File size: 13,525 Bytes
9ad8140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e11385
 
8c9b6a4
9ad8140
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

import gradio as gr
import datetime
import pandas as pd
from groq import Groq
from sentence_transformers import SentenceTransformer
import chromadb
from chromadb.config import Settings
import hashlib
from typing import TypedDict, Optional, List
from langgraph.graph import StateGraph, END
import json
import tempfile
import subprocess
import os

#from google.colab import userdata
#api_key_coder =userdata.get('coder')
api_key_coder= os.environ.get('api_key_coder')
# ---------------------------
# 1. Define State
# ---------------------------
class CodeAssistantState(TypedDict):
    user_input: str
    similar_examples: Optional[List[str]]
    generated_code: Optional[str]
    error: Optional[str]
    task_type: Optional[str]  # "generate" or "explain"
    evaluation_result: Optional[str]

# ---------------------------
# 2. Initialize Components
# ---------------------------
# Load data
df = pd.read_parquet("hf://datasets/openai/openai_humaneval/openai_humaneval/test-00000-of-00001.parquet")
extracted_data = df[['task_id', 'prompt', 'canonical_solution']]

# Initialize models and DB
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
groq_client = Groq(api_key=api_key_coder)  # استبدل بمفتاح API الفعلي

client = chromadb.Client(Settings(
    anonymized_telemetry=False,
    persist_directory="rag_db"
))
collection = client.get_or_create_collection(
    name="code_examples",
    metadata={"hnsw:space": "cosine"}
)

# ---------------------------
# 3. Define Nodes
# ---------------------------

def initialize_db(state: CodeAssistantState):
    try:
        for _, row in extracted_data.iterrows():
            embedding = embedding_model.encode([row['prompt'].strip()])[0]
            doc_id = hashlib.md5(row['prompt'].encode()).hexdigest()
            collection.add(
                documents=[row['canonical_solution'].strip()],
                metadatas=[{"prompt": row['prompt'], "type": "code_example"}],
                ids=[doc_id],
                embeddings=[embedding]
            )
        return state
    except Exception as e:
        state["error"] = f"DB initialization failed: {str(e)}"
        return state

def retrieve_examples(state: CodeAssistantState):
    try:
        embedding = embedding_model.encode([state["user_input"]])[0]
        results = collection.query(
            query_embeddings=[embedding],
            n_results=2
        )
        state["similar_examples"] = results['documents'][0] if results['documents'] else None
        return state
    except Exception as e:
        state["error"] = f"Retrieval failed: {str(e)}"
        return state

def classify_task_llm(state: CodeAssistantState) -> CodeAssistantState:
    if not isinstance(state, dict):
        raise ValueError("State must be a dictionary")

    if "user_input" not in state or not state["user_input"].strip():
        state["error"] = "No user input provided for classification"
        state["task_type"] = "generate"  # Default to code generation
        return state

    try:
        prompt = f"""You are a helpful code assistant. Classify the user request as one of the following tasks:
- "generate": if the user wants to write or generate code
- "explain": if the user wants to understand what a code snippet does
- "test": if the user wants to test existing code
Return ONLY a JSON object in the format: {{"task": "...", "user_input": "..."}} — no explanation.
User request: {state["user_input"]}
"""
        completion = groq_client.chat.completions.create(
            model="llama3-70b-8192",
            messages=[
                {"role": "system", "content": "Classify code-related user input. Respond with ONLY JSON."},
                {"role": "user", "content": prompt}
            ],
            temperature=0.3,
            max_tokens=200,
            response_format={"type": "json_object"}
        )

        content = completion.choices[0].message.content.strip()

        try:
            result = json.loads(content)
            if not isinstance(result, dict):
                raise ValueError("Response is not a JSON object")
        except (json.JSONDecodeError, ValueError) as e:
            state["error"] = f"Invalid response format from LLM: {str(e)}. Content: {content}"
            state["task_type"] = "generate"  # Fallback to code generation
            return state

        task_type = result.get("task", "").lower()
        if task_type not in ["generate", "explain", "test"]:
            state["error"] = f"Invalid task type received: {task_type}"
            task_type = "generate"  # Default to generation

        state["task_type"] = task_type
        state["user_input"] = result.get("user_input", state["user_input"])
        return state

    except Exception as e:
        state["error"] = f"LLM-based classification failed: {str(e)}"
        state["task_type"] = "generate"  # Fallback to code generation
        return state

def test_code(state: CodeAssistantState) -> CodeAssistantState:
    if not isinstance(state, dict):
        raise ValueError("State must be a dictionary")

    if "user_input" not in state or not state["user_input"].strip():
        state["error"] = "Please provide the code you want to test"
        return state

    try:
        messages = [
            {"role": "system", "content": """You are a Python testing expert. Generate unit tests for the provided code.
Return the test code in the following format:
```python
# Test code here
```"""},
            {"role": "user", "content": f"Generate comprehensive unit tests for this Python code:\n\n{state['user_input']}"}
        ]

        completion = groq_client.chat.completions.create(
            model="llama-3.3-70b-versatile",
            messages=messages,
            temperature=0.5,
            max_tokens=2048,
        )

        test_code = completion.choices[0].message.content
        if test_code.startswith('```python'):
            test_code = test_code[9:-3] if test_code.endswith('```') else test_code[9:]
        elif test_code.startswith('```'):
            test_code = test_code[3:-3] if test_code.endswith('```') else test_code[3:]

        state["generated_tests"] = test_code.strip()
        state["metadata"] = {
            "model": "llama-3.3-70b-versatile",
            "timestamp": datetime.datetime.now().isoformat()
        }

        # Execute the tests and capture results
        try:
            # Create a temporary file to store the original code
            with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as code_file:
                code_file.write(state['user_input'])
                code_file_path = code_file.name

            # Create a temporary file to store the test code
            with tempfile.NamedTemporaryFile(mode='w', suffix='.py', delete=False) as test_file:
                test_file.write(test_code)
                test_file_path = test_file.name

            # Run the tests and capture output
            result = subprocess.run(
                ['python', test_file_path],
                capture_output=True,
                text=True,
                timeout=10
            )

            state["test_results"] = {
                "returncode": result.returncode,
                "stdout": result.stdout,
                "stderr": result.stderr
            }

            # Clean up temporary files
            os.unlink(code_file_path)
            os.unlink(test_file_path)

        except Exception as e:
            state["test_error"] = f"Error executing tests: {str(e)}"

        print(f"\nGenerated Tests:\n{test_code.strip()}\n")
        if "test_results" in state:
            print(f"Test Execution Results:\n{state['test_results']['stdout']}")
            if state["test_results"]["stderr"]:
                print(f"Errors:\n{state['test_results']['stderr']}")

        return state

    except Exception as e:
        state["error"] = f"Error generating tests: {str(e)}"
        return state

def generate_code(state: CodeAssistantState) -> CodeAssistantState:
    if not isinstance(state, dict):
        raise ValueError("State must be a dictionary")

    if "user_input" not in state or not state["user_input"].strip():
        state["error"] = "Please enter your code request"
        return state

    try:
        messages = [
            {"role": "system", "content": "You are a Python coding assistant. Return only clean, production-ready code."},
            {"role": "user", "content": state["user_input"].strip()}
        ]

        completion = groq_client.chat.completions.create(
            model="llama-3.3-70b-versatile",
            messages=messages,
            temperature=0.7,
            max_tokens=2048,
        )

        code = completion.choices[0].message.content
        if code.startswith('```python'):
            code = code[9:-3] if code.endswith('```') else code[9:]
        elif code.startswith('```'):
            code = code[3:-3] if code.endswith('```') else code[3:]

        state["generated_code"] = code.strip()
        state["metadata"] = {
            "model": "llama-3.3-70b-versatile",
            "timestamp": datetime.datetime.now().isoformat()
        }

        # سطر طباعة النتيجة المضافة
        print(f"\nGenerated Code:\n{code.strip()}\n")

        return state

    except Exception as e:
        state["error"] = f"Error generating code: {str(e)}"
        return state

def explain_code(state: CodeAssistantState) -> CodeAssistantState:
    try:
        messages = [
            {"role": "system", "content": "You are a Python expert. Explain what the following code does in plain language."},
            {"role": "user", "content": state["user_input"].strip()}
        ]

        completion = groq_client.chat.completions.create(
            model="llama-3.3-70b-versatile",
            messages=messages,
            temperature=0.5,
            max_tokens=1024
        )

        explanation = completion.choices[0].message.content.strip()
        state["generated_code"] = explanation
        state["metadata"] = {
            "model": "llama-3.3-70b-versatile",
            "timestamp": datetime.datetime.now().isoformat()
        }

        # سطر طباعة النتيجة المضافة
        print(f"Explanation:\n{explanation}")

        return state

    except Exception as e:
        state["error"] = f"Error explaining code: {str(e)}"
        return state

# ---------------------------
# 4. Build StateGraph Workflow (محدث)
# ---------------------------
workflow = StateGraph(CodeAssistantState)

# إضافة جميع العقد بما فيها العقدة الجديدة
workflow.add_node("initialize_db", initialize_db)
workflow.add_node("retrieve_examples", retrieve_examples)
workflow.add_node("classify_task", classify_task_llm)
workflow.add_node("generate_code", generate_code)
workflow.add_node("explain_code", explain_code)
workflow.add_node("test_code", test_code)  # العقدة الجديدة

# تحديد نقطة البداية والروابط الأساسية
workflow.set_entry_point("initialize_db")
workflow.add_edge("initialize_db", "retrieve_examples")
workflow.add_edge("retrieve_examples", "classify_task")

# تحديث الروابط الشرطية لتشمل خيار الاختبار
workflow.add_conditional_edges(
    "classify_task",
    lambda state: state["task_type"],
    {
        "generate": "generate_code",
        "explain": "explain_code",
        "test": "test_code"  # الرابط الجديد
    }
)

# إضافة روابط النهاية لجميع العقد
workflow.add_edge("generate_code", END)
workflow.add_edge("explain_code", END)
workflow.add_edge("test_code", END)  # الرابط الجديد

# تجميع التدفق النهائي
app_workflow = workflow.compile()

# ---------------------------
# 5. Create Gradio Interface
# ---------------------------
def process_input(user_input: str):
    """Function that will be called by Gradio to process user input"""
    initial_state = {
        "user_input": user_input,
        "similar_examples": None,
        "generated_code": None,
        "error": None,
        "task_type": None
    }

    result = app_workflow.invoke(initial_state)

    if result.get("error"):
        return f"Error: {result['error']}"

    if result["task_type"] == "generate":
        return f"Generated Code:\n\n{result['generated_code']}"
    else:
        return f"Code Explanation:\n\n{result['generated_code']}"

# تعريف واجهة Gradio
# Define Gradio interface
with gr.Blocks(title="Smart Code Assistant") as demo:
    gr.Markdown("""
    # Smart Code Assistant
    Enter your request either to generate new code or to explain existing code
    """)

    with gr.Row():
        input_text = gr.Textbox(label="Enter your request", placeholder="Example: Write a function to add two numbers... or Explain this code...")
        output_text = gr.Textbox(label="Result", interactive=False)

    submit_btn = gr.Button("Execute")
    submit_btn.click(fn=process_input, inputs=input_text, outputs=output_text)

    # Quick examples
    gr.Examples(
    examples=[
        ["Write a Python function to add two numbers"],
        ["Explain this code: for i in range(5): print(i)"],
        ["Create a function to convert temperature from Fahrenheit to Celsius"],
        ["test for i in range(3): print('Hello from test', i)"]
       ],

        inputs=input_text
    )

# تشغيل الواجهة
if __name__ == "__main__":
    demo.launch()