|
1078 |
+
|
1079 |
+
if self.use_framewise_encoding:
|
1080 |
+
# TODO(aryan): requires investigation
|
1081 |
+
raise NotImplementedError(
|
1082 |
+
"Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
|
1083 |
+
"quality issues caused by splitting inference across frame dimension. If you believe this "
|
1084 |
+
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
|
1085 |
+
)
|
1086 |
+
else:
|
1087 |
+
enc = self.encoder(x)
|
1088 |
+
|
1089 |
+
return enc
|
1090 |
+
|
1091 |
+
@apply_forward_hook
|
1092 |
+
def encode(
|
1093 |
+
self, x: torch.Tensor, return_dict: bool = True
|
1094 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
1095 |
+
"""
|
1096 |
+
Encode a batch of images into latents.
|
1097 |
+
|
1098 |
+
Args:
|
1099 |
+
x (`torch.Tensor`): Input batch of images.
|
1100 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1101 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
1102 |
+
|
1103 |
+
Returns:
|
1104 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
1105 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
1106 |
+
"""
|
1107 |
+
if self.use_slicing and x.shape[0] > 1:
|
1108 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
1109 |
+
h = torch.cat(encoded_slices)
|
1110 |
+
else:
|
1111 |
+
h = self._encode(x)
|
1112 |
+
posterior = DiagonalGaussianDistribution(h)
|
1113 |
+
|
1114 |
+
if not return_dict:
|
1115 |
+
return (posterior,)
|
1116 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
1117 |
+
|
1118 |
+
def _decode(
|
1119 |
+
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
|
1120 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
1121 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1122 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1123 |
+
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
1124 |
+
|
1125 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
1126 |
+
return self.tiled_decode(z, temb, return_dict=return_dict)
|
1127 |
+
|
1128 |
+
if self.use_framewise_decoding:
|
1129 |
+
# TODO(aryan): requires investigation
|
1130 |
+
raise NotImplementedError(
|
1131 |
+
"Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
|
1132 |
+
"quality issues caused by splitting inference across frame dimension. If you believe this "
|
1133 |
+
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
|
1134 |
+
)
|
1135 |
+
else:
|
1136 |
+
dec = self.decoder(z, temb)
|
1137 |
+
|
1138 |
+
if not return_dict:
|
1139 |
+
return (dec,)
|
1140 |
+
|
1141 |
+
return DecoderOutput(sample=dec)
|
1142 |
+
|
1143 |
+
@apply_forward_hook
|
1144 |
+
def decode(
|
1145 |
+
self, z: torch.Tensor, temb: Optional[torch.Tensor] = None, return_dict: bool = True
|
1146 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
1147 |
+
"""
|
1148 |
+
Decode a batch of images.
|
1149 |
+
|
1150 |
+
Args:
|
1151 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
1152 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1153 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
1154 |
+
|
1155 |
+
Returns:
|
1156 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
1157 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
1158 |
+
returned.
|
1159 |
+
"""
|
1160 |
+
if self.use_slicing and z.shape[0] > 1:
|
1161 |
+
if temb is not None:
|
1162 |
+
decoded_slices = [
|
1163 |
+
self._decode(z_slice, t_slice).sample for z_slice, t_slice in (z.split(1), temb.split(1))
|
1164 |
+
]
|
1165 |
+
else:
|
1166 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
1167 |
+
decoded = torch.cat(decoded_slices)
|
1168 |
+
else:
|
1169 |
+
decoded = self._decode(z, temb).sample
|
1170 |
+
|
1171 |
+
if not return_dict:
|
1172 |
+
return (decoded,)
|
1173 |
+
|
1174 |
+
return DecoderOutput(sample=decoded)
|
1175 |
+
|
1176 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
1177 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
1178 |
+
for y in range(blend_extent):
|
1179 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
1180 |
+
y / blend_extent
|
1181 |
+
)
|
1182 |
+
return b
|
1183 |
+
|
1184 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
1185 |
+
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
1186 |
+
for x in range(blend_extent):
|
1187 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
1188 |
+
x / blend_extent
|
1189 |
+
)
|
1190 |
+
return b
|
1191 |
+
|
1192 |
+
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
1193 |
+
r"""Encode a batch of images using a tiled encoder.
|
1194 |
+
|
1195 |
+
Args:
|
1196 |
+
x (`torch.Tensor`): Input batch of videos.
|
1197 |
+
|
1198 |
+
Returns:
|
1199 |
+
`torch.Tensor`:
|
1200 |
+
The latent representation of the encoded videos.
|
1201 |
+
"""
|
1202 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
1203 |
+
latent_height = height // self.spatial_compression_ratio
|
1204 |
+
latent_width = width // self.spatial_compression_ratio
|
1205 |
+
|
1206 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1207 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1208 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
1209 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
1210 |
+
|
1211 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
1212 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
1213 |
+
|
1214 |
+
# Split x into overlapping tiles and encode them separately.
|
1215 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1216 |
+
rows = []
|
1217 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
1218 |
+
row = []
|
1219 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
1220 |
+
if self.use_framewise_encoding:
|
1221 |
+
# TODO(aryan): requires investigation
|
1222 |
+
raise NotImplementedError(
|
1223 |
+
"Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
|
1224 |
+
"quality issues caused by splitting inference across frame dimension. If you believe this "
|
1225 |
+
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
|
1226 |
+
)
|
1227 |
+
else:
|
1228 |
+
time = self.encoder(
|
1229 |
+
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
row.append(time)
|
1233 |
+
rows.append(row)
|
1234 |
+
|
1235 |
+
result_rows = []
|
1236 |
+
for i, row in enumerate(rows):
|
1237 |
+
result_row = []
|
1238 |
+
for j, tile in enumerate(row):
|
1239 |
+
# blend the above tile and the left tile
|
1240 |
+
# to the current tile and add the current tile to the result row
|
1241 |
+
if i > 0:
|
1242 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1243 |
+
if j > 0:
|
1244 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1245 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
1246 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
1247 |
+
|
1248 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
1249 |
+
return enc
|
1250 |
+
|
1251 |
+
def tiled_decode(
|
1252 |
+
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
|
1253 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
1254 |
+
r"""
|
1255 |
+
Decode a batch of images using a tiled decoder.
|
1256 |
+
|
1257 |
+
Args:
|
1258 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
1259 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1260 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
1261 |
+
|
1262 |
+
Returns:
|
1263 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
1264 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
1265 |
+
returned.
|
1266 |
+
"""
|
1267 |
+
|
1268 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1269 |
+
sample_height = height * self.spatial_compression_ratio
|
1270 |
+
sample_width = width * self.spatial_compression_ratio
|
1271 |
+
|
1272 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1273 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1274 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
1275 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
1276 |
+
|
1277 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
1278 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
1279 |
+
|
1280 |
+
# Split z into overlapping tiles and decode them separately.
|
1281 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1282 |
+
rows = []
|
1283 |
+
for i in range(0, height, tile_latent_stride_height):
|
1284 |
+
row = []
|
1285 |
+
for j in range(0, width, tile_latent_stride_width):
|
1286 |
+
if self.use_framewise_decoding:
|
1287 |
+
# TODO(aryan): requires investigation
|
1288 |
+
raise NotImplementedError(
|
1289 |
+
"Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
|
1290 |
+
"quality issues caused by splitting inference across frame dimension. If you believe this "
|
1291 |
+
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
|
1292 |
+
)
|
1293 |
+
else:
|
1294 |
+
time = self.decoder(
|
1295 |
+
z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
row.append(time)
|
1299 |
+
rows.append(row)
|
1300 |
+
|
1301 |
+
result_rows = []
|
1302 |
+
for i, row in enumerate(rows):
|
1303 |
+
result_row = []
|
1304 |
+
for j, tile in enumerate(row):
|
1305 |
+
# blend the above tile and the left tile
|
1306 |
+
# to the current tile and add the current tile to the result row
|
1307 |
+
if i > 0:
|
1308 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1309 |
+
if j > 0:
|
1310 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1311 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
1312 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
1313 |
+
|
1314 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
1315 |
+
|
1316 |
+
if not return_dict:
|
1317 |
+
return (dec,)
|
1318 |
+
|
1319 |
+
return DecoderOutput(sample=dec)
|
1320 |
+
|
1321 |
+
def forward(
|
1322 |
+
self,
|
1323 |
+
sample: torch.Tensor,
|
1324 |
+
temb: Optional[torch.Tensor] = None,
|
1325 |
+
sample_posterior: bool = False,
|
1326 |
+
return_dict: bool = True,
|
1327 |
+
generator: Optional[torch.Generator] = None,
|
1328 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
1329 |
+
x = sample
|
1330 |
+
posterior = self.encode(x).latent_dist
|
1331 |
+
if sample_posterior:
|
1332 |
+
z = posterior.sample(generator=generator)
|
1333 |
+
else:
|
1334 |
+
z = posterior.mode()
|
1335 |
+
dec = self.decode(z, temb)
|
1336 |
+
if not return_dict:
|
1337 |
+
return (dec,)
|
1338 |
+
return dec
|
icedit/diffusers/models/autoencoders/autoencoder_kl_mochi.py
ADDED
@@ -0,0 +1,1166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The Mochi team and The HuggingFace Team.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import functools
|
17 |
+
from typing import Dict, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
|
22 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
23 |
+
from ...utils import logging
|
24 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
25 |
+
from ..activations import get_activation
|
26 |
+
from ..attention_processor import Attention, MochiVaeAttnProcessor2_0
|
27 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
28 |
+
from ..modeling_utils import ModelMixin
|
29 |
+
from .autoencoder_kl_cogvideox import CogVideoXCausalConv3d
|
30 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
34 |
+
|
35 |
+
|
36 |
+
class MochiChunkedGroupNorm3D(nn.Module):
|
37 |
+
r"""
|
38 |
+
Applies per-frame group normalization for 5D video inputs. It also supports memory-efficient chunked group
|
39 |
+
normalization.
|
40 |
+
|
41 |
+
Args:
|
42 |
+
num_channels (int): Number of channels expected in input
|
43 |
+
num_groups (int, optional): Number of groups to separate the channels into. Default: 32
|
44 |
+
affine (bool, optional): If True, this module has learnable affine parameters. Default: True
|
45 |
+
chunk_size (int, optional): Size of each chunk for processing. Default: 8
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
def __init__(
|
50 |
+
self,
|
51 |
+
num_channels: int,
|
52 |
+
num_groups: int = 32,
|
53 |
+
affine: bool = True,
|
54 |
+
chunk_size: int = 8,
|
55 |
+
):
|
56 |
+
super().__init__()
|
57 |
+
self.norm_layer = nn.GroupNorm(num_channels=num_channels, num_groups=num_groups, affine=affine)
|
58 |
+
self.chunk_size = chunk_size
|
59 |
+
|
60 |
+
def forward(self, x: torch.Tensor = None) -> torch.Tensor:
|
61 |
+
batch_size = x.size(0)
|
62 |
+
|
63 |
+
x = x.permute(0, 2, 1, 3, 4).flatten(0, 1)
|
64 |
+
output = torch.cat([self.norm_layer(chunk) for chunk in x.split(self.chunk_size, dim=0)], dim=0)
|
65 |
+
output = output.unflatten(0, (batch_size, -1)).permute(0, 2, 1, 3, 4)
|
66 |
+
|
67 |
+
return output
|
68 |
+
|
69 |
+
|
70 |
+
class MochiResnetBlock3D(nn.Module):
|
71 |
+
r"""
|
72 |
+
A 3D ResNet block used in the Mochi model.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
in_channels (`int`):
|
76 |
+
Number of input channels.
|
77 |
+
out_channels (`int`, *optional*):
|
78 |
+
Number of output channels. If None, defaults to `in_channels`.
|
79 |
+
non_linearity (`str`, defaults to `"swish"`):
|
80 |
+
Activation function to use.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
in_channels: int,
|
86 |
+
out_channels: Optional[int] = None,
|
87 |
+
act_fn: str = "swish",
|
88 |
+
):
|
89 |
+
super().__init__()
|
90 |
+
|
91 |
+
out_channels = out_channels or in_channels
|
92 |
+
|
93 |
+
self.in_channels = in_channels
|
94 |
+
self.out_channels = out_channels
|
95 |
+
self.nonlinearity = get_activation(act_fn)
|
96 |
+
|
97 |
+
self.norm1 = MochiChunkedGroupNorm3D(num_channels=in_channels)
|
98 |
+
self.conv1 = CogVideoXCausalConv3d(
|
99 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate"
|
100 |
+
)
|
101 |
+
self.norm2 = MochiChunkedGroupNorm3D(num_channels=out_channels)
|
102 |
+
self.conv2 = CogVideoXCausalConv3d(
|
103 |
+
in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, pad_mode="replicate"
|
104 |
+
)
|
105 |
+
|
106 |
+
def forward(
|
107 |
+
self,
|
108 |
+
inputs: torch.Tensor,
|
109 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
110 |
+
) -> torch.Tensor:
|
111 |
+
new_conv_cache = {}
|
112 |
+
conv_cache = conv_cache or {}
|
113 |
+
|
114 |
+
hidden_states = inputs
|
115 |
+
|
116 |
+
hidden_states = self.norm1(hidden_states)
|
117 |
+
hidden_states = self.nonlinearity(hidden_states)
|
118 |
+
hidden_states, new_conv_cache["conv1"] = self.conv1(hidden_states, conv_cache=conv_cache.get("conv1"))
|
119 |
+
|
120 |
+
hidden_states = self.norm2(hidden_states)
|
121 |
+
hidden_states = self.nonlinearity(hidden_states)
|
122 |
+
hidden_states, new_conv_cache["conv2"] = self.conv2(hidden_states, conv_cache=conv_cache.get("conv2"))
|
123 |
+
|
124 |
+
hidden_states = hidden_states + inputs
|
125 |
+
return hidden_states, new_conv_cache
|
126 |
+
|
127 |
+
|
128 |
+
class MochiDownBlock3D(nn.Module):
|
129 |
+
r"""
|
130 |
+
An downsampling block used in the Mochi model.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
in_channels (`int`):
|
134 |
+
Number of input channels.
|
135 |
+
out_channels (`int`, *optional*):
|
136 |
+
Number of output channels. If None, defaults to `in_channels`.
|
137 |
+
num_layers (`int`, defaults to `1`):
|
138 |
+
Number of resnet blocks in the block.
|
139 |
+
temporal_expansion (`int`, defaults to `2`):
|
140 |
+
Temporal expansion factor.
|
141 |
+
spatial_expansion (`int`, defaults to `2`):
|
142 |
+
Spatial expansion factor.
|
143 |
+
"""
|
144 |
+
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
in_channels: int,
|
148 |
+
out_channels: int,
|
149 |
+
num_layers: int = 1,
|
150 |
+
temporal_expansion: int = 2,
|
151 |
+
spatial_expansion: int = 2,
|
152 |
+
add_attention: bool = True,
|
153 |
+
):
|
154 |
+
super().__init__()
|
155 |
+
self.temporal_expansion = temporal_expansion
|
156 |
+
self.spatial_expansion = spatial_expansion
|
157 |
+
|
158 |
+
self.conv_in = CogVideoXCausalConv3d(
|
159 |
+
in_channels=in_channels,
|
160 |
+
out_channels=out_channels,
|
161 |
+
kernel_size=(temporal_expansion, spatial_expansion, spatial_expansion),
|
162 |
+
stride=(temporal_expansion, spatial_expansion, spatial_expansion),
|
163 |
+
pad_mode="replicate",
|
164 |
+
)
|
165 |
+
|
166 |
+
resnets = []
|
167 |
+
norms = []
|
168 |
+
attentions = []
|
169 |
+
for _ in range(num_layers):
|
170 |
+
resnets.append(MochiResnetBlock3D(in_channels=out_channels))
|
171 |
+
if add_attention:
|
172 |
+
norms.append(MochiChunkedGroupNorm3D(num_channels=out_channels))
|
173 |
+
attentions.append(
|
174 |
+
Attention(
|
175 |
+
query_dim=out_channels,
|
176 |
+
heads=out_channels // 32,
|
177 |
+
dim_head=32,
|
178 |
+
qk_norm="l2",
|
179 |
+
is_causal=True,
|
180 |
+
processor=MochiVaeAttnProcessor2_0(),
|
181 |
+
)
|
182 |
+
)
|
183 |
+
else:
|
184 |
+
norms.append(None)
|
185 |
+
attentions.append(None)
|
186 |
+
|
187 |
+
self.resnets = nn.ModuleList(resnets)
|
188 |
+
self.norms = nn.ModuleList(norms)
|
189 |
+
self.attentions = nn.ModuleList(attentions)
|
190 |
+
|
191 |
+
self.gradient_checkpointing = False
|
192 |
+
|
193 |
+
def forward(
|
194 |
+
self,
|
195 |
+
hidden_states: torch.Tensor,
|
196 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
197 |
+
chunk_size: int = 2**15,
|
198 |
+
) -> torch.Tensor:
|
199 |
+
r"""Forward method of the `MochiUpBlock3D` class."""
|
200 |
+
|
201 |
+
new_conv_cache = {}
|
202 |
+
conv_cache = conv_cache or {}
|
203 |
+
|
204 |
+
hidden_states, new_conv_cache["conv_in"] = self.conv_in(hidden_states)
|
205 |
+
|
206 |
+
for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)):
|
207 |
+
conv_cache_key = f"resnet_{i}"
|
208 |
+
|
209 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
210 |
+
|
211 |
+
def create_custom_forward(module):
|
212 |
+
def create_forward(*inputs):
|
213 |
+
return module(*inputs)
|
214 |
+
|
215 |
+
return create_forward
|
216 |
+
|
217 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
218 |
+
create_custom_forward(resnet),
|
219 |
+
hidden_states,
|
220 |
+
conv_cache=conv_cache.get(conv_cache_key),
|
221 |
+
)
|
222 |
+
else:
|
223 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
224 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
225 |
+
)
|
226 |
+
|
227 |
+
if attn is not None:
|
228 |
+
residual = hidden_states
|
229 |
+
hidden_states = norm(hidden_states)
|
230 |
+
|
231 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
232 |
+
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous()
|
233 |
+
|
234 |
+
# Perform attention in chunks to avoid following error:
|
235 |
+
# RuntimeError: CUDA error: invalid configuration argument
|
236 |
+
if hidden_states.size(0) <= chunk_size:
|
237 |
+
hidden_states = attn(hidden_states)
|
238 |
+
else:
|
239 |
+
hidden_states_chunks = []
|
240 |
+
for i in range(0, hidden_states.size(0), chunk_size):
|
241 |
+
hidden_states_chunk = hidden_states[i : i + chunk_size]
|
242 |
+
hidden_states_chunk = attn(hidden_states_chunk)
|
243 |
+
hidden_states_chunks.append(hidden_states_chunk)
|
244 |
+
hidden_states = torch.cat(hidden_states_chunks)
|
245 |
+
|
246 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2)
|
247 |
+
|
248 |
+
hidden_states = residual + hidden_states
|
249 |
+
|
250 |
+
return hidden_states, new_conv_cache
|
251 |
+
|
252 |
+
|
253 |
+
class MochiMidBlock3D(nn.Module):
|
254 |
+
r"""
|
255 |
+
A middle block used in the Mochi model.
|
256 |
+
|
257 |
+
Args:
|
258 |
+
in_channels (`int`):
|
259 |
+
Number of input channels.
|
260 |
+
num_layers (`int`, defaults to `3`):
|
261 |
+
Number of resnet blocks in the block.
|
262 |
+
"""
|
263 |
+
|
264 |
+
def __init__(
|
265 |
+
self,
|
266 |
+
in_channels: int, # 768
|
267 |
+
num_layers: int = 3,
|
268 |
+
add_attention: bool = True,
|
269 |
+
):
|
270 |
+
super().__init__()
|
271 |
+
|
272 |
+
resnets = []
|
273 |
+
norms = []
|
274 |
+
attentions = []
|
275 |
+
|
276 |
+
for _ in range(num_layers):
|
277 |
+
resnets.append(MochiResnetBlock3D(in_channels=in_channels))
|
278 |
+
|
279 |
+
if add_attention:
|
280 |
+
norms.append(MochiChunkedGroupNorm3D(num_channels=in_channels))
|
281 |
+
attentions.append(
|
282 |
+
Attention(
|
283 |
+
query_dim=in_channels,
|
284 |
+
heads=in_channels // 32,
|
285 |
+
dim_head=32,
|
286 |
+
qk_norm="l2",
|
287 |
+
is_causal=True,
|
288 |
+
processor=MochiVaeAttnProcessor2_0(),
|
289 |
+
)
|
290 |
+
)
|
291 |
+
else:
|
292 |
+
norms.append(None)
|
293 |
+
attentions.append(None)
|
294 |
+
|
295 |
+
self.resnets = nn.ModuleList(resnets)
|
296 |
+
self.norms = nn.ModuleList(norms)
|
297 |
+
self.attentions = nn.ModuleList(attentions)
|
298 |
+
|
299 |
+
self.gradient_checkpointing = False
|
300 |
+
|
301 |
+
def forward(
|
302 |
+
self,
|
303 |
+
hidden_states: torch.Tensor,
|
304 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
305 |
+
) -> torch.Tensor:
|
306 |
+
r"""Forward method of the `MochiMidBlock3D` class."""
|
307 |
+
|
308 |
+
new_conv_cache = {}
|
309 |
+
conv_cache = conv_cache or {}
|
310 |
+
|
311 |
+
for i, (resnet, norm, attn) in enumerate(zip(self.resnets, self.norms, self.attentions)):
|
312 |
+
conv_cache_key = f"resnet_{i}"
|
313 |
+
|
314 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
315 |
+
|
316 |
+
def create_custom_forward(module):
|
317 |
+
def create_forward(*inputs):
|
318 |
+
return module(*inputs)
|
319 |
+
|
320 |
+
return create_forward
|
321 |
+
|
322 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
323 |
+
create_custom_forward(resnet), hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
324 |
+
)
|
325 |
+
else:
|
326 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
327 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
328 |
+
)
|
329 |
+
|
330 |
+
if attn is not None:
|
331 |
+
residual = hidden_states
|
332 |
+
hidden_states = norm(hidden_states)
|
333 |
+
|
334 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
335 |
+
hidden_states = hidden_states.permute(0, 3, 4, 2, 1).flatten(0, 2).contiguous()
|
336 |
+
hidden_states = attn(hidden_states)
|
337 |
+
hidden_states = hidden_states.unflatten(0, (batch_size, height, width)).permute(0, 4, 3, 1, 2)
|
338 |
+
|
339 |
+
hidden_states = residual + hidden_states
|
340 |
+
|
341 |
+
return hidden_states, new_conv_cache
|
342 |
+
|
343 |
+
|
344 |
+
class MochiUpBlock3D(nn.Module):
|
345 |
+
r"""
|
346 |
+
An upsampling block used in the Mochi model.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
in_channels (`int`):
|
350 |
+
Number of input channels.
|
351 |
+
out_channels (`int`, *optional*):
|
352 |
+
Number of output channels. If None, defaults to `in_channels`.
|
353 |
+
num_layers (`int`, defaults to `1`):
|
354 |
+
Number of resnet blocks in the block.
|
355 |
+
temporal_expansion (`int`, defaults to `2`):
|
356 |
+
Temporal expansion factor.
|
357 |
+
spatial_expansion (`int`, defaults to `2`):
|
358 |
+
Spatial expansion factor.
|
359 |
+
"""
|
360 |
+
|
361 |
+
def __init__(
|
362 |
+
self,
|
363 |
+
in_channels: int,
|
364 |
+
out_channels: int,
|
365 |
+
num_layers: int = 1,
|
366 |
+
temporal_expansion: int = 2,
|
367 |
+
spatial_expansion: int = 2,
|
368 |
+
):
|
369 |
+
super().__init__()
|
370 |
+
self.temporal_expansion = temporal_expansion
|
371 |
+
self.spatial_expansion = spatial_expansion
|
372 |
+
|
373 |
+
resnets = []
|
374 |
+
for _ in range(num_layers):
|
375 |
+
resnets.append(MochiResnetBlock3D(in_channels=in_channels))
|
376 |
+
self.resnets = nn.ModuleList(resnets)
|
377 |
+
|
378 |
+
self.proj = nn.Linear(in_channels, out_channels * temporal_expansion * spatial_expansion**2)
|
379 |
+
|
380 |
+
self.gradient_checkpointing = False
|
381 |
+
|
382 |
+
def forward(
|
383 |
+
self,
|
384 |
+
hidden_states: torch.Tensor,
|
385 |
+
conv_cache: Optional[Dict[str, torch.Tensor]] = None,
|
386 |
+
) -> torch.Tensor:
|
387 |
+
r"""Forward method of the `MochiUpBlock3D` class."""
|
388 |
+
|
389 |
+
new_conv_cache = {}
|
390 |
+
conv_cache = conv_cache or {}
|
391 |
+
|
392 |
+
for i, resnet in enumerate(self.resnets):
|
393 |
+
conv_cache_key = f"resnet_{i}"
|
394 |
+
|
395 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
396 |
+
|
397 |
+
def create_custom_forward(module):
|
398 |
+
def create_forward(*inputs):
|
399 |
+
return module(*inputs)
|
400 |
+
|
401 |
+
return create_forward
|
402 |
+
|
403 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
404 |
+
create_custom_forward(resnet),
|
405 |
+
hidden_states,
|
406 |
+
conv_cache=conv_cache.get(conv_cache_key),
|
407 |
+
)
|
408 |
+
else:
|
409 |
+
hidden_states, new_conv_cache[conv_cache_key] = resnet(
|
410 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
411 |
+
)
|
412 |
+
|
413 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
414 |
+
hidden_states = self.proj(hidden_states)
|
415 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
416 |
+
|
417 |
+
batch_size, num_channels, num_frames, height, width = hidden_states.shape
|
418 |
+
st = self.temporal_expansion
|
419 |
+
sh = self.spatial_expansion
|
420 |
+
sw = self.spatial_expansion
|
421 |
+
|
422 |
+
# Reshape and unpatchify
|
423 |
+
hidden_states = hidden_states.view(batch_size, -1, st, sh, sw, num_frames, height, width)
|
424 |
+
hidden_states = hidden_states.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous()
|
425 |
+
hidden_states = hidden_states.view(batch_size, -1, num_frames * st, height * sh, width * sw)
|
426 |
+
|
427 |
+
return hidden_states, new_conv_cache
|
428 |
+
|
429 |
+
|
430 |
+
class FourierFeatures(nn.Module):
|
431 |
+
def __init__(self, start: int = 6, stop: int = 8, step: int = 1):
|
432 |
+
super().__init__()
|
433 |
+
|
434 |
+
self.start = start
|
435 |
+
self.stop = stop
|
436 |
+
self.step = step
|
437 |
+
|
438 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
439 |
+
r"""Forward method of the `FourierFeatures` class."""
|
440 |
+
original_dtype = inputs.dtype
|
441 |
+
inputs = inputs.to(torch.float32)
|
442 |
+
num_channels = inputs.shape[1]
|
443 |
+
num_freqs = (self.stop - self.start) // self.step
|
444 |
+
|
445 |
+
freqs = torch.arange(self.start, self.stop, self.step, dtype=inputs.dtype, device=inputs.device)
|
446 |
+
w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs]
|
447 |
+
w = w.repeat(num_channels)[None, :, None, None, None] # [1, num_channels * num_freqs, 1, 1, 1]
|
448 |
+
|
449 |
+
# Interleaved repeat of input channels to match w
|
450 |
+
h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W]
|
451 |
+
# Scale channels by frequency.
|
452 |
+
h = w * h
|
453 |
+
|
454 |
+
return torch.cat([inputs, torch.sin(h), torch.cos(h)], dim=1).to(original_dtype)
|
455 |
+
|
456 |
+
|
457 |
+
class MochiEncoder3D(nn.Module):
|
458 |
+
r"""
|
459 |
+
The `MochiEncoder3D` layer of a variational autoencoder that encodes input video samples to its latent
|
460 |
+
representation.
|
461 |
+
|
462 |
+
Args:
|
463 |
+
in_channels (`int`, *optional*):
|
464 |
+
The number of input channels.
|
465 |
+
out_channels (`int`, *optional*):
|
466 |
+
The number of output channels.
|
467 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`):
|
468 |
+
The number of output channels for each block.
|
469 |
+
layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`):
|
470 |
+
The number of resnet blocks for each block.
|
471 |
+
temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`):
|
472 |
+
The temporal expansion factor for each of the up blocks.
|
473 |
+
spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`):
|
474 |
+
The spatial expansion factor for each of the up blocks.
|
475 |
+
non_linearity (`str`, *optional*, defaults to `"swish"`):
|
476 |
+
The non-linearity to use in the decoder.
|
477 |
+
"""
|
478 |
+
|
479 |
+
def __init__(
|
480 |
+
self,
|
481 |
+
in_channels: int,
|
482 |
+
out_channels: int,
|
483 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 768),
|
484 |
+
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
|
485 |
+
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
|
486 |
+
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
|
487 |
+
add_attention_block: Tuple[bool, ...] = (False, True, True, True, True),
|
488 |
+
act_fn: str = "swish",
|
489 |
+
):
|
490 |
+
super().__init__()
|
491 |
+
|
492 |
+
self.nonlinearity = get_activation(act_fn)
|
493 |
+
|
494 |
+
self.fourier_features = FourierFeatures()
|
495 |
+
self.proj_in = nn.Linear(in_channels, block_out_channels[0])
|
496 |
+
self.block_in = MochiMidBlock3D(
|
497 |
+
in_channels=block_out_channels[0], num_layers=layers_per_block[0], add_attention=add_attention_block[0]
|
498 |
+
)
|
499 |
+
|
500 |
+
down_blocks = []
|
501 |
+
for i in range(len(block_out_channels) - 1):
|
502 |
+
down_block = MochiDownBlock3D(
|
503 |
+
in_channels=block_out_channels[i],
|
504 |
+
out_channels=block_out_channels[i + 1],
|
505 |
+
num_layers=layers_per_block[i + 1],
|
506 |
+
temporal_expansion=temporal_expansions[i],
|
507 |
+
spatial_expansion=spatial_expansions[i],
|
508 |
+
add_attention=add_attention_block[i + 1],
|
509 |
+
)
|
510 |
+
down_blocks.append(down_block)
|
511 |
+
self.down_blocks = nn.ModuleList(down_blocks)
|
512 |
+
|
513 |
+
self.block_out = MochiMidBlock3D(
|
514 |
+
in_channels=block_out_channels[-1], num_layers=layers_per_block[-1], add_attention=add_attention_block[-1]
|
515 |
+
)
|
516 |
+
self.norm_out = MochiChunkedGroupNorm3D(block_out_channels[-1])
|
517 |
+
self.proj_out = nn.Linear(block_out_channels[-1], 2 * out_channels, bias=False)
|
518 |
+
|
519 |
+
def forward(
|
520 |
+
self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
|
521 |
+
) -> torch.Tensor:
|
522 |
+
r"""Forward method of the `MochiEncoder3D` class."""
|
523 |
+
|
524 |
+
new_conv_cache = {}
|
525 |
+
conv_cache = conv_cache or {}
|
526 |
+
|
527 |
+
hidden_states = self.fourier_features(hidden_states)
|
528 |
+
|
529 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
530 |
+
hidden_states = self.proj_in(hidden_states)
|
531 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
532 |
+
|
533 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
534 |
+
|
535 |
+
def create_custom_forward(module):
|
536 |
+
def create_forward(*inputs):
|
537 |
+
return module(*inputs)
|
538 |
+
|
539 |
+
return create_forward
|
540 |
+
|
541 |
+
hidden_states, new_conv_cache["block_in"] = torch.utils.checkpoint.checkpoint(
|
542 |
+
create_custom_forward(self.block_in), hidden_states, conv_cache=conv_cache.get("block_in")
|
543 |
+
)
|
544 |
+
|
545 |
+
for i, down_block in enumerate(self.down_blocks):
|
546 |
+
conv_cache_key = f"down_block_{i}"
|
547 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
548 |
+
create_custom_forward(down_block), hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
549 |
+
)
|
550 |
+
else:
|
551 |
+
hidden_states, new_conv_cache["block_in"] = self.block_in(
|
552 |
+
hidden_states, conv_cache=conv_cache.get("block_in")
|
553 |
+
)
|
554 |
+
|
555 |
+
for i, down_block in enumerate(self.down_blocks):
|
556 |
+
conv_cache_key = f"down_block_{i}"
|
557 |
+
hidden_states, new_conv_cache[conv_cache_key] = down_block(
|
558 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
559 |
+
)
|
560 |
+
|
561 |
+
hidden_states, new_conv_cache["block_out"] = self.block_out(
|
562 |
+
hidden_states, conv_cache=conv_cache.get("block_out")
|
563 |
+
)
|
564 |
+
|
565 |
+
hidden_states = self.norm_out(hidden_states)
|
566 |
+
hidden_states = self.nonlinearity(hidden_states)
|
567 |
+
|
568 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
569 |
+
hidden_states = self.proj_out(hidden_states)
|
570 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
571 |
+
|
572 |
+
return hidden_states, new_conv_cache
|
573 |
+
|
574 |
+
|
575 |
+
class MochiDecoder3D(nn.Module):
|
576 |
+
r"""
|
577 |
+
The `MochiDecoder3D` layer of a variational autoencoder that decodes its latent representation into an output
|
578 |
+
sample.
|
579 |
+
|
580 |
+
Args:
|
581 |
+
in_channels (`int`, *optional*):
|
582 |
+
The number of input channels.
|
583 |
+
out_channels (`int`, *optional*):
|
584 |
+
The number of output channels.
|
585 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(128, 256, 512, 768)`):
|
586 |
+
The number of output channels for each block.
|
587 |
+
layers_per_block (`Tuple[int, ...]`, *optional*, defaults to `(3, 3, 4, 6, 3)`):
|
588 |
+
The number of resnet blocks for each block.
|
589 |
+
temporal_expansions (`Tuple[int, ...]`, *optional*, defaults to `(1, 2, 3)`):
|
590 |
+
The temporal expansion factor for each of the up blocks.
|
591 |
+
spatial_expansions (`Tuple[int, ...]`, *optional*, defaults to `(2, 2, 2)`):
|
592 |
+
The spatial expansion factor for each of the up blocks.
|
593 |
+
non_linearity (`str`, *optional*, defaults to `"swish"`):
|
594 |
+
The non-linearity to use in the decoder.
|
595 |
+
"""
|
596 |
+
|
597 |
+
def __init__(
|
598 |
+
self,
|
599 |
+
in_channels: int, # 12
|
600 |
+
out_channels: int, # 3
|
601 |
+
block_out_channels: Tuple[int, ...] = (128, 256, 512, 768),
|
602 |
+
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
|
603 |
+
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
|
604 |
+
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
|
605 |
+
act_fn: str = "swish",
|
606 |
+
):
|
607 |
+
super().__init__()
|
608 |
+
|
609 |
+
self.nonlinearity = get_activation(act_fn)
|
610 |
+
|
611 |
+
self.conv_in = nn.Conv3d(in_channels, block_out_channels[-1], kernel_size=(1, 1, 1))
|
612 |
+
self.block_in = MochiMidBlock3D(
|
613 |
+
in_channels=block_out_channels[-1],
|
614 |
+
num_layers=layers_per_block[-1],
|
615 |
+
add_attention=False,
|
616 |
+
)
|
617 |
+
|
618 |
+
up_blocks = []
|
619 |
+
for i in range(len(block_out_channels) - 1):
|
620 |
+
up_block = MochiUpBlock3D(
|
621 |
+
in_channels=block_out_channels[-i - 1],
|
622 |
+
out_channels=block_out_channels[-i - 2],
|
623 |
+
num_layers=layers_per_block[-i - 2],
|
624 |
+
temporal_expansion=temporal_expansions[-i - 1],
|
625 |
+
spatial_expansion=spatial_expansions[-i - 1],
|
626 |
+
)
|
627 |
+
up_blocks.append(up_block)
|
628 |
+
self.up_blocks = nn.ModuleList(up_blocks)
|
629 |
+
|
630 |
+
self.block_out = MochiMidBlock3D(
|
631 |
+
in_channels=block_out_channels[0],
|
632 |
+
num_layers=layers_per_block[0],
|
633 |
+
add_attention=False,
|
634 |
+
)
|
635 |
+
self.proj_out = nn.Linear(block_out_channels[0], out_channels)
|
636 |
+
|
637 |
+
self.gradient_checkpointing = False
|
638 |
+
|
639 |
+
def forward(
|
640 |
+
self, hidden_states: torch.Tensor, conv_cache: Optional[Dict[str, torch.Tensor]] = None
|
641 |
+
) -> torch.Tensor:
|
642 |
+
r"""Forward method of the `MochiDecoder3D` class."""
|
643 |
+
|
644 |
+
new_conv_cache = {}
|
645 |
+
conv_cache = conv_cache or {}
|
646 |
+
|
647 |
+
hidden_states = self.conv_in(hidden_states)
|
648 |
+
|
649 |
+
# 1. Mid
|
650 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
651 |
+
|
652 |
+
def create_custom_forward(module):
|
653 |
+
def create_forward(*inputs):
|
654 |
+
return module(*inputs)
|
655 |
+
|
656 |
+
return create_forward
|
657 |
+
|
658 |
+
hidden_states, new_conv_cache["block_in"] = torch.utils.checkpoint.checkpoint(
|
659 |
+
create_custom_forward(self.block_in), hidden_states, conv_cache=conv_cache.get("block_in")
|
660 |
+
)
|
661 |
+
|
662 |
+
for i, up_block in enumerate(self.up_blocks):
|
663 |
+
conv_cache_key = f"up_block_{i}"
|
664 |
+
hidden_states, new_conv_cache[conv_cache_key] = torch.utils.checkpoint.checkpoint(
|
665 |
+
create_custom_forward(up_block), hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
666 |
+
)
|
667 |
+
else:
|
668 |
+
hidden_states, new_conv_cache["block_in"] = self.block_in(
|
669 |
+
hidden_states, conv_cache=conv_cache.get("block_in")
|
670 |
+
)
|
671 |
+
|
672 |
+
for i, up_block in enumerate(self.up_blocks):
|
673 |
+
conv_cache_key = f"up_block_{i}"
|
674 |
+
hidden_states, new_conv_cache[conv_cache_key] = up_block(
|
675 |
+
hidden_states, conv_cache=conv_cache.get(conv_cache_key)
|
676 |
+
)
|
677 |
+
|
678 |
+
hidden_states, new_conv_cache["block_out"] = self.block_out(
|
679 |
+
hidden_states, conv_cache=conv_cache.get("block_out")
|
680 |
+
)
|
681 |
+
|
682 |
+
hidden_states = self.nonlinearity(hidden_states)
|
683 |
+
|
684 |
+
hidden_states = hidden_states.permute(0, 2, 3, 4, 1)
|
685 |
+
hidden_states = self.proj_out(hidden_states)
|
686 |
+
hidden_states = hidden_states.permute(0, 4, 1, 2, 3)
|
687 |
+
|
688 |
+
return hidden_states, new_conv_cache
|
689 |
+
|
690 |
+
|
691 |
+
class AutoencoderKLMochi(ModelMixin, ConfigMixin):
|
692 |
+
r"""
|
693 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. Used in
|
694 |
+
[Mochi 1 preview](https://github.com/genmoai/models).
|
695 |
+
|
696 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
697 |
+
for all models (such as downloading or saving).
|
698 |
+
|
699 |
+
Parameters:
|
700 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
701 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
702 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
703 |
+
Tuple of block output channels.
|
704 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
705 |
+
scaling_factor (`float`, *optional*, defaults to `1.15258426`):
|
706 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
707 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
708 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
709 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
710 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
711 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
712 |
+
"""
|
713 |
+
|
714 |
+
_supports_gradient_checkpointing = True
|
715 |
+
_no_split_modules = ["MochiResnetBlock3D"]
|
716 |
+
|
717 |
+
@register_to_config
|
718 |
+
def __init__(
|
719 |
+
self,
|
720 |
+
in_channels: int = 15,
|
721 |
+
out_channels: int = 3,
|
722 |
+
encoder_block_out_channels: Tuple[int] = (64, 128, 256, 384),
|
723 |
+
decoder_block_out_channels: Tuple[int] = (128, 256, 512, 768),
|
724 |
+
latent_channels: int = 12,
|
725 |
+
layers_per_block: Tuple[int, ...] = (3, 3, 4, 6, 3),
|
726 |
+
act_fn: str = "silu",
|
727 |
+
temporal_expansions: Tuple[int, ...] = (1, 2, 3),
|
728 |
+
spatial_expansions: Tuple[int, ...] = (2, 2, 2),
|
729 |
+
add_attention_block: Tuple[bool, ...] = (False, True, True, True, True),
|
730 |
+
latents_mean: Tuple[float, ...] = (
|
731 |
+
-0.06730895953510081,
|
732 |
+
-0.038011381506090416,
|
733 |
+
-0.07477820912866141,
|
734 |
+
-0.05565264470995561,
|
735 |
+
0.012767231469026969,
|
736 |
+
-0.04703542746246419,
|
737 |
+
0.043896967884726704,
|
738 |
+
-0.09346305707025976,
|
739 |
+
-0.09918314763016893,
|
740 |
+
-0.008729793427399178,
|
741 |
+
-0.011931556316503654,
|
742 |
+
-0.0321993391887285,
|
743 |
+
),
|
744 |
+
latents_std: Tuple[float, ...] = (
|
745 |
+
0.9263795028493863,
|
746 |
+
0.9248894543193766,
|
747 |
+
0.9393059390890617,
|
748 |
+
0.959253732819592,
|
749 |
+
0.8244560132752793,
|
750 |
+
0.917259975397747,
|
751 |
+
0.9294154431013696,
|
752 |
+
1.3720942357788521,
|
753 |
+
0.881393668867029,
|
754 |
+
0.9168315692124348,
|
755 |
+
0.9185249279345552,
|
756 |
+
0.9274757570805041,
|
757 |
+
),
|
758 |
+
scaling_factor: float = 1.0,
|
759 |
+
):
|
760 |
+
super().__init__()
|
761 |
+
|
762 |
+
self.encoder = MochiEncoder3D(
|
763 |
+
in_channels=in_channels,
|
764 |
+
out_channels=latent_channels,
|
765 |
+
block_out_channels=encoder_block_out_channels,
|
766 |
+
layers_per_block=layers_per_block,
|
767 |
+
temporal_expansions=temporal_expansions,
|
768 |
+
spatial_expansions=spatial_expansions,
|
769 |
+
add_attention_block=add_attention_block,
|
770 |
+
act_fn=act_fn,
|
771 |
+
)
|
772 |
+
self.decoder = MochiDecoder3D(
|
773 |
+
in_channels=latent_channels,
|
774 |
+
out_channels=out_channels,
|
775 |
+
block_out_channels=decoder_block_out_channels,
|
776 |
+
layers_per_block=layers_per_block,
|
777 |
+
temporal_expansions=temporal_expansions,
|
778 |
+
spatial_expansions=spatial_expansions,
|
779 |
+
act_fn=act_fn,
|
780 |
+
)
|
781 |
+
|
782 |
+
self.spatial_compression_ratio = functools.reduce(lambda x, y: x * y, spatial_expansions, 1)
|
783 |
+
self.temporal_compression_ratio = functools.reduce(lambda x, y: x * y, temporal_expansions, 1)
|
784 |
+
|
785 |
+
# When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
|
786 |
+
# to perform decoding of a single video latent at a time.
|
787 |
+
self.use_slicing = False
|
788 |
+
|
789 |
+
# When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
|
790 |
+
# frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
|
791 |
+
# intermediate tiles together, the memory requirement can be lowered.
|
792 |
+
self.use_tiling = False
|
793 |
+
|
794 |
+
# When decoding temporally long video latents, the memory requirement is very high. By decoding latent frames
|
795 |
+
# at a fixed frame batch size (based on `self.num_latent_frames_batch_sizes`), the memory requirement can be lowered.
|
796 |
+
self.use_framewise_encoding = False
|
797 |
+
self.use_framewise_decoding = False
|
798 |
+
|
799 |
+
# This can be used to determine how the number of output frames in the final decoded video. To maintain consistency with
|
800 |
+
# the original implementation, this defaults to `True`.
|
801 |
+
# - Original implementation (drop_last_temporal_frames=True):
|
802 |
+
# Output frames = (latent_frames - 1) * temporal_compression_ratio + 1
|
803 |
+
# - Without dropping additional temporal upscaled frames (drop_last_temporal_frames=False):
|
804 |
+
# Output frames = latent_frames * temporal_compression_ratio
|
805 |
+
# The latter case is useful for frame packing and some training/finetuning scenarios where the additional.
|
806 |
+
self.drop_last_temporal_frames = True
|
807 |
+
|
808 |
+
# This can be configured based on the amount of GPU memory available.
|
809 |
+
# `12` for sample frames and `2` for latent frames are sensible defaults for consumer GPUs.
|
810 |
+
# Setting it to higher values results in higher memory usage.
|
811 |
+
self.num_sample_frames_batch_size = 12
|
812 |
+
self.num_latent_frames_batch_size = 2
|
813 |
+
|
814 |
+
# The minimal tile height and width for spatial tiling to be used
|
815 |
+
self.tile_sample_min_height = 256
|
816 |
+
self.tile_sample_min_width = 256
|
817 |
+
|
818 |
+
# The minimal distance between two spatial tiles
|
819 |
+
self.tile_sample_stride_height = 192
|
820 |
+
self.tile_sample_stride_width = 192
|
821 |
+
|
822 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
823 |
+
if isinstance(module, (MochiEncoder3D, MochiDecoder3D)):
|
824 |
+
module.gradient_checkpointing = value
|
825 |
+
|
826 |
+
def enable_tiling(
|
827 |
+
self,
|
828 |
+
tile_sample_min_height: Optional[int] = None,
|
829 |
+
tile_sample_min_width: Optional[int] = None,
|
830 |
+
tile_sample_stride_height: Optional[float] = None,
|
831 |
+
tile_sample_stride_width: Optional[float] = None,
|
832 |
+
) -> None:
|
833 |
+
r"""
|
834 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
835 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
836 |
+
processing larger images.
|
837 |
+
|
838 |
+
Args:
|
839 |
+
tile_sample_min_height (`int`, *optional*):
|
840 |
+
The minimum height required for a sample to be separated into tiles across the height dimension.
|
841 |
+
tile_sample_min_width (`int`, *optional*):
|
842 |
+
The minimum width required for a sample to be separated into tiles across the width dimension.
|
843 |
+
tile_sample_stride_height (`int`, *optional*):
|
844 |
+
The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
|
845 |
+
no tiling artifacts produced across the height dimension.
|
846 |
+
tile_sample_stride_width (`int`, *optional*):
|
847 |
+
The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
|
848 |
+
artifacts produced across the width dimension.
|
849 |
+
"""
|
850 |
+
self.use_tiling = True
|
851 |
+
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
|
852 |
+
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
|
853 |
+
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
|
854 |
+
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
|
855 |
+
|
856 |
+
def disable_tiling(self) -> None:
|
857 |
+
r"""
|
858 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
859 |
+
decoding in one step.
|
860 |
+
"""
|
861 |
+
self.use_tiling = False
|
862 |
+
|
863 |
+
def enable_slicing(self) -> None:
|
864 |
+
r"""
|
865 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
866 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
867 |
+
"""
|
868 |
+
self.use_slicing = True
|
869 |
+
|
870 |
+
def disable_slicing(self) -> None:
|
871 |
+
r"""
|
872 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
873 |
+
decoding in one step.
|
874 |
+
"""
|
875 |
+
self.use_slicing = False
|
876 |
+
|
877 |
+
def _enable_framewise_encoding(self):
|
878 |
+
r"""
|
879 |
+
Enables the framewise VAE encoding implementation with past latent padding. By default, Diffusers uses the
|
880 |
+
oneshot encoding implementation without current latent replicate padding.
|
881 |
+
|
882 |
+
Warning: Framewise encoding may not work as expected due to the causal attention layers. If you enable
|
883 |
+
framewise encoding, encode a video, and try to decode it, there will be noticeable jittering effect.
|
884 |
+
"""
|
885 |
+
self.use_framewise_encoding = True
|
886 |
+
for name, module in self.named_modules():
|
887 |
+
if isinstance(module, CogVideoXCausalConv3d):
|
888 |
+
module.pad_mode = "constant"
|
889 |
+
|
890 |
+
def _enable_framewise_decoding(self):
|
891 |
+
r"""
|
892 |
+
Enables the framewise VAE decoding implementation with past latent padding. By default, Diffusers uses the
|
893 |
+
oneshot decoding implementation without current latent replicate padding.
|
894 |
+
"""
|
895 |
+
self.use_framewise_decoding = True
|
896 |
+
for name, module in self.named_modules():
|
897 |
+
if isinstance(module, CogVideoXCausalConv3d):
|
898 |
+
module.pad_mode = "constant"
|
899 |
+
|
900 |
+
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
901 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
902 |
+
|
903 |
+
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
|
904 |
+
return self.tiled_encode(x)
|
905 |
+
|
906 |
+
if self.use_framewise_encoding:
|
907 |
+
raise NotImplementedError(
|
908 |
+
"Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. "
|
909 |
+
"As intermediate frames are not independent from each other, they cannot be encoded frame-wise."
|
910 |
+
)
|
911 |
+
else:
|
912 |
+
enc, _ = self.encoder(x)
|
913 |
+
|
914 |
+
return enc
|
915 |
+
|
916 |
+
@apply_forward_hook
|
917 |
+
def encode(
|
918 |
+
self, x: torch.Tensor, return_dict: bool = True
|
919 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
920 |
+
"""
|
921 |
+
Encode a batch of images into latents.
|
922 |
+
|
923 |
+
Args:
|
924 |
+
x (`torch.Tensor`): Input batch of images.
|
925 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
926 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
927 |
+
|
928 |
+
Returns:
|
929 |
+
The latent representations of the encoded videos. If `return_dict` is True, a
|
930 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
931 |
+
"""
|
932 |
+
if self.use_slicing and x.shape[0] > 1:
|
933 |
+
encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
|
934 |
+
h = torch.cat(encoded_slices)
|
935 |
+
else:
|
936 |
+
h = self._encode(x)
|
937 |
+
|
938 |
+
posterior = DiagonalGaussianDistribution(h)
|
939 |
+
|
940 |
+
if not return_dict:
|
941 |
+
return (posterior,)
|
942 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
943 |
+
|
944 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
945 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
946 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
947 |
+
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
948 |
+
|
949 |
+
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
|
950 |
+
return self.tiled_decode(z, return_dict=return_dict)
|
951 |
+
|
952 |
+
if self.use_framewise_decoding:
|
953 |
+
conv_cache = None
|
954 |
+
dec = []
|
955 |
+
|
956 |
+
for i in range(0, num_frames, self.num_latent_frames_batch_size):
|
957 |
+
z_intermediate = z[:, :, i : i + self.num_latent_frames_batch_size]
|
958 |
+
z_intermediate, conv_cache = self.decoder(z_intermediate, conv_cache=conv_cache)
|
959 |
+
dec.append(z_intermediate)
|
960 |
+
|
961 |
+
dec = torch.cat(dec, dim=2)
|
962 |
+
else:
|
963 |
+
dec, _ = self.decoder(z)
|
964 |
+
|
965 |
+
if self.drop_last_temporal_frames and dec.size(2) >= self.temporal_compression_ratio:
|
966 |
+
dec = dec[:, :, self.temporal_compression_ratio - 1 :]
|
967 |
+
|
968 |
+
if not return_dict:
|
969 |
+
return (dec,)
|
970 |
+
|
971 |
+
return DecoderOutput(sample=dec)
|
972 |
+
|
973 |
+
@apply_forward_hook
|
974 |
+
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
975 |
+
"""
|
976 |
+
Decode a batch of images.
|
977 |
+
|
978 |
+
Args:
|
979 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
980 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
981 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
982 |
+
|
983 |
+
Returns:
|
984 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
985 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
986 |
+
returned.
|
987 |
+
"""
|
988 |
+
if self.use_slicing and z.shape[0] > 1:
|
989 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
990 |
+
decoded = torch.cat(decoded_slices)
|
991 |
+
else:
|
992 |
+
decoded = self._decode(z).sample
|
993 |
+
|
994 |
+
if not return_dict:
|
995 |
+
return (decoded,)
|
996 |
+
|
997 |
+
return DecoderOutput(sample=decoded)
|
998 |
+
|
999 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
1000 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
1001 |
+
for y in range(blend_extent):
|
1002 |
+
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
|
1003 |
+
y / blend_extent
|
1004 |
+
)
|
1005 |
+
return b
|
1006 |
+
|
1007 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
1008 |
+
blend_extent = min(a.shape[4], b.shape[4], blend_extent)
|
1009 |
+
for x in range(blend_extent):
|
1010 |
+
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
|
1011 |
+
x / blend_extent
|
1012 |
+
)
|
1013 |
+
return b
|
1014 |
+
|
1015 |
+
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
1016 |
+
r"""Encode a batch of images using a tiled encoder.
|
1017 |
+
|
1018 |
+
Args:
|
1019 |
+
x (`torch.Tensor`): Input batch of videos.
|
1020 |
+
|
1021 |
+
Returns:
|
1022 |
+
`torch.Tensor`:
|
1023 |
+
The latent representation of the encoded videos.
|
1024 |
+
"""
|
1025 |
+
batch_size, num_channels, num_frames, height, width = x.shape
|
1026 |
+
latent_height = height // self.spatial_compression_ratio
|
1027 |
+
latent_width = width // self.spatial_compression_ratio
|
1028 |
+
|
1029 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1030 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1031 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
1032 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
1033 |
+
|
1034 |
+
blend_height = tile_latent_min_height - tile_latent_stride_height
|
1035 |
+
blend_width = tile_latent_min_width - tile_latent_stride_width
|
1036 |
+
|
1037 |
+
# Split x into overlapping tiles and encode them separately.
|
1038 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1039 |
+
rows = []
|
1040 |
+
for i in range(0, height, self.tile_sample_stride_height):
|
1041 |
+
row = []
|
1042 |
+
for j in range(0, width, self.tile_sample_stride_width):
|
1043 |
+
if self.use_framewise_encoding:
|
1044 |
+
raise NotImplementedError(
|
1045 |
+
"Frame-wise encoding does not work with the Mochi VAE Encoder due to the presence of attention layers. "
|
1046 |
+
"As intermediate frames are not independent from each other, they cannot be encoded frame-wise."
|
1047 |
+
)
|
1048 |
+
else:
|
1049 |
+
time, _ = self.encoder(
|
1050 |
+
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
row.append(time)
|
1054 |
+
rows.append(row)
|
1055 |
+
|
1056 |
+
result_rows = []
|
1057 |
+
for i, row in enumerate(rows):
|
1058 |
+
result_row = []
|
1059 |
+
for j, tile in enumerate(row):
|
1060 |
+
# blend the above tile and the left tile
|
1061 |
+
# to the current tile and add the current tile to the result row
|
1062 |
+
if i > 0:
|
1063 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1064 |
+
if j > 0:
|
1065 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1066 |
+
result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
|
1067 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
1068 |
+
|
1069 |
+
enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
|
1070 |
+
return enc
|
1071 |
+
|
1072 |
+
def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
1073 |
+
r"""
|
1074 |
+
Decode a batch of images using a tiled decoder.
|
1075 |
+
|
1076 |
+
Args:
|
1077 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
1078 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1079 |
+
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
1080 |
+
|
1081 |
+
Returns:
|
1082 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
1083 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
1084 |
+
returned.
|
1085 |
+
"""
|
1086 |
+
|
1087 |
+
batch_size, num_channels, num_frames, height, width = z.shape
|
1088 |
+
sample_height = height * self.spatial_compression_ratio
|
1089 |
+
sample_width = width * self.spatial_compression_ratio
|
1090 |
+
|
1091 |
+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
|
1092 |
+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
|
1093 |
+
tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
|
1094 |
+
tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio
|
1095 |
+
|
1096 |
+
blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
|
1097 |
+
blend_width = self.tile_sample_min_width - self.tile_sample_stride_width
|
1098 |
+
|
1099 |
+
# Split z into overlapping tiles and decode them separately.
|
1100 |
+
# The tiles have an overlap to avoid seams between tiles.
|
1101 |
+
rows = []
|
1102 |
+
for i in range(0, height, tile_latent_stride_height):
|
1103 |
+
row = []
|
1104 |
+
for j in range(0, width, tile_latent_stride_width):
|
1105 |
+
if self.use_framewise_decoding:
|
1106 |
+
time = []
|
1107 |
+
conv_cache = None
|
1108 |
+
|
1109 |
+
for k in range(0, num_frames, self.num_latent_frames_batch_size):
|
1110 |
+
tile = z[
|
1111 |
+
:,
|
1112 |
+
:,
|
1113 |
+
k : k + self.num_latent_frames_batch_size,
|
1114 |
+
i : i + tile_latent_min_height,
|
1115 |
+
j : j + tile_latent_min_width,
|
1116 |
+
]
|
1117 |
+
tile, conv_cache = self.decoder(tile, conv_cache=conv_cache)
|
1118 |
+
time.append(tile)
|
1119 |
+
|
1120 |
+
time = torch.cat(time, dim=2)
|
1121 |
+
else:
|
1122 |
+
time, _ = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width])
|
1123 |
+
|
1124 |
+
if self.drop_last_temporal_frames and time.size(2) >= self.temporal_compression_ratio:
|
1125 |
+
time = time[:, :, self.temporal_compression_ratio - 1 :]
|
1126 |
+
|
1127 |
+
row.append(time)
|
1128 |
+
rows.append(row)
|
1129 |
+
|
1130 |
+
result_rows = []
|
1131 |
+
for i, row in enumerate(rows):
|
1132 |
+
result_row = []
|
1133 |
+
for j, tile in enumerate(row):
|
1134 |
+
# blend the above tile and the left tile
|
1135 |
+
# to the current tile and add the current tile to the result row
|
1136 |
+
if i > 0:
|
1137 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_height)
|
1138 |
+
if j > 0:
|
1139 |
+
tile = self.blend_h(row[j - 1], tile, blend_width)
|
1140 |
+
result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
|
1141 |
+
result_rows.append(torch.cat(result_row, dim=4))
|
1142 |
+
|
1143 |
+
dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]
|
1144 |
+
|
1145 |
+
if not return_dict:
|
1146 |
+
return (dec,)
|
1147 |
+
|
1148 |
+
return DecoderOutput(sample=dec)
|
1149 |
+
|
1150 |
+
def forward(
|
1151 |
+
self,
|
1152 |
+
sample: torch.Tensor,
|
1153 |
+
sample_posterior: bool = False,
|
1154 |
+
return_dict: bool = True,
|
1155 |
+
generator: Optional[torch.Generator] = None,
|
1156 |
+
) -> Union[torch.Tensor, torch.Tensor]:
|
1157 |
+
x = sample
|
1158 |
+
posterior = self.encode(x).latent_dist
|
1159 |
+
if sample_posterior:
|
1160 |
+
z = posterior.sample(generator=generator)
|
1161 |
+
else:
|
1162 |
+
z = posterior.mode()
|
1163 |
+
dec = self.decode(z)
|
1164 |
+
if not return_dict:
|
1165 |
+
return (dec,)
|
1166 |
+
return dec
|
icedit/diffusers/models/autoencoders/autoencoder_kl_temporal_decoder.py
ADDED
@@ -0,0 +1,394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import itertools
|
15 |
+
from typing import Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
|
20 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
21 |
+
from ...utils import is_torch_version
|
22 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
23 |
+
from ..attention_processor import CROSS_ATTENTION_PROCESSORS, AttentionProcessor, AttnProcessor
|
24 |
+
from ..modeling_outputs import AutoencoderKLOutput
|
25 |
+
from ..modeling_utils import ModelMixin
|
26 |
+
from ..unets.unet_3d_blocks import MidBlockTemporalDecoder, UpBlockTemporalDecoder
|
27 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
|
28 |
+
|
29 |
+
|
30 |
+
class TemporalDecoder(nn.Module):
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
in_channels: int = 4,
|
34 |
+
out_channels: int = 3,
|
35 |
+
block_out_channels: Tuple[int] = (128, 256, 512, 512),
|
36 |
+
layers_per_block: int = 2,
|
37 |
+
):
|
38 |
+
super().__init__()
|
39 |
+
self.layers_per_block = layers_per_block
|
40 |
+
|
41 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[-1], kernel_size=3, stride=1, padding=1)
|
42 |
+
self.mid_block = MidBlockTemporalDecoder(
|
43 |
+
num_layers=self.layers_per_block,
|
44 |
+
in_channels=block_out_channels[-1],
|
45 |
+
out_channels=block_out_channels[-1],
|
46 |
+
attention_head_dim=block_out_channels[-1],
|
47 |
+
)
|
48 |
+
|
49 |
+
# up
|
50 |
+
self.up_blocks = nn.ModuleList([])
|
51 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
52 |
+
output_channel = reversed_block_out_channels[0]
|
53 |
+
for i in range(len(block_out_channels)):
|
54 |
+
prev_output_channel = output_channel
|
55 |
+
output_channel = reversed_block_out_channels[i]
|
56 |
+
|
57 |
+
is_final_block = i == len(block_out_channels) - 1
|
58 |
+
up_block = UpBlockTemporalDecoder(
|
59 |
+
num_layers=self.layers_per_block + 1,
|
60 |
+
in_channels=prev_output_channel,
|
61 |
+
out_channels=output_channel,
|
62 |
+
add_upsample=not is_final_block,
|
63 |
+
)
|
64 |
+
self.up_blocks.append(up_block)
|
65 |
+
prev_output_channel = output_channel
|
66 |
+
|
67 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=32, eps=1e-6)
|
68 |
+
|
69 |
+
self.conv_act = nn.SiLU()
|
70 |
+
self.conv_out = torch.nn.Conv2d(
|
71 |
+
in_channels=block_out_channels[0],
|
72 |
+
out_channels=out_channels,
|
73 |
+
kernel_size=3,
|
74 |
+
padding=1,
|
75 |
+
)
|
76 |
+
|
77 |
+
conv_out_kernel_size = (3, 1, 1)
|
78 |
+
padding = [int(k // 2) for k in conv_out_kernel_size]
|
79 |
+
self.time_conv_out = torch.nn.Conv3d(
|
80 |
+
in_channels=out_channels,
|
81 |
+
out_channels=out_channels,
|
82 |
+
kernel_size=conv_out_kernel_size,
|
83 |
+
padding=padding,
|
84 |
+
)
|
85 |
+
|
86 |
+
self.gradient_checkpointing = False
|
87 |
+
|
88 |
+
def forward(
|
89 |
+
self,
|
90 |
+
sample: torch.Tensor,
|
91 |
+
image_only_indicator: torch.Tensor,
|
92 |
+
num_frames: int = 1,
|
93 |
+
) -> torch.Tensor:
|
94 |
+
r"""The forward method of the `Decoder` class."""
|
95 |
+
|
96 |
+
sample = self.conv_in(sample)
|
97 |
+
|
98 |
+
upscale_dtype = next(itertools.chain(self.up_blocks.parameters(), self.up_blocks.buffers())).dtype
|
99 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
100 |
+
|
101 |
+
def create_custom_forward(module):
|
102 |
+
def custom_forward(*inputs):
|
103 |
+
return module(*inputs)
|
104 |
+
|
105 |
+
return custom_forward
|
106 |
+
|
107 |
+
if is_torch_version(">=", "1.11.0"):
|
108 |
+
# middle
|
109 |
+
sample = torch.utils.checkpoint.checkpoint(
|
110 |
+
create_custom_forward(self.mid_block),
|
111 |
+
sample,
|
112 |
+
image_only_indicator,
|
113 |
+
use_reentrant=False,
|
114 |
+
)
|
115 |
+
sample = sample.to(upscale_dtype)
|
116 |
+
|
117 |
+
# up
|
118 |
+
for up_block in self.up_blocks:
|
119 |
+
sample = torch.utils.checkpoint.checkpoint(
|
120 |
+
create_custom_forward(up_block),
|
121 |
+
sample,
|
122 |
+
image_only_indicator,
|
123 |
+
use_reentrant=False,
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
# middle
|
127 |
+
sample = torch.utils.checkpoint.checkpoint(
|
128 |
+
create_custom_forward(self.mid_block),
|
129 |
+
sample,
|
130 |
+
image_only_indicator,
|
131 |
+
)
|
132 |
+
sample = sample.to(upscale_dtype)
|
133 |
+
|
134 |
+
# up
|
135 |
+
for up_block in self.up_blocks:
|
136 |
+
sample = torch.utils.checkpoint.checkpoint(
|
137 |
+
create_custom_forward(up_block),
|
138 |
+
sample,
|
139 |
+
image_only_indicator,
|
140 |
+
)
|
141 |
+
else:
|
142 |
+
# middle
|
143 |
+
sample = self.mid_block(sample, image_only_indicator=image_only_indicator)
|
144 |
+
sample = sample.to(upscale_dtype)
|
145 |
+
|
146 |
+
# up
|
147 |
+
for up_block in self.up_blocks:
|
148 |
+
sample = up_block(sample, image_only_indicator=image_only_indicator)
|
149 |
+
|
150 |
+
# post-process
|
151 |
+
sample = self.conv_norm_out(sample)
|
152 |
+
sample = self.conv_act(sample)
|
153 |
+
sample = self.conv_out(sample)
|
154 |
+
|
155 |
+
batch_frames, channels, height, width = sample.shape
|
156 |
+
batch_size = batch_frames // num_frames
|
157 |
+
sample = sample[None, :].reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)
|
158 |
+
sample = self.time_conv_out(sample)
|
159 |
+
|
160 |
+
sample = sample.permute(0, 2, 1, 3, 4).reshape(batch_frames, channels, height, width)
|
161 |
+
|
162 |
+
return sample
|
163 |
+
|
164 |
+
|
165 |
+
class AutoencoderKLTemporalDecoder(ModelMixin, ConfigMixin):
|
166 |
+
r"""
|
167 |
+
A VAE model with KL loss for encoding images into latents and decoding latent representations into images.
|
168 |
+
|
169 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
170 |
+
for all models (such as downloading or saving).
|
171 |
+
|
172 |
+
Parameters:
|
173 |
+
in_channels (int, *optional*, defaults to 3): Number of channels in the input image.
|
174 |
+
out_channels (int, *optional*, defaults to 3): Number of channels in the output.
|
175 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
176 |
+
Tuple of downsample block types.
|
177 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`):
|
178 |
+
Tuple of block output channels.
|
179 |
+
layers_per_block: (`int`, *optional*, defaults to 1): Number of layers per block.
|
180 |
+
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space.
|
181 |
+
sample_size (`int`, *optional*, defaults to `32`): Sample input size.
|
182 |
+
scaling_factor (`float`, *optional*, defaults to 0.18215):
|
183 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
184 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
185 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
186 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
187 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
188 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper.
|
189 |
+
force_upcast (`bool`, *optional*, default to `True`):
|
190 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
191 |
+
can be fine-tuned / trained to a lower range without loosing too much precision in which case
|
192 |
+
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix
|
193 |
+
"""
|
194 |
+
|
195 |
+
_supports_gradient_checkpointing = True
|
196 |
+
|
197 |
+
@register_to_config
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
in_channels: int = 3,
|
201 |
+
out_channels: int = 3,
|
202 |
+
down_block_types: Tuple[str] = ("DownEncoderBlock2D",),
|
203 |
+
block_out_channels: Tuple[int] = (64,),
|
204 |
+
layers_per_block: int = 1,
|
205 |
+
latent_channels: int = 4,
|
206 |
+
sample_size: int = 32,
|
207 |
+
scaling_factor: float = 0.18215,
|
208 |
+
force_upcast: float = True,
|
209 |
+
):
|
210 |
+
super().__init__()
|
211 |
+
|
212 |
+
# pass init params to Encoder
|
213 |
+
self.encoder = Encoder(
|
214 |
+
in_channels=in_channels,
|
215 |
+
out_channels=latent_channels,
|
216 |
+
down_block_types=down_block_types,
|
217 |
+
block_out_channels=block_out_channels,
|
218 |
+
layers_per_block=layers_per_block,
|
219 |
+
double_z=True,
|
220 |
+
)
|
221 |
+
|
222 |
+
# pass init params to Decoder
|
223 |
+
self.decoder = TemporalDecoder(
|
224 |
+
in_channels=latent_channels,
|
225 |
+
out_channels=out_channels,
|
226 |
+
block_out_channels=block_out_channels,
|
227 |
+
layers_per_block=layers_per_block,
|
228 |
+
)
|
229 |
+
|
230 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
231 |
+
|
232 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
233 |
+
if isinstance(module, (Encoder, TemporalDecoder)):
|
234 |
+
module.gradient_checkpointing = value
|
235 |
+
|
236 |
+
@property
|
237 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
238 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
239 |
+
r"""
|
240 |
+
Returns:
|
241 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
242 |
+
indexed by its weight name.
|
243 |
+
"""
|
244 |
+
# set recursively
|
245 |
+
processors = {}
|
246 |
+
|
247 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
248 |
+
if hasattr(module, "get_processor"):
|
249 |
+
processors[f"{name}.processor"] = module.get_processor()
|
250 |
+
|
251 |
+
for sub_name, child in module.named_children():
|
252 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
253 |
+
|
254 |
+
return processors
|
255 |
+
|
256 |
+
for name, module in self.named_children():
|
257 |
+
fn_recursive_add_processors(name, module, processors)
|
258 |
+
|
259 |
+
return processors
|
260 |
+
|
261 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
262 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
263 |
+
r"""
|
264 |
+
Sets the attention processor to use to compute attention.
|
265 |
+
|
266 |
+
Parameters:
|
267 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
268 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
269 |
+
for **all** `Attention` layers.
|
270 |
+
|
271 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
272 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
273 |
+
|
274 |
+
"""
|
275 |
+
count = len(self.attn_processors.keys())
|
276 |
+
|
277 |
+
if isinstance(processor, dict) and len(processor) != count:
|
278 |
+
raise ValueError(
|
279 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
280 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
281 |
+
)
|
282 |
+
|
283 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
284 |
+
if hasattr(module, "set_processor"):
|
285 |
+
if not isinstance(processor, dict):
|
286 |
+
module.set_processor(processor)
|
287 |
+
else:
|
288 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
289 |
+
|
290 |
+
for sub_name, child in module.named_children():
|
291 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
292 |
+
|
293 |
+
for name, module in self.named_children():
|
294 |
+
fn_recursive_attn_processor(name, module, processor)
|
295 |
+
|
296 |
+
def set_default_attn_processor(self):
|
297 |
+
"""
|
298 |
+
Disables custom attention processors and sets the default attention implementation.
|
299 |
+
"""
|
300 |
+
if all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
301 |
+
processor = AttnProcessor()
|
302 |
+
else:
|
303 |
+
raise ValueError(
|
304 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
305 |
+
)
|
306 |
+
|
307 |
+
self.set_attn_processor(processor)
|
308 |
+
|
309 |
+
@apply_forward_hook
|
310 |
+
def encode(
|
311 |
+
self, x: torch.Tensor, return_dict: bool = True
|
312 |
+
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
313 |
+
"""
|
314 |
+
Encode a batch of images into latents.
|
315 |
+
|
316 |
+
Args:
|
317 |
+
x (`torch.Tensor`): Input batch of images.
|
318 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
319 |
+
Whether to return a [`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] instead of a plain
|
320 |
+
tuple.
|
321 |
+
|
322 |
+
Returns:
|
323 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
324 |
+
[`~models.autoencoders.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is
|
325 |
+
returned.
|
326 |
+
"""
|
327 |
+
h = self.encoder(x)
|
328 |
+
moments = self.quant_conv(h)
|
329 |
+
posterior = DiagonalGaussianDistribution(moments)
|
330 |
+
|
331 |
+
if not return_dict:
|
332 |
+
return (posterior,)
|
333 |
+
|
334 |
+
return AutoencoderKLOutput(latent_dist=posterior)
|
335 |
+
|
336 |
+
@apply_forward_hook
|
337 |
+
def decode(
|
338 |
+
self,
|
339 |
+
z: torch.Tensor,
|
340 |
+
num_frames: int,
|
341 |
+
return_dict: bool = True,
|
342 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
343 |
+
"""
|
344 |
+
Decode a batch of images.
|
345 |
+
|
346 |
+
Args:
|
347 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
348 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
349 |
+
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
350 |
+
|
351 |
+
Returns:
|
352 |
+
[`~models.vae.DecoderOutput`] or `tuple`:
|
353 |
+
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
354 |
+
returned.
|
355 |
+
|
356 |
+
"""
|
357 |
+
batch_size = z.shape[0] // num_frames
|
358 |
+
image_only_indicator = torch.zeros(batch_size, num_frames, dtype=z.dtype, device=z.device)
|
359 |
+
decoded = self.decoder(z, num_frames=num_frames, image_only_indicator=image_only_indicator)
|
360 |
+
|
361 |
+
if not return_dict:
|
362 |
+
return (decoded,)
|
363 |
+
|
364 |
+
return DecoderOutput(sample=decoded)
|
365 |
+
|
366 |
+
def forward(
|
367 |
+
self,
|
368 |
+
sample: torch.Tensor,
|
369 |
+
sample_posterior: bool = False,
|
370 |
+
return_dict: bool = True,
|
371 |
+
generator: Optional[torch.Generator] = None,
|
372 |
+
num_frames: int = 1,
|
373 |
+
) -> Union[DecoderOutput, torch.Tensor]:
|
374 |
+
r"""
|
375 |
+
Args:
|
376 |
+
sample (`torch.Tensor`): Input sample.
|
377 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
378 |
+
Whether to sample from the posterior.
|
379 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
380 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
381 |
+
"""
|
382 |
+
x = sample
|
383 |
+
posterior = self.encode(x).latent_dist
|
384 |
+
if sample_posterior:
|
385 |
+
z = posterior.sample(generator=generator)
|
386 |
+
else:
|
387 |
+
z = posterior.mode()
|
388 |
+
|
389 |
+
dec = self.decode(z, num_frames=num_frames).sample
|
390 |
+
|
391 |
+
if not return_dict:
|
392 |
+
return (dec,)
|
393 |
+
|
394 |
+
return DecoderOutput(sample=dec)
|
icedit/diffusers/models/autoencoders/autoencoder_oobleck.py
ADDED
@@ -0,0 +1,464 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import math
|
15 |
+
from dataclasses import dataclass
|
16 |
+
from typing import Optional, Tuple, Union
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import torch
|
20 |
+
import torch.nn as nn
|
21 |
+
from torch.nn.utils import weight_norm
|
22 |
+
|
23 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
24 |
+
from ...utils import BaseOutput
|
25 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
26 |
+
from ...utils.torch_utils import randn_tensor
|
27 |
+
from ..modeling_utils import ModelMixin
|
28 |
+
|
29 |
+
|
30 |
+
class Snake1d(nn.Module):
|
31 |
+
"""
|
32 |
+
A 1-dimensional Snake activation function module.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(self, hidden_dim, logscale=True):
|
36 |
+
super().__init__()
|
37 |
+
self.alpha = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
38 |
+
self.beta = nn.Parameter(torch.zeros(1, hidden_dim, 1))
|
39 |
+
|
40 |
+
self.alpha.requires_grad = True
|
41 |
+
self.beta.requires_grad = True
|
42 |
+
self.logscale = logscale
|
43 |
+
|
44 |
+
def forward(self, hidden_states):
|
45 |
+
shape = hidden_states.shape
|
46 |
+
|
47 |
+
alpha = self.alpha if not self.logscale else torch.exp(self.alpha)
|
48 |
+
beta = self.beta if not self.logscale else torch.exp(self.beta)
|
49 |
+
|
50 |
+
hidden_states = hidden_states.reshape(shape[0], shape[1], -1)
|
51 |
+
hidden_states = hidden_states + (beta + 1e-9).reciprocal() * torch.sin(alpha * hidden_states).pow(2)
|
52 |
+
hidden_states = hidden_states.reshape(shape)
|
53 |
+
return hidden_states
|
54 |
+
|
55 |
+
|
56 |
+
class OobleckResidualUnit(nn.Module):
|
57 |
+
"""
|
58 |
+
A residual unit composed of Snake1d and weight-normalized Conv1d layers with dilations.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def __init__(self, dimension: int = 16, dilation: int = 1):
|
62 |
+
super().__init__()
|
63 |
+
pad = ((7 - 1) * dilation) // 2
|
64 |
+
|
65 |
+
self.snake1 = Snake1d(dimension)
|
66 |
+
self.conv1 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=7, dilation=dilation, padding=pad))
|
67 |
+
self.snake2 = Snake1d(dimension)
|
68 |
+
self.conv2 = weight_norm(nn.Conv1d(dimension, dimension, kernel_size=1))
|
69 |
+
|
70 |
+
def forward(self, hidden_state):
|
71 |
+
"""
|
72 |
+
Forward pass through the residual unit.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
hidden_state (`torch.Tensor` of shape `(batch_size, channels, time_steps)`):
|
76 |
+
Input tensor .
|
77 |
+
|
78 |
+
Returns:
|
79 |
+
output_tensor (`torch.Tensor` of shape `(batch_size, channels, time_steps)`)
|
80 |
+
Input tensor after passing through the residual unit.
|
81 |
+
"""
|
82 |
+
output_tensor = hidden_state
|
83 |
+
output_tensor = self.conv1(self.snake1(output_tensor))
|
84 |
+
output_tensor = self.conv2(self.snake2(output_tensor))
|
85 |
+
|
86 |
+
padding = (hidden_state.shape[-1] - output_tensor.shape[-1]) // 2
|
87 |
+
if padding > 0:
|
88 |
+
hidden_state = hidden_state[..., padding:-padding]
|
89 |
+
output_tensor = hidden_state + output_tensor
|
90 |
+
return output_tensor
|
91 |
+
|
92 |
+
|
93 |
+
class OobleckEncoderBlock(nn.Module):
|
94 |
+
"""Encoder block used in Oobleck encoder."""
|
95 |
+
|
96 |
+
def __init__(self, input_dim, output_dim, stride: int = 1):
|
97 |
+
super().__init__()
|
98 |
+
|
99 |
+
self.res_unit1 = OobleckResidualUnit(input_dim, dilation=1)
|
100 |
+
self.res_unit2 = OobleckResidualUnit(input_dim, dilation=3)
|
101 |
+
self.res_unit3 = OobleckResidualUnit(input_dim, dilation=9)
|
102 |
+
self.snake1 = Snake1d(input_dim)
|
103 |
+
self.conv1 = weight_norm(
|
104 |
+
nn.Conv1d(input_dim, output_dim, kernel_size=2 * stride, stride=stride, padding=math.ceil(stride / 2))
|
105 |
+
)
|
106 |
+
|
107 |
+
def forward(self, hidden_state):
|
108 |
+
hidden_state = self.res_unit1(hidden_state)
|
109 |
+
hidden_state = self.res_unit2(hidden_state)
|
110 |
+
hidden_state = self.snake1(self.res_unit3(hidden_state))
|
111 |
+
hidden_state = self.conv1(hidden_state)
|
112 |
+
|
113 |
+
return hidden_state
|
114 |
+
|
115 |
+
|
116 |
+
class OobleckDecoderBlock(nn.Module):
|
117 |
+
"""Decoder block used in Oobleck decoder."""
|
118 |
+
|
119 |
+
def __init__(self, input_dim, output_dim, stride: int = 1):
|
120 |
+
super().__init__()
|
121 |
+
|
122 |
+
self.snake1 = Snake1d(input_dim)
|
123 |
+
self.conv_t1 = weight_norm(
|
124 |
+
nn.ConvTranspose1d(
|
125 |
+
input_dim,
|
126 |
+
output_dim,
|
127 |
+
kernel_size=2 * stride,
|
128 |
+
stride=stride,
|
129 |
+
padding=math.ceil(stride / 2),
|
130 |
+
)
|
131 |
+
)
|
132 |
+
self.res_unit1 = OobleckResidualUnit(output_dim, dilation=1)
|
133 |
+
self.res_unit2 = OobleckResidualUnit(output_dim, dilation=3)
|
134 |
+
self.res_unit3 = OobleckResidualUnit(output_dim, dilation=9)
|
135 |
+
|
136 |
+
def forward(self, hidden_state):
|
137 |
+
hidden_state = self.snake1(hidden_state)
|
138 |
+
hidden_state = self.conv_t1(hidden_state)
|
139 |
+
hidden_state = self.res_unit1(hidden_state)
|
140 |
+
hidden_state = self.res_unit2(hidden_state)
|
141 |
+
hidden_state = self.res_unit3(hidden_state)
|
142 |
+
|
143 |
+
return hidden_state
|
144 |
+
|
145 |
+
|
146 |
+
class OobleckDiagonalGaussianDistribution(object):
|
147 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
148 |
+
self.parameters = parameters
|
149 |
+
self.mean, self.scale = parameters.chunk(2, dim=1)
|
150 |
+
self.std = nn.functional.softplus(self.scale) + 1e-4
|
151 |
+
self.var = self.std * self.std
|
152 |
+
self.logvar = torch.log(self.var)
|
153 |
+
self.deterministic = deterministic
|
154 |
+
|
155 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
156 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
157 |
+
sample = randn_tensor(
|
158 |
+
self.mean.shape,
|
159 |
+
generator=generator,
|
160 |
+
device=self.parameters.device,
|
161 |
+
dtype=self.parameters.dtype,
|
162 |
+
)
|
163 |
+
x = self.mean + self.std * sample
|
164 |
+
return x
|
165 |
+
|
166 |
+
def kl(self, other: "OobleckDiagonalGaussianDistribution" = None) -> torch.Tensor:
|
167 |
+
if self.deterministic:
|
168 |
+
return torch.Tensor([0.0])
|
169 |
+
else:
|
170 |
+
if other is None:
|
171 |
+
return (self.mean * self.mean + self.var - self.logvar - 1.0).sum(1).mean()
|
172 |
+
else:
|
173 |
+
normalized_diff = torch.pow(self.mean - other.mean, 2) / other.var
|
174 |
+
var_ratio = self.var / other.var
|
175 |
+
logvar_diff = self.logvar - other.logvar
|
176 |
+
|
177 |
+
kl = normalized_diff + var_ratio + logvar_diff - 1
|
178 |
+
|
179 |
+
kl = kl.sum(1).mean()
|
180 |
+
return kl
|
181 |
+
|
182 |
+
def mode(self) -> torch.Tensor:
|
183 |
+
return self.mean
|
184 |
+
|
185 |
+
|
186 |
+
@dataclass
|
187 |
+
class AutoencoderOobleckOutput(BaseOutput):
|
188 |
+
"""
|
189 |
+
Output of AutoencoderOobleck encoding method.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
latent_dist (`OobleckDiagonalGaussianDistribution`):
|
193 |
+
Encoded outputs of `Encoder` represented as the mean and standard deviation of
|
194 |
+
`OobleckDiagonalGaussianDistribution`. `OobleckDiagonalGaussianDistribution` allows for sampling latents
|
195 |
+
from the distribution.
|
196 |
+
"""
|
197 |
+
|
198 |
+
latent_dist: "OobleckDiagonalGaussianDistribution" # noqa: F821
|
199 |
+
|
200 |
+
|
201 |
+
@dataclass
|
202 |
+
class OobleckDecoderOutput(BaseOutput):
|
203 |
+
r"""
|
204 |
+
Output of decoding method.
|
205 |
+
|
206 |
+
Args:
|
207 |
+
sample (`torch.Tensor` of shape `(batch_size, audio_channels, sequence_length)`):
|
208 |
+
The decoded output sample from the last layer of the model.
|
209 |
+
"""
|
210 |
+
|
211 |
+
sample: torch.Tensor
|
212 |
+
|
213 |
+
|
214 |
+
class OobleckEncoder(nn.Module):
|
215 |
+
"""Oobleck Encoder"""
|
216 |
+
|
217 |
+
def __init__(self, encoder_hidden_size, audio_channels, downsampling_ratios, channel_multiples):
|
218 |
+
super().__init__()
|
219 |
+
|
220 |
+
strides = downsampling_ratios
|
221 |
+
channel_multiples = [1] + channel_multiples
|
222 |
+
|
223 |
+
# Create first convolution
|
224 |
+
self.conv1 = weight_norm(nn.Conv1d(audio_channels, encoder_hidden_size, kernel_size=7, padding=3))
|
225 |
+
|
226 |
+
self.block = []
|
227 |
+
# Create EncoderBlocks that double channels as they downsample by `stride`
|
228 |
+
for stride_index, stride in enumerate(strides):
|
229 |
+
self.block += [
|
230 |
+
OobleckEncoderBlock(
|
231 |
+
input_dim=encoder_hidden_size * channel_multiples[stride_index],
|
232 |
+
output_dim=encoder_hidden_size * channel_multiples[stride_index + 1],
|
233 |
+
stride=stride,
|
234 |
+
)
|
235 |
+
]
|
236 |
+
|
237 |
+
self.block = nn.ModuleList(self.block)
|
238 |
+
d_model = encoder_hidden_size * channel_multiples[-1]
|
239 |
+
self.snake1 = Snake1d(d_model)
|
240 |
+
self.conv2 = weight_norm(nn.Conv1d(d_model, encoder_hidden_size, kernel_size=3, padding=1))
|
241 |
+
|
242 |
+
def forward(self, hidden_state):
|
243 |
+
hidden_state = self.conv1(hidden_state)
|
244 |
+
|
245 |
+
for module in self.block:
|
246 |
+
hidden_state = module(hidden_state)
|
247 |
+
|
248 |
+
hidden_state = self.snake1(hidden_state)
|
249 |
+
hidden_state = self.conv2(hidden_state)
|
250 |
+
|
251 |
+
return hidden_state
|
252 |
+
|
253 |
+
|
254 |
+
class OobleckDecoder(nn.Module):
|
255 |
+
"""Oobleck Decoder"""
|
256 |
+
|
257 |
+
def __init__(self, channels, input_channels, audio_channels, upsampling_ratios, channel_multiples):
|
258 |
+
super().__init__()
|
259 |
+
|
260 |
+
strides = upsampling_ratios
|
261 |
+
channel_multiples = [1] + channel_multiples
|
262 |
+
|
263 |
+
# Add first conv layer
|
264 |
+
self.conv1 = weight_norm(nn.Conv1d(input_channels, channels * channel_multiples[-1], kernel_size=7, padding=3))
|
265 |
+
|
266 |
+
# Add upsampling + MRF blocks
|
267 |
+
block = []
|
268 |
+
for stride_index, stride in enumerate(strides):
|
269 |
+
block += [
|
270 |
+
OobleckDecoderBlock(
|
271 |
+
input_dim=channels * channel_multiples[len(strides) - stride_index],
|
272 |
+
output_dim=channels * channel_multiples[len(strides) - stride_index - 1],
|
273 |
+
stride=stride,
|
274 |
+
)
|
275 |
+
]
|
276 |
+
|
277 |
+
self.block = nn.ModuleList(block)
|
278 |
+
output_dim = channels
|
279 |
+
self.snake1 = Snake1d(output_dim)
|
280 |
+
self.conv2 = weight_norm(nn.Conv1d(channels, audio_channels, kernel_size=7, padding=3, bias=False))
|
281 |
+
|
282 |
+
def forward(self, hidden_state):
|
283 |
+
hidden_state = self.conv1(hidden_state)
|
284 |
+
|
285 |
+
for layer in self.block:
|
286 |
+
hidden_state = layer(hidden_state)
|
287 |
+
|
288 |
+
hidden_state = self.snake1(hidden_state)
|
289 |
+
hidden_state = self.conv2(hidden_state)
|
290 |
+
|
291 |
+
return hidden_state
|
292 |
+
|
293 |
+
|
294 |
+
class AutoencoderOobleck(ModelMixin, ConfigMixin):
|
295 |
+
r"""
|
296 |
+
An autoencoder for encoding waveforms into latents and decoding latent representations into waveforms. First
|
297 |
+
introduced in Stable Audio.
|
298 |
+
|
299 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
300 |
+
for all models (such as downloading or saving).
|
301 |
+
|
302 |
+
Parameters:
|
303 |
+
encoder_hidden_size (`int`, *optional*, defaults to 128):
|
304 |
+
Intermediate representation dimension for the encoder.
|
305 |
+
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 4, 8, 8]`):
|
306 |
+
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
|
307 |
+
channel_multiples (`List[int]`, *optional*, defaults to `[1, 2, 4, 8, 16]`):
|
308 |
+
Multiples used to determine the hidden sizes of the hidden layers.
|
309 |
+
decoder_channels (`int`, *optional*, defaults to 128):
|
310 |
+
Intermediate representation dimension for the decoder.
|
311 |
+
decoder_input_channels (`int`, *optional*, defaults to 64):
|
312 |
+
Input dimension for the decoder. Corresponds to the latent dimension.
|
313 |
+
audio_channels (`int`, *optional*, defaults to 2):
|
314 |
+
Number of channels in the audio data. Either 1 for mono or 2 for stereo.
|
315 |
+
sampling_rate (`int`, *optional*, defaults to 44100):
|
316 |
+
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
|
317 |
+
"""
|
318 |
+
|
319 |
+
_supports_gradient_checkpointing = False
|
320 |
+
|
321 |
+
@register_to_config
|
322 |
+
def __init__(
|
323 |
+
self,
|
324 |
+
encoder_hidden_size=128,
|
325 |
+
downsampling_ratios=[2, 4, 4, 8, 8],
|
326 |
+
channel_multiples=[1, 2, 4, 8, 16],
|
327 |
+
decoder_channels=128,
|
328 |
+
decoder_input_channels=64,
|
329 |
+
audio_channels=2,
|
330 |
+
sampling_rate=44100,
|
331 |
+
):
|
332 |
+
super().__init__()
|
333 |
+
|
334 |
+
self.encoder_hidden_size = encoder_hidden_size
|
335 |
+
self.downsampling_ratios = downsampling_ratios
|
336 |
+
self.decoder_channels = decoder_channels
|
337 |
+
self.upsampling_ratios = downsampling_ratios[::-1]
|
338 |
+
self.hop_length = int(np.prod(downsampling_ratios))
|
339 |
+
self.sampling_rate = sampling_rate
|
340 |
+
|
341 |
+
self.encoder = OobleckEncoder(
|
342 |
+
encoder_hidden_size=encoder_hidden_size,
|
343 |
+
audio_channels=audio_channels,
|
344 |
+
downsampling_ratios=downsampling_ratios,
|
345 |
+
channel_multiples=channel_multiples,
|
346 |
+
)
|
347 |
+
|
348 |
+
self.decoder = OobleckDecoder(
|
349 |
+
channels=decoder_channels,
|
350 |
+
input_channels=decoder_input_channels,
|
351 |
+
audio_channels=audio_channels,
|
352 |
+
upsampling_ratios=self.upsampling_ratios,
|
353 |
+
channel_multiples=channel_multiples,
|
354 |
+
)
|
355 |
+
|
356 |
+
self.use_slicing = False
|
357 |
+
|
358 |
+
def enable_slicing(self):
|
359 |
+
r"""
|
360 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
361 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
362 |
+
"""
|
363 |
+
self.use_slicing = True
|
364 |
+
|
365 |
+
def disable_slicing(self):
|
366 |
+
r"""
|
367 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
368 |
+
decoding in one step.
|
369 |
+
"""
|
370 |
+
self.use_slicing = False
|
371 |
+
|
372 |
+
@apply_forward_hook
|
373 |
+
def encode(
|
374 |
+
self, x: torch.Tensor, return_dict: bool = True
|
375 |
+
) -> Union[AutoencoderOobleckOutput, Tuple[OobleckDiagonalGaussianDistribution]]:
|
376 |
+
"""
|
377 |
+
Encode a batch of images into latents.
|
378 |
+
|
379 |
+
Args:
|
380 |
+
x (`torch.Tensor`): Input batch of images.
|
381 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
382 |
+
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
383 |
+
|
384 |
+
Returns:
|
385 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
386 |
+
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
387 |
+
"""
|
388 |
+
if self.use_slicing and x.shape[0] > 1:
|
389 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
390 |
+
h = torch.cat(encoded_slices)
|
391 |
+
else:
|
392 |
+
h = self.encoder(x)
|
393 |
+
|
394 |
+
posterior = OobleckDiagonalGaussianDistribution(h)
|
395 |
+
|
396 |
+
if not return_dict:
|
397 |
+
return (posterior,)
|
398 |
+
|
399 |
+
return AutoencoderOobleckOutput(latent_dist=posterior)
|
400 |
+
|
401 |
+
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
402 |
+
dec = self.decoder(z)
|
403 |
+
|
404 |
+
if not return_dict:
|
405 |
+
return (dec,)
|
406 |
+
|
407 |
+
return OobleckDecoderOutput(sample=dec)
|
408 |
+
|
409 |
+
@apply_forward_hook
|
410 |
+
def decode(
|
411 |
+
self, z: torch.FloatTensor, return_dict: bool = True, generator=None
|
412 |
+
) -> Union[OobleckDecoderOutput, torch.FloatTensor]:
|
413 |
+
"""
|
414 |
+
Decode a batch of images.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
z (`torch.Tensor`): Input batch of latent vectors.
|
418 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
419 |
+
Whether to return a [`~models.vae.OobleckDecoderOutput`] instead of a plain tuple.
|
420 |
+
|
421 |
+
Returns:
|
422 |
+
[`~models.vae.OobleckDecoderOutput`] or `tuple`:
|
423 |
+
If return_dict is True, a [`~models.vae.OobleckDecoderOutput`] is returned, otherwise a plain `tuple`
|
424 |
+
is returned.
|
425 |
+
|
426 |
+
"""
|
427 |
+
if self.use_slicing and z.shape[0] > 1:
|
428 |
+
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
|
429 |
+
decoded = torch.cat(decoded_slices)
|
430 |
+
else:
|
431 |
+
decoded = self._decode(z).sample
|
432 |
+
|
433 |
+
if not return_dict:
|
434 |
+
return (decoded,)
|
435 |
+
|
436 |
+
return OobleckDecoderOutput(sample=decoded)
|
437 |
+
|
438 |
+
def forward(
|
439 |
+
self,
|
440 |
+
sample: torch.Tensor,
|
441 |
+
sample_posterior: bool = False,
|
442 |
+
return_dict: bool = True,
|
443 |
+
generator: Optional[torch.Generator] = None,
|
444 |
+
) -> Union[OobleckDecoderOutput, torch.Tensor]:
|
445 |
+
r"""
|
446 |
+
Args:
|
447 |
+
sample (`torch.Tensor`): Input sample.
|
448 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
449 |
+
Whether to sample from the posterior.
|
450 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
451 |
+
Whether or not to return a [`OobleckDecoderOutput`] instead of a plain tuple.
|
452 |
+
"""
|
453 |
+
x = sample
|
454 |
+
posterior = self.encode(x).latent_dist
|
455 |
+
if sample_posterior:
|
456 |
+
z = posterior.sample(generator=generator)
|
457 |
+
else:
|
458 |
+
z = posterior.mode()
|
459 |
+
dec = self.decode(z).sample
|
460 |
+
|
461 |
+
if not return_dict:
|
462 |
+
return (dec,)
|
463 |
+
|
464 |
+
return OobleckDecoderOutput(sample=dec)
|
icedit/diffusers/models/autoencoders/autoencoder_tiny.py
ADDED
@@ -0,0 +1,350 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Ollin Boer Bohan and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from dataclasses import dataclass
|
17 |
+
from typing import Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
|
21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from ...utils import BaseOutput
|
23 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
24 |
+
from ..modeling_utils import ModelMixin
|
25 |
+
from .vae import DecoderOutput, DecoderTiny, EncoderTiny
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class AutoencoderTinyOutput(BaseOutput):
|
30 |
+
"""
|
31 |
+
Output of AutoencoderTiny encoding method.
|
32 |
+
|
33 |
+
Args:
|
34 |
+
latents (`torch.Tensor`): Encoded outputs of the `Encoder`.
|
35 |
+
|
36 |
+
"""
|
37 |
+
|
38 |
+
latents: torch.Tensor
|
39 |
+
|
40 |
+
|
41 |
+
class AutoencoderTiny(ModelMixin, ConfigMixin):
|
42 |
+
r"""
|
43 |
+
A tiny distilled VAE model for encoding images into latents and decoding latent representations into images.
|
44 |
+
|
45 |
+
[`AutoencoderTiny`] is a wrapper around the original implementation of `TAESD`.
|
46 |
+
|
47 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for its generic methods implemented for
|
48 |
+
all models (such as downloading or saving).
|
49 |
+
|
50 |
+
Parameters:
|
51 |
+
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input image.
|
52 |
+
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
|
53 |
+
encoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
|
54 |
+
Tuple of integers representing the number of output channels for each encoder block. The length of the
|
55 |
+
tuple should be equal to the number of encoder blocks.
|
56 |
+
decoder_block_out_channels (`Tuple[int]`, *optional*, defaults to `(64, 64, 64, 64)`):
|
57 |
+
Tuple of integers representing the number of output channels for each decoder block. The length of the
|
58 |
+
tuple should be equal to the number of decoder blocks.
|
59 |
+
act_fn (`str`, *optional*, defaults to `"relu"`):
|
60 |
+
Activation function to be used throughout the model.
|
61 |
+
latent_channels (`int`, *optional*, defaults to 4):
|
62 |
+
Number of channels in the latent representation. The latent space acts as a compressed representation of
|
63 |
+
the input image.
|
64 |
+
upsampling_scaling_factor (`int`, *optional*, defaults to 2):
|
65 |
+
Scaling factor for upsampling in the decoder. It determines the size of the output image during the
|
66 |
+
upsampling process.
|
67 |
+
num_encoder_blocks (`Tuple[int]`, *optional*, defaults to `(1, 3, 3, 3)`):
|
68 |
+
Tuple of integers representing the number of encoder blocks at each stage of the encoding process. The
|
69 |
+
length of the tuple should be equal to the number of stages in the encoder. Each stage has a different
|
70 |
+
number of encoder blocks.
|
71 |
+
num_decoder_blocks (`Tuple[int]`, *optional*, defaults to `(3, 3, 3, 1)`):
|
72 |
+
Tuple of integers representing the number of decoder blocks at each stage of the decoding process. The
|
73 |
+
length of the tuple should be equal to the number of stages in the decoder. Each stage has a different
|
74 |
+
number of decoder blocks.
|
75 |
+
latent_magnitude (`float`, *optional*, defaults to 3.0):
|
76 |
+
Magnitude of the latent representation. This parameter scales the latent representation values to control
|
77 |
+
the extent of information preservation.
|
78 |
+
latent_shift (float, *optional*, defaults to 0.5):
|
79 |
+
Shift applied to the latent representation. This parameter controls the center of the latent space.
|
80 |
+
scaling_factor (`float`, *optional*, defaults to 1.0):
|
81 |
+
The component-wise standard deviation of the trained latent space computed using the first batch of the
|
82 |
+
training set. This is used to scale the latent space to have unit variance when training the diffusion
|
83 |
+
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the
|
84 |
+
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1
|
85 |
+
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image
|
86 |
+
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. For this Autoencoder,
|
87 |
+
however, no such scaling factor was used, hence the value of 1.0 as the default.
|
88 |
+
force_upcast (`bool`, *optional*, default to `False`):
|
89 |
+
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE
|
90 |
+
can be fine-tuned / trained to a lower range without losing too much precision, in which case
|
91 |
+
`force_upcast` can be set to `False` (see this fp16-friendly
|
92 |
+
[AutoEncoder](https://huggingface.co/madebyollin/sdxl-vae-fp16-fix)).
|
93 |
+
"""
|
94 |
+
|
95 |
+
_supports_gradient_checkpointing = True
|
96 |
+
|
97 |
+
@register_to_config
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
in_channels: int = 3,
|
101 |
+
out_channels: int = 3,
|
102 |
+
encoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
|
103 |
+
decoder_block_out_channels: Tuple[int, ...] = (64, 64, 64, 64),
|
104 |
+
act_fn: str = "relu",
|
105 |
+
upsample_fn: str = "nearest",
|
106 |
+
latent_channels: int = 4,
|
107 |
+
upsampling_scaling_factor: int = 2,
|
108 |
+
num_encoder_blocks: Tuple[int, ...] = (1, 3, 3, 3),
|
109 |
+
num_decoder_blocks: Tuple[int, ...] = (3, 3, 3, 1),
|
110 |
+
latent_magnitude: int = 3,
|
111 |
+
latent_shift: float = 0.5,
|
112 |
+
force_upcast: bool = False,
|
113 |
+
scaling_factor: float = 1.0,
|
114 |
+
shift_factor: float = 0.0,
|
115 |
+
):
|
116 |
+
super().__init__()
|
117 |
+
|
118 |
+
if len(encoder_block_out_channels) != len(num_encoder_blocks):
|
119 |
+
raise ValueError("`encoder_block_out_channels` should have the same length as `num_encoder_blocks`.")
|
120 |
+
if len(decoder_block_out_channels) != len(num_decoder_blocks):
|
121 |
+
raise ValueError("`decoder_block_out_channels` should have the same length as `num_decoder_blocks`.")
|
122 |
+
|
123 |
+
self.encoder = EncoderTiny(
|
124 |
+
in_channels=in_channels,
|
125 |
+
out_channels=latent_channels,
|
126 |
+
num_blocks=num_encoder_blocks,
|
127 |
+
block_out_channels=encoder_block_out_channels,
|
128 |
+
act_fn=act_fn,
|
129 |
+
)
|
130 |
+
|
131 |
+
self.decoder = DecoderTiny(
|
132 |
+
in_channels=latent_channels,
|
133 |
+
out_channels=out_channels,
|
134 |
+
num_blocks=num_decoder_blocks,
|
135 |
+
block_out_channels=decoder_block_out_channels,
|
136 |
+
upsampling_scaling_factor=upsampling_scaling_factor,
|
137 |
+
act_fn=act_fn,
|
138 |
+
upsample_fn=upsample_fn,
|
139 |
+
)
|
140 |
+
|
141 |
+
self.latent_magnitude = latent_magnitude
|
142 |
+
self.latent_shift = latent_shift
|
143 |
+
self.scaling_factor = scaling_factor
|
144 |
+
|
145 |
+
self.use_slicing = False
|
146 |
+
self.use_tiling = False
|
147 |
+
|
148 |
+
# only relevant if vae tiling is enabled
|
149 |
+
self.spatial_scale_factor = 2**out_channels
|
150 |
+
self.tile_overlap_factor = 0.125
|
151 |
+
self.tile_sample_min_size = 512
|
152 |
+
self.tile_latent_min_size = self.tile_sample_min_size // self.spatial_scale_factor
|
153 |
+
|
154 |
+
self.register_to_config(block_out_channels=decoder_block_out_channels)
|
155 |
+
self.register_to_config(force_upcast=False)
|
156 |
+
|
157 |
+
def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
|
158 |
+
if isinstance(module, (EncoderTiny, DecoderTiny)):
|
159 |
+
module.gradient_checkpointing = value
|
160 |
+
|
161 |
+
def scale_latents(self, x: torch.Tensor) -> torch.Tensor:
|
162 |
+
"""raw latents -> [0, 1]"""
|
163 |
+
return x.div(2 * self.latent_magnitude).add(self.latent_shift).clamp(0, 1)
|
164 |
+
|
165 |
+
def unscale_latents(self, x: torch.Tensor) -> torch.Tensor:
|
166 |
+
"""[0, 1] -> raw latents"""
|
167 |
+
return x.sub(self.latent_shift).mul(2 * self.latent_magnitude)
|
168 |
+
|
169 |
+
def enable_slicing(self) -> None:
|
170 |
+
r"""
|
171 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
172 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
173 |
+
"""
|
174 |
+
self.use_slicing = True
|
175 |
+
|
176 |
+
def disable_slicing(self) -> None:
|
177 |
+
r"""
|
178 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
179 |
+
decoding in one step.
|
180 |
+
"""
|
181 |
+
self.use_slicing = False
|
182 |
+
|
183 |
+
def enable_tiling(self, use_tiling: bool = True) -> None:
|
184 |
+
r"""
|
185 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
186 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
187 |
+
processing larger images.
|
188 |
+
"""
|
189 |
+
self.use_tiling = use_tiling
|
190 |
+
|
191 |
+
def disable_tiling(self) -> None:
|
192 |
+
r"""
|
193 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
194 |
+
decoding in one step.
|
195 |
+
"""
|
196 |
+
self.enable_tiling(False)
|
197 |
+
|
198 |
+
def _tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
|
199 |
+
r"""Encode a batch of images using a tiled encoder.
|
200 |
+
|
201 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
202 |
+
steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
|
203 |
+
tiles overlap and are blended together to form a smooth output.
|
204 |
+
|
205 |
+
Args:
|
206 |
+
x (`torch.Tensor`): Input batch of images.
|
207 |
+
|
208 |
+
Returns:
|
209 |
+
`torch.Tensor`: Encoded batch of images.
|
210 |
+
"""
|
211 |
+
# scale of encoder output relative to input
|
212 |
+
sf = self.spatial_scale_factor
|
213 |
+
tile_size = self.tile_sample_min_size
|
214 |
+
|
215 |
+
# number of pixels to blend and to traverse between tile
|
216 |
+
blend_size = int(tile_size * self.tile_overlap_factor)
|
217 |
+
traverse_size = tile_size - blend_size
|
218 |
+
|
219 |
+
# tiles index (up/left)
|
220 |
+
ti = range(0, x.shape[-2], traverse_size)
|
221 |
+
tj = range(0, x.shape[-1], traverse_size)
|
222 |
+
|
223 |
+
# mask for blending
|
224 |
+
blend_masks = torch.stack(
|
225 |
+
torch.meshgrid([torch.arange(tile_size / sf) / (blend_size / sf - 1)] * 2, indexing="ij")
|
226 |
+
)
|
227 |
+
blend_masks = blend_masks.clamp(0, 1).to(x.device)
|
228 |
+
|
229 |
+
# output array
|
230 |
+
out = torch.zeros(x.shape[0], 4, x.shape[-2] // sf, x.shape[-1] // sf, device=x.device)
|
231 |
+
for i in ti:
|
232 |
+
for j in tj:
|
233 |
+
tile_in = x[..., i : i + tile_size, j : j + tile_size]
|
234 |
+
# tile result
|
235 |
+
tile_out = out[..., i // sf : (i + tile_size) // sf, j // sf : (j + tile_size) // sf]
|
236 |
+
tile = self.encoder(tile_in)
|
237 |
+
h, w = tile.shape[-2], tile.shape[-1]
|
238 |
+
# blend tile result into output
|
239 |
+
blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
|
240 |
+
blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
|
241 |
+
blend_mask = blend_mask_i * blend_mask_j
|
242 |
+
tile, blend_mask = tile[..., :h, :w], blend_mask[..., :h, :w]
|
243 |
+
tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
|
244 |
+
return out
|
245 |
+
|
246 |
+
def _tiled_decode(self, x: torch.Tensor) -> torch.Tensor:
|
247 |
+
r"""Encode a batch of images using a tiled encoder.
|
248 |
+
|
249 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
250 |
+
steps. This is useful to keep memory use constant regardless of image size. To avoid tiling artifacts, the
|
251 |
+
tiles overlap and are blended together to form a smooth output.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
x (`torch.Tensor`): Input batch of images.
|
255 |
+
|
256 |
+
Returns:
|
257 |
+
`torch.Tensor`: Encoded batch of images.
|
258 |
+
"""
|
259 |
+
# scale of decoder output relative to input
|
260 |
+
sf = self.spatial_scale_factor
|
261 |
+
tile_size = self.tile_latent_min_size
|
262 |
+
|
263 |
+
# number of pixels to blend and to traverse between tiles
|
264 |
+
blend_size = int(tile_size * self.tile_overlap_factor)
|
265 |
+
traverse_size = tile_size - blend_size
|
266 |
+
|
267 |
+
# tiles index (up/left)
|
268 |
+
ti = range(0, x.shape[-2], traverse_size)
|
269 |
+
tj = range(0, x.shape[-1], traverse_size)
|
270 |
+
|
271 |
+
# mask for blending
|
272 |
+
blend_masks = torch.stack(
|
273 |
+
torch.meshgrid([torch.arange(tile_size * sf) / (blend_size * sf - 1)] * 2, indexing="ij")
|
274 |
+
)
|
275 |
+
blend_masks = blend_masks.clamp(0, 1).to(x.device)
|
276 |
+
|
277 |
+
# output array
|
278 |
+
out = torch.zeros(x.shape[0], 3, x.shape[-2] * sf, x.shape[-1] * sf, device=x.device)
|
279 |
+
for i in ti:
|
280 |
+
for j in tj:
|
281 |
+
tile_in = x[..., i : i + tile_size, j : j + tile_size]
|
282 |
+
# tile result
|
283 |
+
tile_out = out[..., i * sf : (i + tile_size) * sf, j * sf : (j + tile_size) * sf]
|
284 |
+
tile = self.decoder(tile_in)
|
285 |
+
h, w = tile.shape[-2], tile.shape[-1]
|
286 |
+
# blend tile result into output
|
287 |
+
blend_mask_i = torch.ones_like(blend_masks[0]) if i == 0 else blend_masks[0]
|
288 |
+
blend_mask_j = torch.ones_like(blend_masks[1]) if j == 0 else blend_masks[1]
|
289 |
+
blend_mask = (blend_mask_i * blend_mask_j)[..., :h, :w]
|
290 |
+
tile_out.copy_(blend_mask * tile + (1 - blend_mask) * tile_out)
|
291 |
+
return out
|
292 |
+
|
293 |
+
@apply_forward_hook
|
294 |
+
def encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[AutoencoderTinyOutput, Tuple[torch.Tensor]]:
|
295 |
+
if self.use_slicing and x.shape[0] > 1:
|
296 |
+
output = [
|
297 |
+
self._tiled_encode(x_slice) if self.use_tiling else self.encoder(x_slice) for x_slice in x.split(1)
|
298 |
+
]
|
299 |
+
output = torch.cat(output)
|
300 |
+
else:
|
301 |
+
output = self._tiled_encode(x) if self.use_tiling else self.encoder(x)
|
302 |
+
|
303 |
+
if not return_dict:
|
304 |
+
return (output,)
|
305 |
+
|
306 |
+
return AutoencoderTinyOutput(latents=output)
|
307 |
+
|
308 |
+
@apply_forward_hook
|
309 |
+
def decode(
|
310 |
+
self, x: torch.Tensor, generator: Optional[torch.Generator] = None, return_dict: bool = True
|
311 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
312 |
+
if self.use_slicing and x.shape[0] > 1:
|
313 |
+
output = [
|
314 |
+
self._tiled_decode(x_slice) if self.use_tiling else self.decoder(x_slice) for x_slice in x.split(1)
|
315 |
+
]
|
316 |
+
output = torch.cat(output)
|
317 |
+
else:
|
318 |
+
output = self._tiled_decode(x) if self.use_tiling else self.decoder(x)
|
319 |
+
|
320 |
+
if not return_dict:
|
321 |
+
return (output,)
|
322 |
+
|
323 |
+
return DecoderOutput(sample=output)
|
324 |
+
|
325 |
+
def forward(
|
326 |
+
self,
|
327 |
+
sample: torch.Tensor,
|
328 |
+
return_dict: bool = True,
|
329 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
330 |
+
r"""
|
331 |
+
Args:
|
332 |
+
sample (`torch.Tensor`): Input sample.
|
333 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
334 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
335 |
+
"""
|
336 |
+
enc = self.encode(sample).latents
|
337 |
+
|
338 |
+
# scale latents to be in [0, 1], then quantize latents to a byte tensor,
|
339 |
+
# as if we were storing the latents in an RGBA uint8 image.
|
340 |
+
scaled_enc = self.scale_latents(enc).mul_(255).round_().byte()
|
341 |
+
|
342 |
+
# unquantize latents back into [0, 1], then unscale latents back to their original range,
|
343 |
+
# as if we were loading the latents from an RGBA uint8 image.
|
344 |
+
unscaled_enc = self.unscale_latents(scaled_enc / 255.0)
|
345 |
+
|
346 |
+
dec = self.decode(unscaled_enc).sample
|
347 |
+
|
348 |
+
if not return_dict:
|
349 |
+
return (dec,)
|
350 |
+
return DecoderOutput(sample=dec)
|
icedit/diffusers/models/autoencoders/consistency_decoder_vae.py
ADDED
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Dict, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from ...configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from ...schedulers import ConsistencyDecoderScheduler
|
23 |
+
from ...utils import BaseOutput
|
24 |
+
from ...utils.accelerate_utils import apply_forward_hook
|
25 |
+
from ...utils.torch_utils import randn_tensor
|
26 |
+
from ..attention_processor import (
|
27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
28 |
+
CROSS_ATTENTION_PROCESSORS,
|
29 |
+
AttentionProcessor,
|
30 |
+
AttnAddedKVProcessor,
|
31 |
+
AttnProcessor,
|
32 |
+
)
|
33 |
+
from ..modeling_utils import ModelMixin
|
34 |
+
from ..unets.unet_2d import UNet2DModel
|
35 |
+
from .vae import DecoderOutput, DiagonalGaussianDistribution, Encoder
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class ConsistencyDecoderVAEOutput(BaseOutput):
|
40 |
+
"""
|
41 |
+
Output of encoding method.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
latent_dist (`DiagonalGaussianDistribution`):
|
45 |
+
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`.
|
46 |
+
`DiagonalGaussianDistribution` allows for sampling latents from the distribution.
|
47 |
+
"""
|
48 |
+
|
49 |
+
latent_dist: "DiagonalGaussianDistribution"
|
50 |
+
|
51 |
+
|
52 |
+
class ConsistencyDecoderVAE(ModelMixin, ConfigMixin):
|
53 |
+
r"""
|
54 |
+
The consistency decoder used with DALL-E 3.
|
55 |
+
|
56 |
+
Examples:
|
57 |
+
```py
|
58 |
+
>>> import torch
|
59 |
+
>>> from diffusers import StableDiffusionPipeline, ConsistencyDecoderVAE
|
60 |
+
|
61 |
+
>>> vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
|
62 |
+
>>> pipe = StableDiffusionPipeline.from_pretrained(
|
63 |
+
... "runwayml/stable-diffusion-v1-5", vae=vae, torch_dtype=torch.float16
|
64 |
+
... ).to("cuda")
|
65 |
+
|
66 |
+
>>> image = pipe("horse", generator=torch.manual_seed(0)).images[0]
|
67 |
+
>>> image
|
68 |
+
```
|
69 |
+
"""
|
70 |
+
|
71 |
+
@register_to_config
|
72 |
+
def __init__(
|
73 |
+
self,
|
74 |
+
scaling_factor: float = 0.18215,
|
75 |
+
latent_channels: int = 4,
|
76 |
+
sample_size: int = 32,
|
77 |
+
encoder_act_fn: str = "silu",
|
78 |
+
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512),
|
79 |
+
encoder_double_z: bool = True,
|
80 |
+
encoder_down_block_types: Tuple[str, ...] = (
|
81 |
+
"DownEncoderBlock2D",
|
82 |
+
"DownEncoderBlock2D",
|
83 |
+
"DownEncoderBlock2D",
|
84 |
+
"DownEncoderBlock2D",
|
85 |
+
),
|
86 |
+
encoder_in_channels: int = 3,
|
87 |
+
encoder_layers_per_block: int = 2,
|
88 |
+
encoder_norm_num_groups: int = 32,
|
89 |
+
encoder_out_channels: int = 4,
|
90 |
+
decoder_add_attention: bool = False,
|
91 |
+
decoder_block_out_channels: Tuple[int, ...] = (320, 640, 1024, 1024),
|
92 |
+
decoder_down_block_types: Tuple[str, ...] = (
|
93 |
+
"ResnetDownsampleBlock2D",
|
94 |
+
"ResnetDownsampleBlock2D",
|
95 |
+
"ResnetDownsampleBlock2D",
|
96 |
+
"ResnetDownsampleBlock2D",
|
97 |
+
),
|
98 |
+
decoder_downsample_padding: int = 1,
|
99 |
+
decoder_in_channels: int = 7,
|
100 |
+
decoder_layers_per_block: int = 3,
|
101 |
+
decoder_norm_eps: float = 1e-05,
|
102 |
+
decoder_norm_num_groups: int = 32,
|
103 |
+
decoder_num_train_timesteps: int = 1024,
|
104 |
+
decoder_out_channels: int = 6,
|
105 |
+
decoder_resnet_time_scale_shift: str = "scale_shift",
|
106 |
+
decoder_time_embedding_type: str = "learned",
|
107 |
+
decoder_up_block_types: Tuple[str, ...] = (
|
108 |
+
"ResnetUpsampleBlock2D",
|
109 |
+
"ResnetUpsampleBlock2D",
|
110 |
+
"ResnetUpsampleBlock2D",
|
111 |
+
"ResnetUpsampleBlock2D",
|
112 |
+
),
|
113 |
+
):
|
114 |
+
super().__init__()
|
115 |
+
self.encoder = Encoder(
|
116 |
+
act_fn=encoder_act_fn,
|
117 |
+
block_out_channels=encoder_block_out_channels,
|
118 |
+
double_z=encoder_double_z,
|
119 |
+
down_block_types=encoder_down_block_types,
|
120 |
+
in_channels=encoder_in_channels,
|
121 |
+
layers_per_block=encoder_layers_per_block,
|
122 |
+
norm_num_groups=encoder_norm_num_groups,
|
123 |
+
out_channels=encoder_out_channels,
|
124 |
+
)
|
125 |
+
|
126 |
+
self.decoder_unet = UNet2DModel(
|
127 |
+
add_attention=decoder_add_attention,
|
128 |
+
block_out_channels=decoder_block_out_channels,
|
129 |
+
down_block_types=decoder_down_block_types,
|
130 |
+
downsample_padding=decoder_downsample_padding,
|
131 |
+
in_channels=decoder_in_channels,
|
132 |
+
layers_per_block=decoder_layers_per_block,
|
133 |
+
norm_eps=decoder_norm_eps,
|
134 |
+
norm_num_groups=decoder_norm_num_groups,
|
135 |
+
num_train_timesteps=decoder_num_train_timesteps,
|
136 |
+
out_channels=decoder_out_channels,
|
137 |
+
resnet_time_scale_shift=decoder_resnet_time_scale_shift,
|
138 |
+
time_embedding_type=decoder_time_embedding_type,
|
139 |
+
up_block_types=decoder_up_block_types,
|
140 |
+
)
|
141 |
+
self.decoder_scheduler = ConsistencyDecoderScheduler()
|
142 |
+
self.register_to_config(block_out_channels=encoder_block_out_channels)
|
143 |
+
self.register_to_config(force_upcast=False)
|
144 |
+
self.register_buffer(
|
145 |
+
"means",
|
146 |
+
torch.tensor([0.38862467, 0.02253063, 0.07381133, -0.0171294])[None, :, None, None],
|
147 |
+
persistent=False,
|
148 |
+
)
|
149 |
+
self.register_buffer(
|
150 |
+
"stds", torch.tensor([0.9654121, 1.0440036, 0.76147926, 0.77022034])[None, :, None, None], persistent=False
|
151 |
+
)
|
152 |
+
|
153 |
+
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1)
|
154 |
+
|
155 |
+
self.use_slicing = False
|
156 |
+
self.use_tiling = False
|
157 |
+
|
158 |
+
# only relevant if vae tiling is enabled
|
159 |
+
self.tile_sample_min_size = self.config.sample_size
|
160 |
+
sample_size = (
|
161 |
+
self.config.sample_size[0]
|
162 |
+
if isinstance(self.config.sample_size, (list, tuple))
|
163 |
+
else self.config.sample_size
|
164 |
+
)
|
165 |
+
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1)))
|
166 |
+
self.tile_overlap_factor = 0.25
|
167 |
+
|
168 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_tiling
|
169 |
+
def enable_tiling(self, use_tiling: bool = True):
|
170 |
+
r"""
|
171 |
+
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
172 |
+
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
173 |
+
processing larger images.
|
174 |
+
"""
|
175 |
+
self.use_tiling = use_tiling
|
176 |
+
|
177 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_tiling
|
178 |
+
def disable_tiling(self):
|
179 |
+
r"""
|
180 |
+
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
|
181 |
+
decoding in one step.
|
182 |
+
"""
|
183 |
+
self.enable_tiling(False)
|
184 |
+
|
185 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.enable_slicing
|
186 |
+
def enable_slicing(self):
|
187 |
+
r"""
|
188 |
+
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
189 |
+
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
190 |
+
"""
|
191 |
+
self.use_slicing = True
|
192 |
+
|
193 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.disable_slicing
|
194 |
+
def disable_slicing(self):
|
195 |
+
r"""
|
196 |
+
Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
|
197 |
+
decoding in one step.
|
198 |
+
"""
|
199 |
+
self.use_slicing = False
|
200 |
+
|
201 |
+
@property
|
202 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
203 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
204 |
+
r"""
|
205 |
+
Returns:
|
206 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
207 |
+
indexed by its weight name.
|
208 |
+
"""
|
209 |
+
# set recursively
|
210 |
+
processors = {}
|
211 |
+
|
212 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
213 |
+
if hasattr(module, "get_processor"):
|
214 |
+
processors[f"{name}.processor"] = module.get_processor()
|
215 |
+
|
216 |
+
for sub_name, child in module.named_children():
|
217 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
218 |
+
|
219 |
+
return processors
|
220 |
+
|
221 |
+
for name, module in self.named_children():
|
222 |
+
fn_recursive_add_processors(name, module, processors)
|
223 |
+
|
224 |
+
return processors
|
225 |
+
|
226 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
227 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
228 |
+
r"""
|
229 |
+
Sets the attention processor to use to compute attention.
|
230 |
+
|
231 |
+
Parameters:
|
232 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
233 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
234 |
+
for **all** `Attention` layers.
|
235 |
+
|
236 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
237 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
238 |
+
|
239 |
+
"""
|
240 |
+
count = len(self.attn_processors.keys())
|
241 |
+
|
242 |
+
if isinstance(processor, dict) and len(processor) != count:
|
243 |
+
raise ValueError(
|
244 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
245 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
246 |
+
)
|
247 |
+
|
248 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
249 |
+
if hasattr(module, "set_processor"):
|
250 |
+
if not isinstance(processor, dict):
|
251 |
+
module.set_processor(processor)
|
252 |
+
else:
|
253 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
254 |
+
|
255 |
+
for sub_name, child in module.named_children():
|
256 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
257 |
+
|
258 |
+
for name, module in self.named_children():
|
259 |
+
fn_recursive_attn_processor(name, module, processor)
|
260 |
+
|
261 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
|
262 |
+
def set_default_attn_processor(self):
|
263 |
+
"""
|
264 |
+
Disables custom attention processors and sets the default attention implementation.
|
265 |
+
"""
|
266 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
267 |
+
processor = AttnAddedKVProcessor()
|
268 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
269 |
+
processor = AttnProcessor()
|
270 |
+
else:
|
271 |
+
raise ValueError(
|
272 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
273 |
+
)
|
274 |
+
|
275 |
+
self.set_attn_processor(processor)
|
276 |
+
|
277 |
+
@apply_forward_hook
|
278 |
+
def encode(
|
279 |
+
self, x: torch.Tensor, return_dict: bool = True
|
280 |
+
) -> Union[ConsistencyDecoderVAEOutput, Tuple[DiagonalGaussianDistribution]]:
|
281 |
+
"""
|
282 |
+
Encode a batch of images into latents.
|
283 |
+
|
284 |
+
Args:
|
285 |
+
x (`torch.Tensor`): Input batch of images.
|
286 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
287 |
+
Whether to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
288 |
+
instead of a plain tuple.
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
The latent representations of the encoded images. If `return_dict` is True, a
|
292 |
+
[`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] is returned, otherwise a
|
293 |
+
plain `tuple` is returned.
|
294 |
+
"""
|
295 |
+
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
|
296 |
+
return self.tiled_encode(x, return_dict=return_dict)
|
297 |
+
|
298 |
+
if self.use_slicing and x.shape[0] > 1:
|
299 |
+
encoded_slices = [self.encoder(x_slice) for x_slice in x.split(1)]
|
300 |
+
h = torch.cat(encoded_slices)
|
301 |
+
else:
|
302 |
+
h = self.encoder(x)
|
303 |
+
|
304 |
+
moments = self.quant_conv(h)
|
305 |
+
posterior = DiagonalGaussianDistribution(moments)
|
306 |
+
|
307 |
+
if not return_dict:
|
308 |
+
return (posterior,)
|
309 |
+
|
310 |
+
return ConsistencyDecoderVAEOutput(latent_dist=posterior)
|
311 |
+
|
312 |
+
@apply_forward_hook
|
313 |
+
def decode(
|
314 |
+
self,
|
315 |
+
z: torch.Tensor,
|
316 |
+
generator: Optional[torch.Generator] = None,
|
317 |
+
return_dict: bool = True,
|
318 |
+
num_inference_steps: int = 2,
|
319 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
320 |
+
"""
|
321 |
+
Decodes the input latent vector `z` using the consistency decoder VAE model.
|
322 |
+
|
323 |
+
Args:
|
324 |
+
z (torch.Tensor): The input latent vector.
|
325 |
+
generator (Optional[torch.Generator]): The random number generator. Default is None.
|
326 |
+
return_dict (bool): Whether to return the output as a dictionary. Default is True.
|
327 |
+
num_inference_steps (int): The number of inference steps. Default is 2.
|
328 |
+
|
329 |
+
Returns:
|
330 |
+
Union[DecoderOutput, Tuple[torch.Tensor]]: The decoded output.
|
331 |
+
|
332 |
+
"""
|
333 |
+
z = (z * self.config.scaling_factor - self.means) / self.stds
|
334 |
+
|
335 |
+
scale_factor = 2 ** (len(self.config.block_out_channels) - 1)
|
336 |
+
z = F.interpolate(z, mode="nearest", scale_factor=scale_factor)
|
337 |
+
|
338 |
+
batch_size, _, height, width = z.shape
|
339 |
+
|
340 |
+
self.decoder_scheduler.set_timesteps(num_inference_steps, device=self.device)
|
341 |
+
|
342 |
+
x_t = self.decoder_scheduler.init_noise_sigma * randn_tensor(
|
343 |
+
(batch_size, 3, height, width), generator=generator, dtype=z.dtype, device=z.device
|
344 |
+
)
|
345 |
+
|
346 |
+
for t in self.decoder_scheduler.timesteps:
|
347 |
+
model_input = torch.concat([self.decoder_scheduler.scale_model_input(x_t, t), z], dim=1)
|
348 |
+
model_output = self.decoder_unet(model_input, t).sample[:, :3, :, :]
|
349 |
+
prev_sample = self.decoder_scheduler.step(model_output, t, x_t, generator).prev_sample
|
350 |
+
x_t = prev_sample
|
351 |
+
|
352 |
+
x_0 = x_t
|
353 |
+
|
354 |
+
if not return_dict:
|
355 |
+
return (x_0,)
|
356 |
+
|
357 |
+
return DecoderOutput(sample=x_0)
|
358 |
+
|
359 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_v
|
360 |
+
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
361 |
+
blend_extent = min(a.shape[2], b.shape[2], blend_extent)
|
362 |
+
for y in range(blend_extent):
|
363 |
+
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
|
364 |
+
return b
|
365 |
+
|
366 |
+
# Copied from diffusers.models.autoencoders.autoencoder_kl.AutoencoderKL.blend_h
|
367 |
+
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
|
368 |
+
blend_extent = min(a.shape[3], b.shape[3], blend_extent)
|
369 |
+
for x in range(blend_extent):
|
370 |
+
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
|
371 |
+
return b
|
372 |
+
|
373 |
+
def tiled_encode(self, x: torch.Tensor, return_dict: bool = True) -> Union[ConsistencyDecoderVAEOutput, Tuple]:
|
374 |
+
r"""Encode a batch of images using a tiled encoder.
|
375 |
+
|
376 |
+
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several
|
377 |
+
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is
|
378 |
+
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the
|
379 |
+
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the
|
380 |
+
output, but they should be much less noticeable.
|
381 |
+
|
382 |
+
Args:
|
383 |
+
x (`torch.Tensor`): Input batch of images.
|
384 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
385 |
+
Whether or not to return a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
386 |
+
instead of a plain tuple.
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
[`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`] or `tuple`:
|
390 |
+
If return_dict is True, a [`~models.autoencoders.consistency_decoder_vae.ConsistencyDecoderVAEOutput`]
|
391 |
+
is returned, otherwise a plain `tuple` is returned.
|
392 |
+
"""
|
393 |
+
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor))
|
394 |
+
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor)
|
395 |
+
row_limit = self.tile_latent_min_size - blend_extent
|
396 |
+
|
397 |
+
# Split the image into 512x512 tiles and encode them separately.
|
398 |
+
rows = []
|
399 |
+
for i in range(0, x.shape[2], overlap_size):
|
400 |
+
row = []
|
401 |
+
for j in range(0, x.shape[3], overlap_size):
|
402 |
+
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
|
403 |
+
tile = self.encoder(tile)
|
404 |
+
tile = self.quant_conv(tile)
|
405 |
+
row.append(tile)
|
406 |
+
rows.append(row)
|
407 |
+
result_rows = []
|
408 |
+
for i, row in enumerate(rows):
|
409 |
+
result_row = []
|
410 |
+
for j, tile in enumerate(row):
|
411 |
+
# blend the above tile and the left tile
|
412 |
+
# to the current tile and add the current tile to the result row
|
413 |
+
if i > 0:
|
414 |
+
tile = self.blend_v(rows[i - 1][j], tile, blend_extent)
|
415 |
+
if j > 0:
|
416 |
+
tile = self.blend_h(row[j - 1], tile, blend_extent)
|
417 |
+
result_row.append(tile[:, :, :row_limit, :row_limit])
|
418 |
+
result_rows.append(torch.cat(result_row, dim=3))
|
419 |
+
|
420 |
+
moments = torch.cat(result_rows, dim=2)
|
421 |
+
posterior = DiagonalGaussianDistribution(moments)
|
422 |
+
|
423 |
+
if not return_dict:
|
424 |
+
return (posterior,)
|
425 |
+
|
426 |
+
return ConsistencyDecoderVAEOutput(latent_dist=posterior)
|
427 |
+
|
428 |
+
def forward(
|
429 |
+
self,
|
430 |
+
sample: torch.Tensor,
|
431 |
+
sample_posterior: bool = False,
|
432 |
+
return_dict: bool = True,
|
433 |
+
generator: Optional[torch.Generator] = None,
|
434 |
+
) -> Union[DecoderOutput, Tuple[torch.Tensor]]:
|
435 |
+
r"""
|
436 |
+
Args:
|
437 |
+
sample (`torch.Tensor`): Input sample.
|
438 |
+
sample_posterior (`bool`, *optional*, defaults to `False`):
|
439 |
+
Whether to sample from the posterior.
|
440 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
441 |
+
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
442 |
+
generator (`torch.Generator`, *optional*, defaults to `None`):
|
443 |
+
Generator to use for sampling.
|
444 |
+
|
445 |
+
Returns:
|
446 |
+
[`DecoderOutput`] or `tuple`:
|
447 |
+
If return_dict is True, a [`DecoderOutput`] is returned, otherwise a plain `tuple` is returned.
|
448 |
+
"""
|
449 |
+
x = sample
|
450 |
+
posterior = self.encode(x).latent_dist
|
451 |
+
if sample_posterior:
|
452 |
+
z = posterior.sample(generator=generator)
|
453 |
+
else:
|
454 |
+
z = posterior.mode()
|
455 |
+
dec = self.decode(z, generator=generator).sample
|
456 |
+
|
457 |
+
if not return_dict:
|
458 |
+
return (dec,)
|
459 |
+
|
460 |
+
return DecoderOutput(sample=dec)
|
icedit/diffusers/models/autoencoders/vae.py
ADDED
@@ -0,0 +1,995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Optional, Tuple
|
16 |
+
|
17 |
+
import numpy as np
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from ...utils import BaseOutput, is_torch_version
|
22 |
+
from ...utils.torch_utils import randn_tensor
|
23 |
+
from ..activations import get_activation
|
24 |
+
from ..attention_processor import SpatialNorm
|
25 |
+
from ..unets.unet_2d_blocks import (
|
26 |
+
AutoencoderTinyBlock,
|
27 |
+
UNetMidBlock2D,
|
28 |
+
get_down_block,
|
29 |
+
get_up_block,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
@dataclass
|
34 |
+
class EncoderOutput(BaseOutput):
|
35 |
+
r"""
|
36 |
+
Output of encoding method.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
latent (`torch.Tensor` of shape `(batch_size, num_channels, latent_height, latent_width)`):
|
40 |
+
The encoded latent.
|
41 |
+
"""
|
42 |
+
|
43 |
+
latent: torch.Tensor
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class DecoderOutput(BaseOutput):
|
48 |
+
r"""
|
49 |
+
Output of decoding method.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
53 |
+
The decoded output sample from the last layer of the model.
|
54 |
+
"""
|
55 |
+
|
56 |
+
sample: torch.Tensor
|
57 |
+
commit_loss: Optional[torch.FloatTensor] = None
|
58 |
+
|
59 |
+
|
60 |
+
class Encoder(nn.Module):
|
61 |
+
r"""
|
62 |
+
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
in_channels (`int`, *optional*, defaults to 3):
|
66 |
+
The number of input channels.
|
67 |
+
out_channels (`int`, *optional*, defaults to 3):
|
68 |
+
The number of output channels.
|
69 |
+
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`):
|
70 |
+
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available
|
71 |
+
options.
|
72 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
73 |
+
The number of output channels for each block.
|
74 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
75 |
+
The number of layers per block.
|
76 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
77 |
+
The number of groups for normalization.
|
78 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
79 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
80 |
+
double_z (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether to double the number of output channels for the last block.
|
82 |
+
"""
|
83 |
+
|
84 |
+
def __init__(
|
85 |
+
self,
|
86 |
+
in_channels: int = 3,
|
87 |
+
out_channels: int = 3,
|
88 |
+
down_block_types: Tuple[str, ...] = ("DownEncoderBlock2D",),
|
89 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
90 |
+
layers_per_block: int = 2,
|
91 |
+
norm_num_groups: int = 32,
|
92 |
+
act_fn: str = "silu",
|
93 |
+
double_z: bool = True,
|
94 |
+
mid_block_add_attention=True,
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.layers_per_block = layers_per_block
|
98 |
+
|
99 |
+
self.conv_in = nn.Conv2d(
|
100 |
+
in_channels,
|
101 |
+
block_out_channels[0],
|
102 |
+
kernel_size=3,
|
103 |
+
stride=1,
|
104 |
+
padding=1,
|
105 |
+
)
|
106 |
+
|
107 |
+
self.down_blocks = nn.ModuleList([])
|
108 |
+
|
109 |
+
# down
|
110 |
+
output_channel = block_out_channels[0]
|
111 |
+
for i, down_block_type in enumerate(down_block_types):
|
112 |
+
input_channel = output_channel
|
113 |
+
output_channel = block_out_channels[i]
|
114 |
+
is_final_block = i == len(block_out_channels) - 1
|
115 |
+
|
116 |
+
down_block = get_down_block(
|
117 |
+
down_block_type,
|
118 |
+
num_layers=self.layers_per_block,
|
119 |
+
in_channels=input_channel,
|
120 |
+
out_channels=output_channel,
|
121 |
+
add_downsample=not is_final_block,
|
122 |
+
resnet_eps=1e-6,
|
123 |
+
downsample_padding=0,
|
124 |
+
resnet_act_fn=act_fn,
|
125 |
+
resnet_groups=norm_num_groups,
|
126 |
+
attention_head_dim=output_channel,
|
127 |
+
temb_channels=None,
|
128 |
+
)
|
129 |
+
self.down_blocks.append(down_block)
|
130 |
+
|
131 |
+
# mid
|
132 |
+
self.mid_block = UNetMidBlock2D(
|
133 |
+
in_channels=block_out_channels[-1],
|
134 |
+
resnet_eps=1e-6,
|
135 |
+
resnet_act_fn=act_fn,
|
136 |
+
output_scale_factor=1,
|
137 |
+
resnet_time_scale_shift="default",
|
138 |
+
attention_head_dim=block_out_channels[-1],
|
139 |
+
resnet_groups=norm_num_groups,
|
140 |
+
temb_channels=None,
|
141 |
+
add_attention=mid_block_add_attention,
|
142 |
+
)
|
143 |
+
|
144 |
+
# out
|
145 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
|
146 |
+
self.conv_act = nn.SiLU()
|
147 |
+
|
148 |
+
conv_out_channels = 2 * out_channels if double_z else out_channels
|
149 |
+
self.conv_out = nn.Conv2d(block_out_channels[-1], conv_out_channels, 3, padding=1)
|
150 |
+
|
151 |
+
self.gradient_checkpointing = False
|
152 |
+
|
153 |
+
def forward(self, sample: torch.Tensor) -> torch.Tensor:
|
154 |
+
r"""The forward method of the `Encoder` class."""
|
155 |
+
|
156 |
+
sample = self.conv_in(sample)
|
157 |
+
|
158 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
159 |
+
|
160 |
+
def create_custom_forward(module):
|
161 |
+
def custom_forward(*inputs):
|
162 |
+
return module(*inputs)
|
163 |
+
|
164 |
+
return custom_forward
|
165 |
+
|
166 |
+
# down
|
167 |
+
if is_torch_version(">=", "1.11.0"):
|
168 |
+
for down_block in self.down_blocks:
|
169 |
+
sample = torch.utils.checkpoint.checkpoint(
|
170 |
+
create_custom_forward(down_block), sample, use_reentrant=False
|
171 |
+
)
|
172 |
+
# middle
|
173 |
+
sample = torch.utils.checkpoint.checkpoint(
|
174 |
+
create_custom_forward(self.mid_block), sample, use_reentrant=False
|
175 |
+
)
|
176 |
+
else:
|
177 |
+
for down_block in self.down_blocks:
|
178 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample)
|
179 |
+
# middle
|
180 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample)
|
181 |
+
|
182 |
+
else:
|
183 |
+
# down
|
184 |
+
for down_block in self.down_blocks:
|
185 |
+
sample = down_block(sample)
|
186 |
+
|
187 |
+
# middle
|
188 |
+
sample = self.mid_block(sample)
|
189 |
+
|
190 |
+
# post-process
|
191 |
+
sample = self.conv_norm_out(sample)
|
192 |
+
sample = self.conv_act(sample)
|
193 |
+
sample = self.conv_out(sample)
|
194 |
+
|
195 |
+
return sample
|
196 |
+
|
197 |
+
|
198 |
+
class Decoder(nn.Module):
|
199 |
+
r"""
|
200 |
+
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample.
|
201 |
+
|
202 |
+
Args:
|
203 |
+
in_channels (`int`, *optional*, defaults to 3):
|
204 |
+
The number of input channels.
|
205 |
+
out_channels (`int`, *optional*, defaults to 3):
|
206 |
+
The number of output channels.
|
207 |
+
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
208 |
+
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
209 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
210 |
+
The number of output channels for each block.
|
211 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
212 |
+
The number of layers per block.
|
213 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
214 |
+
The number of groups for normalization.
|
215 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
216 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
217 |
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
218 |
+
The normalization type to use. Can be either `"group"` or `"spatial"`.
|
219 |
+
"""
|
220 |
+
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
in_channels: int = 3,
|
224 |
+
out_channels: int = 3,
|
225 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
226 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
227 |
+
layers_per_block: int = 2,
|
228 |
+
norm_num_groups: int = 32,
|
229 |
+
act_fn: str = "silu",
|
230 |
+
norm_type: str = "group", # group, spatial
|
231 |
+
mid_block_add_attention=True,
|
232 |
+
):
|
233 |
+
super().__init__()
|
234 |
+
self.layers_per_block = layers_per_block
|
235 |
+
|
236 |
+
self.conv_in = nn.Conv2d(
|
237 |
+
in_channels,
|
238 |
+
block_out_channels[-1],
|
239 |
+
kernel_size=3,
|
240 |
+
stride=1,
|
241 |
+
padding=1,
|
242 |
+
)
|
243 |
+
|
244 |
+
self.up_blocks = nn.ModuleList([])
|
245 |
+
|
246 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
247 |
+
|
248 |
+
# mid
|
249 |
+
self.mid_block = UNetMidBlock2D(
|
250 |
+
in_channels=block_out_channels[-1],
|
251 |
+
resnet_eps=1e-6,
|
252 |
+
resnet_act_fn=act_fn,
|
253 |
+
output_scale_factor=1,
|
254 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
255 |
+
attention_head_dim=block_out_channels[-1],
|
256 |
+
resnet_groups=norm_num_groups,
|
257 |
+
temb_channels=temb_channels,
|
258 |
+
add_attention=mid_block_add_attention,
|
259 |
+
)
|
260 |
+
|
261 |
+
# up
|
262 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
263 |
+
output_channel = reversed_block_out_channels[0]
|
264 |
+
for i, up_block_type in enumerate(up_block_types):
|
265 |
+
prev_output_channel = output_channel
|
266 |
+
output_channel = reversed_block_out_channels[i]
|
267 |
+
|
268 |
+
is_final_block = i == len(block_out_channels) - 1
|
269 |
+
|
270 |
+
up_block = get_up_block(
|
271 |
+
up_block_type,
|
272 |
+
num_layers=self.layers_per_block + 1,
|
273 |
+
in_channels=prev_output_channel,
|
274 |
+
out_channels=output_channel,
|
275 |
+
prev_output_channel=None,
|
276 |
+
add_upsample=not is_final_block,
|
277 |
+
resnet_eps=1e-6,
|
278 |
+
resnet_act_fn=act_fn,
|
279 |
+
resnet_groups=norm_num_groups,
|
280 |
+
attention_head_dim=output_channel,
|
281 |
+
temb_channels=temb_channels,
|
282 |
+
resnet_time_scale_shift=norm_type,
|
283 |
+
)
|
284 |
+
self.up_blocks.append(up_block)
|
285 |
+
prev_output_channel = output_channel
|
286 |
+
|
287 |
+
# out
|
288 |
+
if norm_type == "spatial":
|
289 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
290 |
+
else:
|
291 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
292 |
+
self.conv_act = nn.SiLU()
|
293 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
294 |
+
|
295 |
+
self.gradient_checkpointing = False
|
296 |
+
|
297 |
+
def forward(
|
298 |
+
self,
|
299 |
+
sample: torch.Tensor,
|
300 |
+
latent_embeds: Optional[torch.Tensor] = None,
|
301 |
+
) -> torch.Tensor:
|
302 |
+
r"""The forward method of the `Decoder` class."""
|
303 |
+
|
304 |
+
sample = self.conv_in(sample)
|
305 |
+
|
306 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
307 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
308 |
+
|
309 |
+
def create_custom_forward(module):
|
310 |
+
def custom_forward(*inputs):
|
311 |
+
return module(*inputs)
|
312 |
+
|
313 |
+
return custom_forward
|
314 |
+
|
315 |
+
if is_torch_version(">=", "1.11.0"):
|
316 |
+
# middle
|
317 |
+
sample = torch.utils.checkpoint.checkpoint(
|
318 |
+
create_custom_forward(self.mid_block),
|
319 |
+
sample,
|
320 |
+
latent_embeds,
|
321 |
+
use_reentrant=False,
|
322 |
+
)
|
323 |
+
sample = sample.to(upscale_dtype)
|
324 |
+
|
325 |
+
# up
|
326 |
+
for up_block in self.up_blocks:
|
327 |
+
sample = torch.utils.checkpoint.checkpoint(
|
328 |
+
create_custom_forward(up_block),
|
329 |
+
sample,
|
330 |
+
latent_embeds,
|
331 |
+
use_reentrant=False,
|
332 |
+
)
|
333 |
+
else:
|
334 |
+
# middle
|
335 |
+
sample = torch.utils.checkpoint.checkpoint(
|
336 |
+
create_custom_forward(self.mid_block), sample, latent_embeds
|
337 |
+
)
|
338 |
+
sample = sample.to(upscale_dtype)
|
339 |
+
|
340 |
+
# up
|
341 |
+
for up_block in self.up_blocks:
|
342 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
343 |
+
else:
|
344 |
+
# middle
|
345 |
+
sample = self.mid_block(sample, latent_embeds)
|
346 |
+
sample = sample.to(upscale_dtype)
|
347 |
+
|
348 |
+
# up
|
349 |
+
for up_block in self.up_blocks:
|
350 |
+
sample = up_block(sample, latent_embeds)
|
351 |
+
|
352 |
+
# post-process
|
353 |
+
if latent_embeds is None:
|
354 |
+
sample = self.conv_norm_out(sample)
|
355 |
+
else:
|
356 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
357 |
+
sample = self.conv_act(sample)
|
358 |
+
sample = self.conv_out(sample)
|
359 |
+
|
360 |
+
return sample
|
361 |
+
|
362 |
+
|
363 |
+
class UpSample(nn.Module):
|
364 |
+
r"""
|
365 |
+
The `UpSample` layer of a variational autoencoder that upsamples its input.
|
366 |
+
|
367 |
+
Args:
|
368 |
+
in_channels (`int`, *optional*, defaults to 3):
|
369 |
+
The number of input channels.
|
370 |
+
out_channels (`int`, *optional*, defaults to 3):
|
371 |
+
The number of output channels.
|
372 |
+
"""
|
373 |
+
|
374 |
+
def __init__(
|
375 |
+
self,
|
376 |
+
in_channels: int,
|
377 |
+
out_channels: int,
|
378 |
+
) -> None:
|
379 |
+
super().__init__()
|
380 |
+
self.in_channels = in_channels
|
381 |
+
self.out_channels = out_channels
|
382 |
+
self.deconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size=4, stride=2, padding=1)
|
383 |
+
|
384 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
385 |
+
r"""The forward method of the `UpSample` class."""
|
386 |
+
x = torch.relu(x)
|
387 |
+
x = self.deconv(x)
|
388 |
+
return x
|
389 |
+
|
390 |
+
|
391 |
+
class MaskConditionEncoder(nn.Module):
|
392 |
+
"""
|
393 |
+
used in AsymmetricAutoencoderKL
|
394 |
+
"""
|
395 |
+
|
396 |
+
def __init__(
|
397 |
+
self,
|
398 |
+
in_ch: int,
|
399 |
+
out_ch: int = 192,
|
400 |
+
res_ch: int = 768,
|
401 |
+
stride: int = 16,
|
402 |
+
) -> None:
|
403 |
+
super().__init__()
|
404 |
+
|
405 |
+
channels = []
|
406 |
+
while stride > 1:
|
407 |
+
stride = stride // 2
|
408 |
+
in_ch_ = out_ch * 2
|
409 |
+
if out_ch > res_ch:
|
410 |
+
out_ch = res_ch
|
411 |
+
if stride == 1:
|
412 |
+
in_ch_ = res_ch
|
413 |
+
channels.append((in_ch_, out_ch))
|
414 |
+
out_ch *= 2
|
415 |
+
|
416 |
+
out_channels = []
|
417 |
+
for _in_ch, _out_ch in channels:
|
418 |
+
out_channels.append(_out_ch)
|
419 |
+
out_channels.append(channels[-1][0])
|
420 |
+
|
421 |
+
layers = []
|
422 |
+
in_ch_ = in_ch
|
423 |
+
for l in range(len(out_channels)):
|
424 |
+
out_ch_ = out_channels[l]
|
425 |
+
if l == 0 or l == 1:
|
426 |
+
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=3, stride=1, padding=1))
|
427 |
+
else:
|
428 |
+
layers.append(nn.Conv2d(in_ch_, out_ch_, kernel_size=4, stride=2, padding=1))
|
429 |
+
in_ch_ = out_ch_
|
430 |
+
|
431 |
+
self.layers = nn.Sequential(*layers)
|
432 |
+
|
433 |
+
def forward(self, x: torch.Tensor, mask=None) -> torch.Tensor:
|
434 |
+
r"""The forward method of the `MaskConditionEncoder` class."""
|
435 |
+
out = {}
|
436 |
+
for l in range(len(self.layers)):
|
437 |
+
layer = self.layers[l]
|
438 |
+
x = layer(x)
|
439 |
+
out[str(tuple(x.shape))] = x
|
440 |
+
x = torch.relu(x)
|
441 |
+
return out
|
442 |
+
|
443 |
+
|
444 |
+
class MaskConditionDecoder(nn.Module):
|
445 |
+
r"""The `MaskConditionDecoder` should be used in combination with [`AsymmetricAutoencoderKL`] to enhance the model's
|
446 |
+
decoder with a conditioner on the mask and masked image.
|
447 |
+
|
448 |
+
Args:
|
449 |
+
in_channels (`int`, *optional*, defaults to 3):
|
450 |
+
The number of input channels.
|
451 |
+
out_channels (`int`, *optional*, defaults to 3):
|
452 |
+
The number of output channels.
|
453 |
+
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`):
|
454 |
+
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options.
|
455 |
+
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`):
|
456 |
+
The number of output channels for each block.
|
457 |
+
layers_per_block (`int`, *optional*, defaults to 2):
|
458 |
+
The number of layers per block.
|
459 |
+
norm_num_groups (`int`, *optional*, defaults to 32):
|
460 |
+
The number of groups for normalization.
|
461 |
+
act_fn (`str`, *optional*, defaults to `"silu"`):
|
462 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
463 |
+
norm_type (`str`, *optional*, defaults to `"group"`):
|
464 |
+
The normalization type to use. Can be either `"group"` or `"spatial"`.
|
465 |
+
"""
|
466 |
+
|
467 |
+
def __init__(
|
468 |
+
self,
|
469 |
+
in_channels: int = 3,
|
470 |
+
out_channels: int = 3,
|
471 |
+
up_block_types: Tuple[str, ...] = ("UpDecoderBlock2D",),
|
472 |
+
block_out_channels: Tuple[int, ...] = (64,),
|
473 |
+
layers_per_block: int = 2,
|
474 |
+
norm_num_groups: int = 32,
|
475 |
+
act_fn: str = "silu",
|
476 |
+
norm_type: str = "group", # group, spatial
|
477 |
+
):
|
478 |
+
super().__init__()
|
479 |
+
self.layers_per_block = layers_per_block
|
480 |
+
|
481 |
+
self.conv_in = nn.Conv2d(
|
482 |
+
in_channels,
|
483 |
+
block_out_channels[-1],
|
484 |
+
kernel_size=3,
|
485 |
+
stride=1,
|
486 |
+
padding=1,
|
487 |
+
)
|
488 |
+
|
489 |
+
self.up_blocks = nn.ModuleList([])
|
490 |
+
|
491 |
+
temb_channels = in_channels if norm_type == "spatial" else None
|
492 |
+
|
493 |
+
# mid
|
494 |
+
self.mid_block = UNetMidBlock2D(
|
495 |
+
in_channels=block_out_channels[-1],
|
496 |
+
resnet_eps=1e-6,
|
497 |
+
resnet_act_fn=act_fn,
|
498 |
+
output_scale_factor=1,
|
499 |
+
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
|
500 |
+
attention_head_dim=block_out_channels[-1],
|
501 |
+
resnet_groups=norm_num_groups,
|
502 |
+
temb_channels=temb_channels,
|
503 |
+
)
|
504 |
+
|
505 |
+
# up
|
506 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
507 |
+
output_channel = reversed_block_out_channels[0]
|
508 |
+
for i, up_block_type in enumerate(up_block_types):
|
509 |
+
prev_output_channel = output_channel
|
510 |
+
output_channel = reversed_block_out_channels[i]
|
511 |
+
|
512 |
+
is_final_block = i == len(block_out_channels) - 1
|
513 |
+
|
514 |
+
up_block = get_up_block(
|
515 |
+
up_block_type,
|
516 |
+
num_layers=self.layers_per_block + 1,
|
517 |
+
in_channels=prev_output_channel,
|
518 |
+
out_channels=output_channel,
|
519 |
+
prev_output_channel=None,
|
520 |
+
add_upsample=not is_final_block,
|
521 |
+
resnet_eps=1e-6,
|
522 |
+
resnet_act_fn=act_fn,
|
523 |
+
resnet_groups=norm_num_groups,
|
524 |
+
attention_head_dim=output_channel,
|
525 |
+
temb_channels=temb_channels,
|
526 |
+
resnet_time_scale_shift=norm_type,
|
527 |
+
)
|
528 |
+
self.up_blocks.append(up_block)
|
529 |
+
prev_output_channel = output_channel
|
530 |
+
|
531 |
+
# condition encoder
|
532 |
+
self.condition_encoder = MaskConditionEncoder(
|
533 |
+
in_ch=out_channels,
|
534 |
+
out_ch=block_out_channels[0],
|
535 |
+
res_ch=block_out_channels[-1],
|
536 |
+
)
|
537 |
+
|
538 |
+
# out
|
539 |
+
if norm_type == "spatial":
|
540 |
+
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
|
541 |
+
else:
|
542 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
|
543 |
+
self.conv_act = nn.SiLU()
|
544 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
545 |
+
|
546 |
+
self.gradient_checkpointing = False
|
547 |
+
|
548 |
+
def forward(
|
549 |
+
self,
|
550 |
+
z: torch.Tensor,
|
551 |
+
image: Optional[torch.Tensor] = None,
|
552 |
+
mask: Optional[torch.Tensor] = None,
|
553 |
+
latent_embeds: Optional[torch.Tensor] = None,
|
554 |
+
) -> torch.Tensor:
|
555 |
+
r"""The forward method of the `MaskConditionDecoder` class."""
|
556 |
+
sample = z
|
557 |
+
sample = self.conv_in(sample)
|
558 |
+
|
559 |
+
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
|
560 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
561 |
+
|
562 |
+
def create_custom_forward(module):
|
563 |
+
def custom_forward(*inputs):
|
564 |
+
return module(*inputs)
|
565 |
+
|
566 |
+
return custom_forward
|
567 |
+
|
568 |
+
if is_torch_version(">=", "1.11.0"):
|
569 |
+
# middle
|
570 |
+
sample = torch.utils.checkpoint.checkpoint(
|
571 |
+
create_custom_forward(self.mid_block),
|
572 |
+
sample,
|
573 |
+
latent_embeds,
|
574 |
+
use_reentrant=False,
|
575 |
+
)
|
576 |
+
sample = sample.to(upscale_dtype)
|
577 |
+
|
578 |
+
# condition encoder
|
579 |
+
if image is not None and mask is not None:
|
580 |
+
masked_image = (1 - mask) * image
|
581 |
+
im_x = torch.utils.checkpoint.checkpoint(
|
582 |
+
create_custom_forward(self.condition_encoder),
|
583 |
+
masked_image,
|
584 |
+
mask,
|
585 |
+
use_reentrant=False,
|
586 |
+
)
|
587 |
+
|
588 |
+
# up
|
589 |
+
for up_block in self.up_blocks:
|
590 |
+
if image is not None and mask is not None:
|
591 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
592 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
593 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
594 |
+
sample = torch.utils.checkpoint.checkpoint(
|
595 |
+
create_custom_forward(up_block),
|
596 |
+
sample,
|
597 |
+
latent_embeds,
|
598 |
+
use_reentrant=False,
|
599 |
+
)
|
600 |
+
if image is not None and mask is not None:
|
601 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
602 |
+
else:
|
603 |
+
# middle
|
604 |
+
sample = torch.utils.checkpoint.checkpoint(
|
605 |
+
create_custom_forward(self.mid_block), sample, latent_embeds
|
606 |
+
)
|
607 |
+
sample = sample.to(upscale_dtype)
|
608 |
+
|
609 |
+
# condition encoder
|
610 |
+
if image is not None and mask is not None:
|
611 |
+
masked_image = (1 - mask) * image
|
612 |
+
im_x = torch.utils.checkpoint.checkpoint(
|
613 |
+
create_custom_forward(self.condition_encoder),
|
614 |
+
masked_image,
|
615 |
+
mask,
|
616 |
+
)
|
617 |
+
|
618 |
+
# up
|
619 |
+
for up_block in self.up_blocks:
|
620 |
+
if image is not None and mask is not None:
|
621 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
622 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
623 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
624 |
+
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
|
625 |
+
if image is not None and mask is not None:
|
626 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
627 |
+
else:
|
628 |
+
# middle
|
629 |
+
sample = self.mid_block(sample, latent_embeds)
|
630 |
+
sample = sample.to(upscale_dtype)
|
631 |
+
|
632 |
+
# condition encoder
|
633 |
+
if image is not None and mask is not None:
|
634 |
+
masked_image = (1 - mask) * image
|
635 |
+
im_x = self.condition_encoder(masked_image, mask)
|
636 |
+
|
637 |
+
# up
|
638 |
+
for up_block in self.up_blocks:
|
639 |
+
if image is not None and mask is not None:
|
640 |
+
sample_ = im_x[str(tuple(sample.shape))]
|
641 |
+
mask_ = nn.functional.interpolate(mask, size=sample.shape[-2:], mode="nearest")
|
642 |
+
sample = sample * mask_ + sample_ * (1 - mask_)
|
643 |
+
sample = up_block(sample, latent_embeds)
|
644 |
+
if image is not None and mask is not None:
|
645 |
+
sample = sample * mask + im_x[str(tuple(sample.shape))] * (1 - mask)
|
646 |
+
|
647 |
+
# post-process
|
648 |
+
if latent_embeds is None:
|
649 |
+
sample = self.conv_norm_out(sample)
|
650 |
+
else:
|
651 |
+
sample = self.conv_norm_out(sample, latent_embeds)
|
652 |
+
sample = self.conv_act(sample)
|
653 |
+
sample = self.conv_out(sample)
|
654 |
+
|
655 |
+
return sample
|
656 |
+
|
657 |
+
|
658 |
+
class VectorQuantizer(nn.Module):
|
659 |
+
"""
|
660 |
+
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix
|
661 |
+
multiplications and allows for post-hoc remapping of indices.
|
662 |
+
"""
|
663 |
+
|
664 |
+
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
665 |
+
# backwards compatibility we use the buggy version by default, but you can
|
666 |
+
# specify legacy=False to fix it.
|
667 |
+
def __init__(
|
668 |
+
self,
|
669 |
+
n_e: int,
|
670 |
+
vq_embed_dim: int,
|
671 |
+
beta: float,
|
672 |
+
remap=None,
|
673 |
+
unknown_index: str = "random",
|
674 |
+
sane_index_shape: bool = False,
|
675 |
+
legacy: bool = True,
|
676 |
+
):
|
677 |
+
super().__init__()
|
678 |
+
self.n_e = n_e
|
679 |
+
self.vq_embed_dim = vq_embed_dim
|
680 |
+
self.beta = beta
|
681 |
+
self.legacy = legacy
|
682 |
+
|
683 |
+
self.embedding = nn.Embedding(self.n_e, self.vq_embed_dim)
|
684 |
+
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
685 |
+
|
686 |
+
self.remap = remap
|
687 |
+
if self.remap is not None:
|
688 |
+
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
689 |
+
self.used: torch.Tensor
|
690 |
+
self.re_embed = self.used.shape[0]
|
691 |
+
self.unknown_index = unknown_index # "random" or "extra" or integer
|
692 |
+
if self.unknown_index == "extra":
|
693 |
+
self.unknown_index = self.re_embed
|
694 |
+
self.re_embed = self.re_embed + 1
|
695 |
+
print(
|
696 |
+
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
697 |
+
f"Using {self.unknown_index} for unknown indices."
|
698 |
+
)
|
699 |
+
else:
|
700 |
+
self.re_embed = n_e
|
701 |
+
|
702 |
+
self.sane_index_shape = sane_index_shape
|
703 |
+
|
704 |
+
def remap_to_used(self, inds: torch.LongTensor) -> torch.LongTensor:
|
705 |
+
ishape = inds.shape
|
706 |
+
assert len(ishape) > 1
|
707 |
+
inds = inds.reshape(ishape[0], -1)
|
708 |
+
used = self.used.to(inds)
|
709 |
+
match = (inds[:, :, None] == used[None, None, ...]).long()
|
710 |
+
new = match.argmax(-1)
|
711 |
+
unknown = match.sum(2) < 1
|
712 |
+
if self.unknown_index == "random":
|
713 |
+
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
|
714 |
+
else:
|
715 |
+
new[unknown] = self.unknown_index
|
716 |
+
return new.reshape(ishape)
|
717 |
+
|
718 |
+
def unmap_to_all(self, inds: torch.LongTensor) -> torch.LongTensor:
|
719 |
+
ishape = inds.shape
|
720 |
+
assert len(ishape) > 1
|
721 |
+
inds = inds.reshape(ishape[0], -1)
|
722 |
+
used = self.used.to(inds)
|
723 |
+
if self.re_embed > self.used.shape[0]: # extra token
|
724 |
+
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
725 |
+
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
726 |
+
return back.reshape(ishape)
|
727 |
+
|
728 |
+
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, Tuple]:
|
729 |
+
# reshape z -> (batch, height, width, channel) and flatten
|
730 |
+
z = z.permute(0, 2, 3, 1).contiguous()
|
731 |
+
z_flattened = z.view(-1, self.vq_embed_dim)
|
732 |
+
|
733 |
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
734 |
+
min_encoding_indices = torch.argmin(torch.cdist(z_flattened, self.embedding.weight), dim=1)
|
735 |
+
|
736 |
+
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
737 |
+
perplexity = None
|
738 |
+
min_encodings = None
|
739 |
+
|
740 |
+
# compute loss for embedding
|
741 |
+
if not self.legacy:
|
742 |
+
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean((z_q - z.detach()) ** 2)
|
743 |
+
else:
|
744 |
+
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean((z_q - z.detach()) ** 2)
|
745 |
+
|
746 |
+
# preserve gradients
|
747 |
+
z_q: torch.Tensor = z + (z_q - z).detach()
|
748 |
+
|
749 |
+
# reshape back to match original input shape
|
750 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
751 |
+
|
752 |
+
if self.remap is not None:
|
753 |
+
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
754 |
+
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
755 |
+
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
756 |
+
|
757 |
+
if self.sane_index_shape:
|
758 |
+
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
|
759 |
+
|
760 |
+
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
761 |
+
|
762 |
+
def get_codebook_entry(self, indices: torch.LongTensor, shape: Tuple[int, ...]) -> torch.Tensor:
|
763 |
+
# shape specifying (batch, height, width, channel)
|
764 |
+
if self.remap is not None:
|
765 |
+
indices = indices.reshape(shape[0], -1) # add batch axis
|
766 |
+
indices = self.unmap_to_all(indices)
|
767 |
+
indices = indices.reshape(-1) # flatten again
|
768 |
+
|
769 |
+
# get quantized latent vectors
|
770 |
+
z_q: torch.Tensor = self.embedding(indices)
|
771 |
+
|
772 |
+
if shape is not None:
|
773 |
+
z_q = z_q.view(shape)
|
774 |
+
# reshape back to match original input shape
|
775 |
+
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
776 |
+
|
777 |
+
return z_q
|
778 |
+
|
779 |
+
|
780 |
+
class DiagonalGaussianDistribution(object):
|
781 |
+
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
|
782 |
+
self.parameters = parameters
|
783 |
+
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
784 |
+
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
785 |
+
self.deterministic = deterministic
|
786 |
+
self.std = torch.exp(0.5 * self.logvar)
|
787 |
+
self.var = torch.exp(self.logvar)
|
788 |
+
if self.deterministic:
|
789 |
+
self.var = self.std = torch.zeros_like(
|
790 |
+
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
|
791 |
+
)
|
792 |
+
|
793 |
+
def sample(self, generator: Optional[torch.Generator] = None) -> torch.Tensor:
|
794 |
+
# make sure sample is on the same device as the parameters and has same dtype
|
795 |
+
sample = randn_tensor(
|
796 |
+
self.mean.shape,
|
797 |
+
generator=generator,
|
798 |
+
device=self.parameters.device,
|
799 |
+
dtype=self.parameters.dtype,
|
800 |
+
)
|
801 |
+
x = self.mean + self.std * sample
|
802 |
+
return x
|
803 |
+
|
804 |
+
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
|
805 |
+
if self.deterministic:
|
806 |
+
return torch.Tensor([0.0])
|
807 |
+
else:
|
808 |
+
if other is None:
|
809 |
+
return 0.5 * torch.sum(
|
810 |
+
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
811 |
+
dim=[1, 2, 3],
|
812 |
+
)
|
813 |
+
else:
|
814 |
+
return 0.5 * torch.sum(
|
815 |
+
torch.pow(self.mean - other.mean, 2) / other.var
|
816 |
+
+ self.var / other.var
|
817 |
+
- 1.0
|
818 |
+
- self.logvar
|
819 |
+
+ other.logvar,
|
820 |
+
dim=[1, 2, 3],
|
821 |
+
)
|
822 |
+
|
823 |
+
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
|
824 |
+
if self.deterministic:
|
825 |
+
return torch.Tensor([0.0])
|
826 |
+
logtwopi = np.log(2.0 * np.pi)
|
827 |
+
return 0.5 * torch.sum(
|
828 |
+
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
829 |
+
dim=dims,
|
830 |
+
)
|
831 |
+
|
832 |
+
def mode(self) -> torch.Tensor:
|
833 |
+
return self.mean
|
834 |
+
|
835 |
+
|
836 |
+
class EncoderTiny(nn.Module):
|
837 |
+
r"""
|
838 |
+
The `EncoderTiny` layer is a simpler version of the `Encoder` layer.
|
839 |
+
|
840 |
+
Args:
|
841 |
+
in_channels (`int`):
|
842 |
+
The number of input channels.
|
843 |
+
out_channels (`int`):
|
844 |
+
The number of output channels.
|
845 |
+
num_blocks (`Tuple[int, ...]`):
|
846 |
+
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
|
847 |
+
use.
|
848 |
+
block_out_channels (`Tuple[int, ...]`):
|
849 |
+
The number of output channels for each block.
|
850 |
+
act_fn (`str`):
|
851 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
852 |
+
"""
|
853 |
+
|
854 |
+
def __init__(
|
855 |
+
self,
|
856 |
+
in_channels: int,
|
857 |
+
out_channels: int,
|
858 |
+
num_blocks: Tuple[int, ...],
|
859 |
+
block_out_channels: Tuple[int, ...],
|
860 |
+
act_fn: str,
|
861 |
+
):
|
862 |
+
super().__init__()
|
863 |
+
|
864 |
+
layers = []
|
865 |
+
for i, num_block in enumerate(num_blocks):
|
866 |
+
num_channels = block_out_channels[i]
|
867 |
+
|
868 |
+
if i == 0:
|
869 |
+
layers.append(nn.Conv2d(in_channels, num_channels, kernel_size=3, padding=1))
|
870 |
+
else:
|
871 |
+
layers.append(
|
872 |
+
nn.Conv2d(
|
873 |
+
num_channels,
|
874 |
+
num_channels,
|
875 |
+
kernel_size=3,
|
876 |
+
padding=1,
|
877 |
+
stride=2,
|
878 |
+
bias=False,
|
879 |
+
)
|
880 |
+
)
|
881 |
+
|
882 |
+
for _ in range(num_block):
|
883 |
+
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
884 |
+
|
885 |
+
layers.append(nn.Conv2d(block_out_channels[-1], out_channels, kernel_size=3, padding=1))
|
886 |
+
|
887 |
+
self.layers = nn.Sequential(*layers)
|
888 |
+
self.gradient_checkpointing = False
|
889 |
+
|
890 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
891 |
+
r"""The forward method of the `EncoderTiny` class."""
|
892 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
893 |
+
|
894 |
+
def create_custom_forward(module):
|
895 |
+
def custom_forward(*inputs):
|
896 |
+
return module(*inputs)
|
897 |
+
|
898 |
+
return custom_forward
|
899 |
+
|
900 |
+
if is_torch_version(">=", "1.11.0"):
|
901 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
|
902 |
+
else:
|
903 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
|
904 |
+
|
905 |
+
else:
|
906 |
+
# scale image from [-1, 1] to [0, 1] to match TAESD convention
|
907 |
+
x = self.layers(x.add(1).div(2))
|
908 |
+
|
909 |
+
return x
|
910 |
+
|
911 |
+
|
912 |
+
class DecoderTiny(nn.Module):
|
913 |
+
r"""
|
914 |
+
The `DecoderTiny` layer is a simpler version of the `Decoder` layer.
|
915 |
+
|
916 |
+
Args:
|
917 |
+
in_channels (`int`):
|
918 |
+
The number of input channels.
|
919 |
+
out_channels (`int`):
|
920 |
+
The number of output channels.
|
921 |
+
num_blocks (`Tuple[int, ...]`):
|
922 |
+
Each value of the tuple represents a Conv2d layer followed by `value` number of `AutoencoderTinyBlock`'s to
|
923 |
+
use.
|
924 |
+
block_out_channels (`Tuple[int, ...]`):
|
925 |
+
The number of output channels for each block.
|
926 |
+
upsampling_scaling_factor (`int`):
|
927 |
+
The scaling factor to use for upsampling.
|
928 |
+
act_fn (`str`):
|
929 |
+
The activation function to use. See `~diffusers.models.activations.get_activation` for available options.
|
930 |
+
"""
|
931 |
+
|
932 |
+
def __init__(
|
933 |
+
self,
|
934 |
+
in_channels: int,
|
935 |
+
out_channels: int,
|
936 |
+
num_blocks: Tuple[int, ...],
|
937 |
+
block_out_channels: Tuple[int, ...],
|
938 |
+
upsampling_scaling_factor: int,
|
939 |
+
act_fn: str,
|
940 |
+
upsample_fn: str,
|
941 |
+
):
|
942 |
+
super().__init__()
|
943 |
+
|
944 |
+
layers = [
|
945 |
+
nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=1),
|
946 |
+
get_activation(act_fn),
|
947 |
+
]
|
948 |
+
|
949 |
+
for i, num_block in enumerate(num_blocks):
|
950 |
+
is_final_block = i == (len(num_blocks) - 1)
|
951 |
+
num_channels = block_out_channels[i]
|
952 |
+
|
953 |
+
for _ in range(num_block):
|
954 |
+
layers.append(AutoencoderTinyBlock(num_channels, num_channels, act_fn))
|
955 |
+
|
956 |
+
if not is_final_block:
|
957 |
+
layers.append(nn.Upsample(scale_factor=upsampling_scaling_factor, mode=upsample_fn))
|
958 |
+
|
959 |
+
conv_out_channel = num_channels if not is_final_block else out_channels
|
960 |
+
layers.append(
|
961 |
+
nn.Conv2d(
|
962 |
+
num_channels,
|
963 |
+
conv_out_channel,
|
964 |
+
kernel_size=3,
|
965 |
+
padding=1,
|
966 |
+
bias=is_final_block,
|
967 |
+
)
|
968 |
+
)
|
969 |
+
|
970 |
+
self.layers = nn.Sequential(*layers)
|
971 |
+
self.gradient_checkpointing = False
|
972 |
+
|
973 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
974 |
+
r"""The forward method of the `DecoderTiny` class."""
|
975 |
+
# Clamp.
|
976 |
+
x = torch.tanh(x / 3) * 3
|
977 |
+
|
978 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
979 |
+
|
980 |
+
def create_custom_forward(module):
|
981 |
+
def custom_forward(*inputs):
|
982 |
+
return module(*inputs)
|
983 |
+
|
984 |
+
return custom_forward
|
985 |
+
|
986 |
+
if is_torch_version(">=", "1.11.0"):
|
987 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x, use_reentrant=False)
|
988 |
+
else:
|
989 |
+
x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.layers), x)
|
990 |
+
|
991 |
+
else:
|
992 |
+
x = self.layers(x)
|
993 |
+
|
994 |
+
# scale image from [0, 1] to [-1, 1] to match diffusers convention
|
995 |
+
return x.mul(2).sub(1)
|