# !pip install gradio ### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as Timer from typing import Tuple, Dict # Setup class names class_names = ["pizza", "steak", "sushi"] ### 2. Model and transforms preparation ### # Create EffNetB2 model effnetb2, effnetb2_transforms = create_effnetb2_model() # Load saved weights effnetb2.load_state_dict( torch.load(f="09_pretrained_effneb2_feature_extractor_pizza_steak_sushi_20_percent.pth", map_location=torch.device("cpu")) # Load on CPU ) ### 3. Predict function ### # Create predict function def predict(img) -> Tuple[Dict, float]: """ Transforms and perform a prediction on img and returns prediction and time taken. """ # Start timer start_time = timer() # Transform the target image and add a batch dimension img = effnetb2_transforms(img).unsqueeze(0) # Put the model into evaluation mode and turn on inference mode effnetb2.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(effnetb2(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # --> pred_probs[0][i] is the probability for class i of the first input # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = "FoodVision Mini 🍕🥩🍣" description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." article = """ ## 🍽️ FoodVision Mini: Classifying Pizza, Steak, and Sushi with Deep Learning FoodVision Mini is a compact computer vision demo built using a pre-trained **EfficientNetB2** model. It classifies food images into one of three categories: **pizza**, **steak**, or **sushi**. ### 🔍 How It Works - The model uses EfficientNetB2 as a **feature extractor**. - It predicts the top 3 most likely classes for any input image. - Built with **Gradio**, the interface allows easy interaction for testing the model. ### ⚙️ Model Details - **Model Architecture**: EfficientNetB2 (from `torchviosion.models`) - **Prediction Output**: Top 3 class probabilities - **Use Case**: Great for food classification demos. ### 🚀 Try It Out Upload an image of food (pizza, steak, or sushi) or use one of the provided examples to see predictions and inference time. """ # Create examples list from 'examples/' directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, # mapping function from input to output inputs=gr.Image(type="pil"), # what are the inputs? outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs? gr.Number(label="Prediction time(s)")], # this fn has two outputs, therefore there are two outputs examples=example_list, title=title, description=description, article=article) # Launch the demo demo.launch()