RohanSardar commited on
Commit
7566296
·
verified ·
1 Parent(s): 160ba0d

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -0
app.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModel, AutoTokenizer
3
+ import torch
4
+
5
+ # Load the model and tokenizer
6
+ model_name = "sentence-transformers/all-MiniLM-L6-v2"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModel.from_pretrained(model_name)
9
+
10
+ # Function to get embeddings
11
+ def get_embedding(text):
12
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
13
+ with torch.no_grad():
14
+ outputs = model(**inputs)
15
+ embeddings = outputs.last_hidden_state.mean(dim=1)
16
+ return embeddings
17
+
18
+ st.title("Text Embedding with all-MiniLM-L6-v2")
19
+ st.write("Enter text to get its embedding:")
20
+
21
+ # Input text from the user
22
+ input_text = st.text_area("Input Text", "")
23
+
24
+ # If input text is provided, show the embeddings
25
+ if input_text:
26
+ embedding = get_embedding(input_text)
27
+ st.write("Embedding:")
28
+ st.write(embedding.numpy())