Spaces:
Runtime error
Runtime error
| #Importing all the necessary packages | |
| import gradio as gr | |
| import torch, librosa, torchaudio | |
| from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
| from pyctcdecode import build_ctcdecoder | |
| # Define ASR MODEL | |
| class Speech2Text: | |
| def __init__(self): | |
| self.vocab = list(processor.tokenizer.get_vocab().keys()) | |
| self.decoder = build_ctcdecoder(self.vocab, kenlm_model_path=None) | |
| def wav2feature(self, path): | |
| speech_array, sampling_rate = torchaudio.load(path) | |
| speech_array = librosa.resample(speech_array.squeeze().numpy(), | |
| sampling_rate, processor.feature_extractor.sampling_rate) | |
| return processor(speech_array, return_tensors="pt", | |
| sampling_rate=processor.feature_extractor.sampling_rate) | |
| def feature2logits(self, features): | |
| with torch.no_grad(): | |
| return wav2vec_model(features.input_values[0].to(device)).logits.numpy()[0] | |
| def __call__(self, path): | |
| logits = self.feature2logits(self.wav2feature(path)) | |
| return self.decoder.decode(logits) | |
| #Loading the model and the tokenizer | |
| model_name = 'masoudmzb/wav2vec2-xlsr-multilingual-53-fa' | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| wav2vec_model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device).eval() | |
| processor = Wav2Vec2Processor.from_pretrained(model_name) | |
| s2t = Speech2Text() | |
| def asr(path): | |
| return s2t(path) | |
| # themes="default", "huggingface", "seafoam", "grass", "peach" | |
| gr.Interface(asr, | |
| inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record Your Beautiful Persian Voice"), | |
| outputs = gr.outputs.Textbox(label="Output Text"), | |
| title="Persian ASR using Wav2Vec 2.0", | |
| description = "This application displays transcribed text for given audio input", | |
| examples = [["Test_File1.wav"]], theme="huggingface").launch() |