whisper_test / app.py
RyaneAthmane's picture
Upload folder using huggingface_hub
dc4af30 verified
raw
history blame
1.08 kB
import gradio as gr
import torch
from transformers import pipeline
pipe = pipeline("automatic-speech-recognition",
"openai/whisper-large-v3",
torch_dtype=torch.float16,
device="cuda:0")
def transcribe(inputs):
if inputs is None:
raise gr.Error("No audio file submitted! Please record an audio before submitting your request.")
text = pipe(inputs, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
return text
demo = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=["microphone", "upload"], type="filepath"),
],
outputs="text",
title="Whisper Large V3: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
" checkpoint [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) and 🤗 Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
demo.launch()