Spaces:
Sleeping
Sleeping
Sam-Oliveira
commited on
Commit
·
b9e7b32
1
Parent(s):
06018df
Fixed locally
Browse files- .gitignore +2 -1
- src/scrape.py +33 -18
- src/streamlit_app.py +14 -8
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
.DS_Store
|
| 2 |
ra_env
|
| 3 |
-
src/__pycache__
|
|
|
|
|
|
| 1 |
.DS_Store
|
| 2 |
ra_env
|
| 3 |
+
src/__pycache__
|
| 4 |
+
src/papers.db
|
src/scrape.py
CHANGED
|
@@ -2,41 +2,56 @@ import time, arxiv
|
|
| 2 |
from query_builder import build_query
|
| 3 |
from db import get_conn
|
| 4 |
from config import MAX_RESULTS
|
| 5 |
-
import os
|
| 6 |
-
import pathlib
|
| 7 |
-
import os, pathlib, uuid, shutil
|
| 8 |
|
| 9 |
-
BASE_CACHE = pathlib.Path("/data") # always writable in Spaces
|
| 10 |
-
CACHE_DIR = BASE_CACHE / "hf_cache" / str(os.getpid())
|
| 11 |
|
| 12 |
-
CACHE_DIR.
|
|
|
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
#
|
| 26 |
from sentence_transformers import SentenceTransformer
|
| 27 |
from keybert import KeyBERT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
st_model = SentenceTransformer(
|
| 30 |
"sentence-transformers/all-MiniLM-L6-v2",
|
| 31 |
-
cache_folder=
|
| 32 |
)
|
| 33 |
kw_model = KeyBERT(st_model)
|
|
|
|
| 34 |
|
| 35 |
def make_tags(title, abstract, top_n=5):
|
| 36 |
"""
|
| 37 |
Extract keywords from the title and abstract using KeyBERT.
|
| 38 |
"""
|
| 39 |
-
phrases =
|
| 40 |
top_n=top_n,
|
| 41 |
stop_words="english",
|
| 42 |
use_mmr=True)
|
|
|
|
| 2 |
from query_builder import build_query
|
| 3 |
from db import get_conn
|
| 4 |
from config import MAX_RESULTS
|
| 5 |
+
import os, pathlib, tempfile,uuid, shutil
|
|
|
|
|
|
|
| 6 |
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
CACHE_DIR = pathlib.Path(tempfile.gettempdir()) / "hf_cache"
|
| 9 |
+
CACHE_DIR.mkdir(parents=True, exist_ok=True) # guaranteed writable
|
| 10 |
|
| 11 |
+
for var in (
|
| 12 |
+
"HF_HOME",
|
| 13 |
+
"HF_HUB_CACHE",
|
| 14 |
+
"TRANSFORMERS_CACHE",
|
| 15 |
+
"SENTENCE_TRANSFORMERS_HOME",
|
| 16 |
+
):
|
| 17 |
+
os.environ[var] = str(CACHE_DIR)
|
| 18 |
|
| 19 |
+
from sentence_transformers import SentenceTransformer
|
| 20 |
+
from keybert import KeyBERT
|
| 21 |
+
|
| 22 |
+
st_model = SentenceTransformer(
|
| 23 |
+
"sentence-transformers/all-MiniLM-L6-v2",
|
| 24 |
+
cache_folder=str(CACHE_DIR) # explicit path
|
| 25 |
+
)
|
| 26 |
+
kw_model = KeyBERT(st_model)
|
| 27 |
+
|
| 28 |
+
"""
|
| 29 |
|
| 30 |
+
# For my Mac
|
| 31 |
from sentence_transformers import SentenceTransformer
|
| 32 |
from keybert import KeyBERT
|
| 33 |
+
# Use a writable cache directory on macOS
|
| 34 |
+
cache_dir = os.path.expanduser("~/cache")
|
| 35 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 36 |
+
|
| 37 |
+
os.environ["HF_HOME"] = cache_dir
|
| 38 |
+
os.environ["HF_HUB_CACHE"] = cache_dir
|
| 39 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_dir
|
| 40 |
+
os.environ["SENTENCE_TRANSFORMERS_HOME"] = cache_dir
|
| 41 |
+
|
| 42 |
|
| 43 |
st_model = SentenceTransformer(
|
| 44 |
"sentence-transformers/all-MiniLM-L6-v2",
|
| 45 |
+
cache_folder=cache_dir # <- writable
|
| 46 |
)
|
| 47 |
kw_model = KeyBERT(st_model)
|
| 48 |
+
"""
|
| 49 |
|
| 50 |
def make_tags(title, abstract, top_n=5):
|
| 51 |
"""
|
| 52 |
Extract keywords from the title and abstract using KeyBERT.
|
| 53 |
"""
|
| 54 |
+
phrases = kw_model.extract_keywords(f"{title}. {abstract}",
|
| 55 |
top_n=top_n,
|
| 56 |
stop_words="english",
|
| 57 |
use_mmr=True)
|
src/streamlit_app.py
CHANGED
|
@@ -12,7 +12,6 @@ import html as ihtml
|
|
| 12 |
from datetime import date
|
| 13 |
from config import MAX_RESULTS
|
| 14 |
from scrape import scrape
|
| 15 |
-
from summarise import summarise_pending
|
| 16 |
from digest import build_html
|
| 17 |
from ideate import ideate_from_topic, ideate_from_ids
|
| 18 |
from helpers import render_rows, rows_by_tag
|
|
@@ -39,9 +38,10 @@ with tab1:
|
|
| 39 |
category = c4.text_input("Category (e.g. cs.CL)")
|
| 40 |
k = st.slider("Max papers", 5, 50, 25)
|
| 41 |
if st.button("Run search"):
|
| 42 |
-
|
|
|
|
| 43 |
author=author, category=category)
|
| 44 |
-
st.success("
|
| 45 |
from db import get_conn
|
| 46 |
newest = get_conn().execute(
|
| 47 |
"SELECT title, authors, abstract, published FROM papers "
|
|
@@ -54,8 +54,12 @@ with tab2:
|
|
| 54 |
st.header("Get a digest from the latest papers you have previously scraped")
|
| 55 |
d_topic = st.text_input("Keyword to match tags", value="large language")
|
| 56 |
if st.button("Generate digest"):
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
st.components.v1.html(render_rows(rows), height=800, scrolling=True)
|
| 60 |
|
| 61 |
with tab3:
|
|
@@ -65,7 +69,8 @@ with tab3:
|
|
| 65 |
if mode == "Keyword":
|
| 66 |
kw = st.text_input("Keyword")
|
| 67 |
if st.button("Ideate"):
|
| 68 |
-
|
|
|
|
| 69 |
if ideas is None:
|
| 70 |
st.info("No papers in the database match that keyword. "
|
| 71 |
"Try running a search in the **Search** tab first.")
|
|
@@ -76,8 +81,9 @@ with tab3:
|
|
| 76 |
ids_in = st.text_area("Comma-separated IDs",
|
| 77 |
placeholder="2406.01234,2405.01234")
|
| 78 |
if st.button("Ideate"):
|
| 79 |
-
|
| 80 |
-
|
|
|
|
| 81 |
if ideas is None:
|
| 82 |
st.info("Those IDs aren’t in the database yet. "
|
| 83 |
"Fetch them via the **Search** tab, then try again.")
|
|
|
|
| 12 |
from datetime import date
|
| 13 |
from config import MAX_RESULTS
|
| 14 |
from scrape import scrape
|
|
|
|
| 15 |
from digest import build_html
|
| 16 |
from ideate import ideate_from_topic, ideate_from_ids
|
| 17 |
from helpers import render_rows, rows_by_tag
|
|
|
|
| 38 |
category = c4.text_input("Category (e.g. cs.CL)")
|
| 39 |
k = st.slider("Max papers", 5, 50, 25)
|
| 40 |
if st.button("Run search"):
|
| 41 |
+
with st.spinner("Scraping papers, and storing them..."):
|
| 42 |
+
scrape(max_results=k, topic=topic, title=title,
|
| 43 |
author=author, category=category)
|
| 44 |
+
st.success("All done!")
|
| 45 |
from db import get_conn
|
| 46 |
newest = get_conn().execute(
|
| 47 |
"SELECT title, authors, abstract, published FROM papers "
|
|
|
|
| 54 |
st.header("Get a digest from the latest papers you have previously scraped")
|
| 55 |
d_topic = st.text_input("Keyword to match tags", value="large language")
|
| 56 |
if st.button("Generate digest"):
|
| 57 |
+
with st.spinner("Finding papers and summarising them..."):
|
| 58 |
+
summarise_by_tag(d_topic)
|
| 59 |
+
rows = rows_by_tag(d_topic, MAX_RESULTS)
|
| 60 |
+
if not rows:
|
| 61 |
+
st.info("No papers found; try the Search tab.")
|
| 62 |
+
else:
|
| 63 |
st.components.v1.html(render_rows(rows), height=800, scrolling=True)
|
| 64 |
|
| 65 |
with tab3:
|
|
|
|
| 69 |
if mode == "Keyword":
|
| 70 |
kw = st.text_input("Keyword")
|
| 71 |
if st.button("Ideate"):
|
| 72 |
+
with st.spinner("Thinking of new ideas..."):
|
| 73 |
+
ideas = ideate_from_topic(kw)
|
| 74 |
if ideas is None:
|
| 75 |
st.info("No papers in the database match that keyword. "
|
| 76 |
"Try running a search in the **Search** tab first.")
|
|
|
|
| 81 |
ids_in = st.text_area("Comma-separated IDs",
|
| 82 |
placeholder="2406.01234,2405.01234")
|
| 83 |
if st.button("Ideate"):
|
| 84 |
+
with st.spinner("Thinking of new ideas..."):
|
| 85 |
+
ids = [x.strip() for x in ids_in.split(",") if x.strip()]
|
| 86 |
+
ideas = ideate_from_ids(ids)
|
| 87 |
if ideas is None:
|
| 88 |
st.info("Those IDs aren’t in the database yet. "
|
| 89 |
"Fetch them via the **Search** tab, then try again.")
|