import streamlit as st from transformers import AutoModel, AutoTokenizer import torch # Load the model and tokenizer model_name = "sentence-transformers/all-MiniLM-L6-v2" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) # Function to get embeddings def get_embedding(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) embeddings = outputs.last_hidden_state.mean(dim=1) return embeddings st.title("Text Embedding with all-MiniLM-L6-v2") st.write("Enter text to get its embedding:") # Input text from the user input_text = st.text_area("Input Text", "") # If input text is provided, show the embeddings if input_text: embedding = get_embedding(input_text) st.write("Embedding:") st.write(embedding.numpy())