Spaces:
Runtime error
Runtime error
File size: 40,238 Bytes
36bca9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 |
import gradio as gr
from transformers import AutoProcessor, Pix2StructForConditionalGeneration, T5Tokenizer, T5ForConditionalGeneration, Pix2StructProcessor
from PIL import Image
import torch
import warnings
import re
import json
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
import argparse
from scipy import optimize
from typing import Optional
import dataclasses
import editdistance
import itertools
import sys
import time
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()
warnings.filterwarnings('ignore')
MAX_PATCHES = 512
# Load the models and processor
#device = torch.device("cpu")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Paths to the models
ko_deplot_model_path = './model_epoch_1_210000.bin'
aihub_deplot_model_path='./deplot_k.pt'
t5_model_path = './ke_t5.pt'
# Load first model ko-deplot
processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
model1.load_state_dict(torch.load(ko_deplot_model_path, map_location=device))
model1.to(device)
# Load second model aihub-deplot
processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base")
model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base")
model2.load_state_dict(torch.load(aihub_deplot_model_path, map_location=device))
tokenizer = T5Tokenizer.from_pretrained("KETI-AIR/ke-t5-base")
t5_model = T5ForConditionalGeneration.from_pretrained("KETI-AIR/ke-t5-base")
t5_model.load_state_dict(torch.load(t5_model_path, map_location=device))
model2.to(device)
t5_model.to(device)
#ko-deplot ์ถ๋ก ํจ์
# Function to format output
def format_output(prediction):
return prediction.replace('<0x0A>', '\n')
# First model prediction ko-deplot
def predict_model1(image):
images = [image]
inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True)
inputs = {k: v.to(device) for k, v in inputs.items()} # Move to GPU
model1.eval()
with torch.no_grad():
predictions = model1.generate(**inputs, max_new_tokens=4096)
outputs = [processor1.decode(pred, skip_special_tokens=True) for pred in predictions]
formatted_output = format_output(outputs[0])
return formatted_output
def replace_unk(text):
# 1. '์ ๋ชฉ:', '์ ํ:' ๊ธ์ ์์ ์๋ <unk>๋ \n๋ก ๋ฐ๊ฟ
text = re.sub(r'<unk>(?=์ ๋ชฉ:|์ ํ:)', '\n', text)
# 2. '์ธ๋ก ' ๋๋ '๊ฐ๋ก '์ '๋ํ' ์ฌ์ด์ ์๋ <unk>๋ฅผ ""๋ก ๋ฐ๊ฟ
text = re.sub(r'(?<=์ธ๋ก |๊ฐ๋ก )<unk>(?=๋ํ)', '', text)
# 3. ์ซ์์ ํ
์คํธ ์ฌ์ด์ ์๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
text = re.sub(r'(\d)<unk>([^\d])', r'\1\n\2', text)
# 4. %, ์, ๊ฑด, ๋ช
๋ค์ ๋์ค๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
text = re.sub(r'(?<=[%์๊ฑด๋ช
\)])<unk>', '\n', text)
# 5. ์ซ์์ ์ซ์ ์ฌ์ด์ ์๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
text = re.sub(r'(\d)<unk>(\d)', r'\1\n\2', text)
# 6. 'ํ'์ด๋ผ๋ ๊ธ์์ ' |' ์ฌ์ด์ ์๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
text = re.sub(r'ํ<unk>(?= \|)', 'ํ\n', text)
# 7. ๋๋จธ์ง <unk>๋ฅผ ๋ชจ๋ ""๋ก ๋ฐ๊ฟ
text = text.replace('<unk>', '')
return text
# Second model prediction aihub_deplot
def predict_model2(image):
image = image.convert("RGB")
inputs = processor2(images=image, return_tensors="pt", max_patches=MAX_PATCHES).to(device)
flattened_patches = inputs.flattened_patches.to(device)
attention_mask = inputs.attention_mask.to(device)
model2.eval()
t5_model.eval()
with torch.no_grad():
deplot_generated_ids = model2.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=1000)
generated_datatable = processor2.batch_decode(deplot_generated_ids, skip_special_tokens=False)[0]
generated_datatable = generated_datatable.replace("<pad>", "<unk>").replace("</s>", "<unk>")
refined_table = replace_unk(generated_datatable)
return refined_table
#function for converting aihub dataset labeling json file to ko-deplot data table
def process_json_file(input_file):
with open(input_file, 'r', encoding='utf-8') as file:
data = json.load(file)
# ํ์ํ ๋ฐ์ดํฐ ์ถ์ถ
chart_type = data['metadata']['chart_sub']
title = data['annotations'][0]['title']
x_axis = data['annotations'][0]['axis_label']['x_axis']
y_axis = data['annotations'][0]['axis_label']['y_axis']
legend = data['annotations'][0]['legend']
data_labels = data['annotations'][0]['data_label']
is_legend = data['annotations'][0]['is_legend']
# ์ํ๋ ํ์์ผ๋ก ๋ณํ
formatted_string = f"TITLE | {title} <0x0A> "
if '๊ฐ๋ก' in chart_type:
if is_legend:
# ๊ฐ๋ก ์ฐจํธ ์ฒ๋ฆฌ
formatted_string += " | ".join(legend) + " <0x0A> "
for i in range(len(y_axis)):
row = [y_axis[i]]
for j in range(len(legend)):
if i < len(data_labels[j]):
row.append(str(data_labels[j][i])) # ๋ฐ์ดํฐ ๊ฐ์ ๋ฌธ์์ด๋ก ๋ณํ
else:
row.append("") # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
formatted_string += " | ".join(row) + " <0x0A> "
else:
# is_legend๊ฐ False์ธ ๊ฒฝ์ฐ
for i in range(len(y_axis)):
row = [y_axis[i], str(data_labels[0][i])]
formatted_string += " | ".join(row) + " <0x0A> "
elif chart_type == "์ํ":
# ์ํ ์ฐจํธ ์ฒ๋ฆฌ
if legend:
used_labels = legend
else:
used_labels = x_axis
formatted_string += " | ".join(used_labels) + " <0x0A> "
row = [data_labels[0][i] for i in range(len(used_labels))]
formatted_string += " | ".join(row) + " <0x0A> "
elif chart_type == "ํผํฉํ":
# ํผํฉํ ์ฐจํธ ์ฒ๋ฆฌ
all_legends = [ann['legend'][0] for ann in data['annotations']]
formatted_string += " | ".join(all_legends) + " <0x0A> "
combined_data = []
for i in range(len(x_axis)):
row = [x_axis[i]]
for ann in data['annotations']:
if i < len(ann['data_label'][0]):
row.append(str(ann['data_label'][0][i])) # ๋ฐ์ดํฐ ๊ฐ์ ๋ฌธ์์ด๋ก ๋ณํ
else:
row.append("") # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
combined_data.append(" | ".join(row))
formatted_string += " <0x0A> ".join(combined_data) + " <0x0A> "
else:
# ๊ธฐํ ์ฐจํธ ์ฒ๋ฆฌ
if is_legend:
formatted_string += " | ".join(legend) + " <0x0A> "
for i in range(len(x_axis)):
row = [x_axis[i]]
for j in range(len(legend)):
if i < len(data_labels[j]):
row.append(str(data_labels[j][i])) # ๋ฐ์ดํฐ ๊ฐ์ ๋ฌธ์์ด๋ก ๋ณํ
else:
row.append("") # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
formatted_string += " | ".join(row) + " <0x0A> "
else:
for i in range(len(x_axis)):
if i < len(data_labels[0]):
formatted_string += f"{x_axis[i]} | {str(data_labels[0][i])} <0x0A> "
else:
formatted_string += f"{x_axis[i]} | <0x0A> " # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
# ๋ง์ง๋ง "<0x0A> " ์ ๊ฑฐ
formatted_string = formatted_string[:-8]
return format_output(formatted_string)
def chart_data(data):
datatable = []
num = len(data)
for n in range(num):
title = data[n]['title'] if data[n]['is_title'] else ''
legend = data[n]['legend'] if data[n]['is_legend'] else ''
datalabel = data[n]['data_label'] if data[n]['is_datalabel'] else [0]
unit = data[n]['unit'] if data[n]['is_unit'] else ''
base = data[n]['base'] if data[n]['is_base'] else ''
x_axis_title = data[n]['axis_title']['x_axis']
y_axis_title = data[n]['axis_title']['y_axis']
x_axis = data[n]['axis_label']['x_axis'] if data[n]['is_axis_label_x_axis'] else [0]
y_axis = data[n]['axis_label']['y_axis'] if data[n]['is_axis_label_y_axis'] else [0]
if len(legend) > 1:
datalabel = np.array(datalabel).transpose().tolist()
datatable.append([title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis])
return datatable
def datatable(data, chart_type):
data_table = ''
num = len(data)
if len(data) == 2:
temp = []
temp.append(f"๋์: {data[0][4]}")
temp.append(f"์ ๋ชฉ: {data[0][0]}")
temp.append(f"์ ํ: {' '.join(chart_type[0:2])}")
temp.append(f"{data[0][5]} | {data[0][1][0]}({data[0][3]}) | {data[1][1][0]}({data[1][3]})")
x_axis = data[0][7]
for idx, x in enumerate(x_axis):
temp.append(f"{x} | {data[0][2][0][idx]} | {data[1][2][0][idx]}")
data_table = '\n'.join(temp)
else:
for n in range(num):
temp = []
title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis = data[n]
legend = [element + f"({unit})" for element in legend]
if len(legend) > 1:
temp.append(f"๋์: {base}")
temp.append(f"์ ๋ชฉ: {title}")
temp.append(f"์ ํ: {' '.join(chart_type[0:2])}")
temp.append(f"{x_axis_title} | {' | '.join(legend)}")
if chart_type[2] == "์ํ":
datalabel = sum(datalabel, [])
temp.append(f"{' | '.join([str(d) for d in datalabel])}")
data_table = '\n'.join(temp)
else:
axis = y_axis if chart_type[2] == "๊ฐ๋ก ๋ง๋ํ" else x_axis
for idx, (x, d) in enumerate(zip(axis, datalabel)):
temp_d = [str(e) for e in d]
temp_d = " | ".join(temp_d)
row = f"{x} | {temp_d}"
temp.append(row)
data_table = '\n'.join(temp)
else:
temp.append(f"๋์: {base}")
temp.append(f"์ ๋ชฉ: {title}")
temp.append(f"์ ํ: {' '.join(chart_type[0:2])}")
temp.append(f"{x_axis_title} | {unit}")
axis = y_axis if chart_type[2] == "๊ฐ๋ก ๋ง๋ํ" else x_axis
datalabel = datalabel[0]
for idx, x in enumerate(axis):
row = f"{x} | {str(datalabel[idx])}"
temp.append(row)
data_table = '\n'.join(temp)
return data_table
#function for converting aihub dataset labeling json file to aihub-deplot data table
def process_json_file2(input_file):
with open(input_file, 'r', encoding='utf-8') as file:
data = json.load(file)
# ํ์ํ ๋ฐ์ดํฐ ์ถ์ถ
chart_multi = data['metadata']['chart_multi']
chart_main = data['metadata']['chart_main']
chart_sub = data['metadata']['chart_sub']
chart_type = [chart_multi, chart_sub, chart_main]
chart_annotations = data['annotations']
charData = chart_data(chart_annotations)
dataTable = datatable(charData, chart_type)
return dataTable
# RMS
def _to_float(text): # ๋จ์ ๋ผ๊ณ ์ซ์๋ง..?
try:
if text.endswith("%"):
# Convert percentages to floats.
return float(text.rstrip("%")) / 100.0
else:
return float(text)
except ValueError:
return None
def _get_relative_distance(
target, prediction, theta = 1.0
):
"""Returns min(1, |target-prediction|/|target|)."""
if not target:
return int(not prediction)
distance = min(abs((target - prediction) / target), 1)
return distance if distance < theta else 1
def anls_metric(target: str, prediction: str, theta: float = 0.5):
edit_distance = editdistance.eval(target, prediction)
normalize_ld = edit_distance / max(len(target), len(prediction))
return 1 - normalize_ld if normalize_ld < theta else 0
def _permute(values, indexes):
return tuple(values[i] if i < len(values) else "" for i in indexes)
@dataclasses.dataclass(frozen=True)
class Table:
"""Helper class for the content of a markdown table."""
base: Optional[str] = None
title: Optional[str] = None
chartType: Optional[str] = None
headers: tuple[str, Ellipsis] = dataclasses.field(default_factory=tuple)
rows: tuple[tuple[str, Ellipsis], Ellipsis] = dataclasses.field(default_factory=tuple)
def permuted(self, indexes):
"""Builds a version of the table changing the column order."""
return Table(
base=self.base,
title=self.title,
chartType=self.chartType,
headers=_permute(self.headers, indexes),
rows=tuple(_permute(row, indexes) for row in self.rows),
)
def aligned(
self, headers, text_theta = 0.5
):
"""Builds a column permutation with headers in the most correct order."""
if len(headers) != len(self.headers):
raise ValueError(f"Header length {headers} must match {self.headers}.")
distance = []
for h2 in self.headers:
distance.append(
[
1 - anls_metric(h1, h2, text_theta)
for h1 in headers
]
)
cost_matrix = np.array(distance)
row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
permutation = [idx for _, idx in sorted(zip(col_ind, row_ind))]
score = (1 - cost_matrix)[permutation[1:], range(1, len(row_ind))].prod()
return self.permuted(permutation), score
def _parse_table(text, transposed = False): # ํ ์ ๋ชฉ, ์ด ์ด๋ฆ, ํ ์ฐพ๊ธฐ
"""Builds a table from a markdown representation."""
lines = text.lower().splitlines()
if not lines:
return Table()
if lines[0].startswith("๋์: "):
base = lines[0][len("๋์: ") :].strip()
offset = 1 #
else:
base = None
offset = 0
if lines[1].startswith("์ ๋ชฉ: "):
title = lines[1][len("์ ๋ชฉ: ") :].strip()
offset = 2 #
else:
title = None
offset = 1
if lines[2].startswith("์ ํ: "):
chartType = lines[2][len("์ ํ: ") :].strip()
offset = 3 #
else:
chartType = None
if len(lines) < offset + 1:
return Table(base=base, title=title, chartType=chartType)
rows = []
for line in lines[offset:]:
rows.append(tuple(v.strip() for v in line.split(" | ")))
if transposed:
rows = [tuple(row) for row in itertools.zip_longest(*rows, fillvalue="")]
return Table(base=base, title=title, chartType=chartType, headers=rows[0], rows=tuple(rows[1:]))
def _get_table_datapoints(table):
datapoints = {}
if table.base is not None:
datapoints["๋์"] = table.base
if table.title is not None:
datapoints["์ ๋ชฉ"] = table.title
if table.chartType is not None:
datapoints["์ ํ"] = table.chartType
if not table.rows or len(table.headers) <= 1:
return datapoints
for row in table.rows:
for header, cell in zip(table.headers[1:], row[1:]):
#print(f"{row[0]} {header} >> {cell}")
datapoints[f"{row[0]} {header}"] = cell #
return datapoints
def _get_datapoint_metric( #
target,
prediction,
text_theta=0.5,
number_theta=0.1,
):
"""Computes a metric that scores how similar two datapoint pairs are."""
key_metric = anls_metric(
target[0], prediction[0], text_theta
)
pred_float = _to_float(prediction[1]) # ์ซ์์ธ์ง ํ์ธ
target_float = _to_float(target[1])
if pred_float is not None and target_float:
return key_metric * (
1 - _get_relative_distance(target_float, pred_float, number_theta) # ์ซ์๋ฉด ์๋์ ๊ฑฐ๋ฆฌ๊ฐ ๊ณ์ฐ
)
elif target[1] == prediction[1]:
return key_metric
else:
return key_metric * anls_metric(
target[1], prediction[1], text_theta
)
def _table_datapoints_precision_recall_f1( # ์ฐ ๊ณ์ฐ
target_table,
prediction_table,
text_theta = 0.5,
number_theta = 0.1,
):
"""Calculates matching similarity between two tables as dicts."""
target_datapoints = list(_get_table_datapoints(target_table).items())
prediction_datapoints = list(_get_table_datapoints(prediction_table).items())
if not target_datapoints and not prediction_datapoints:
return 1, 1, 1
if not target_datapoints:
return 0, 1, 0
if not prediction_datapoints:
return 1, 0, 0
distance = []
for t, _ in target_datapoints:
distance.append(
[
1 - anls_metric(t, p, text_theta)
for p, _ in prediction_datapoints
]
)
cost_matrix = np.array(distance)
row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
score = 0
for r, c in zip(row_ind, col_ind):
score += _get_datapoint_metric(
target_datapoints[r], prediction_datapoints[c], text_theta, number_theta
)
if score == 0:
return 0, 0, 0
precision = score / len(prediction_datapoints)
recall = score / len(target_datapoints)
return precision, recall, 2 * precision * recall / (precision + recall)
def table_datapoints_precision_recall_per_point( # ๊ฐ๊ฐ ๊ณ์ฐ...
targets,
predictions,
text_theta = 0.5,
number_theta = 0.1,
):
"""Computes precisin recall and F1 metrics given two flattened tables.
Parses each string into a dictionary of keys and values using row and column
headers. Then we match keys between the two dicts as long as their relative
levenshtein distance is below a threshold. Values are also compared with
ANLS if strings or relative distance if they are numeric.
Args:
targets: list of list of strings.
predictions: list of strings.
text_theta: relative edit distance above this is set to the maximum of 1.
number_theta: relative error rate above this is set to the maximum of 1.
Returns:
Dictionary with per-point precision, recall and F1
"""
assert len(targets) == len(predictions)
per_point_scores = {"precision": [], "recall": [], "f1": []}
for pred, target in zip(predictions, targets):
all_metrics = []
for transposed in [True, False]:
pred_table = _parse_table(pred, transposed=transposed)
target_table = _parse_table(target, transposed=transposed)
all_metrics.extend([_table_datapoints_precision_recall_f1(target_table, pred_table, text_theta, number_theta)])
p, r, f = max(all_metrics, key=lambda x: x[-1])
per_point_scores["precision"].append(p)
per_point_scores["recall"].append(r)
per_point_scores["f1"].append(f)
return per_point_scores
def table_datapoints_precision_recall( # deplot ์ฑ๋ฅ์งํ
targets,
predictions,
text_theta = 0.5,
number_theta = 0.1,
):
"""Aggregated version of table_datapoints_precision_recall_per_point().
Same as table_datapoints_precision_recall_per_point() but returning aggregated
scores instead of per-point scores.
Args:
targets: list of list of strings.
predictions: list of strings.
text_theta: relative edit distance above this is set to the maximum of 1.
number_theta: relative error rate above this is set to the maximum of 1.
Returns:
Dictionary with aggregated precision, recall and F1
"""
score_dict = table_datapoints_precision_recall_per_point(
targets, predictions, text_theta, number_theta
)
return {
"table_datapoints_precision": (
sum(score_dict["precision"]) / len(targets)
),
"table_datapoints_recall": (
sum(score_dict["recall"]) / len(targets)
),
"table_datapoints_f1": sum(score_dict["f1"]) / len(targets),
}
def evaluate_rms(generated_table,label_table):
predictions=[generated_table]
targets=[label_table]
RMS = table_datapoints_precision_recall(targets, predictions)
return RMS
def is_float(s):
try:
float(s)
return True
except ValueError:
return False
def ko_deplot_convert_to_dataframe(table_str):
lines = table_str.strip().split("\n")
title=lines[0].split(" | ")[1]
if(len(lines[1].split(" | "))==len(lines[2].split(" | "))):
headers=["0","1"]
if(is_float(lines[1].split(" | ")[1]) or lines[1].split(" | ")[0]==""):
data=[line.split(" | ") for line in lines[1:]]
df=pd.DataFrame(data,columns=headers)
return df
else:
category=lines[1].split(" | ")
value=lines[2].split(" | ")
df=pd.DataFrame({"๋ฒ๋ก":category,"๊ฐ":value})
return df
else:
headers=[]
data=[]
for i in range(len(lines[2].split(" | "))):
headers.append(f"{i}")
line1=lines[1].split(" | ")
line1.insert(0," ")
data.append(line1)
for line in lines[2:]:
data.append(line.split(" | "))
df = pd.DataFrame(data, columns=headers)
return df
def aihub_deplot_convert_to_dataframe(table_str):
lines = table_str.strip().split("\n")
headers = []
if(len(lines[3].split(" | "))>len(lines[4].split(" | "))):
category=lines[3].split(" | ")
del category[0]
value=lines[4].split(" | ")
df=pd.DataFrame({"๋ฒ๋ก":category,"๊ฐ":value})
return df
else:
for i in range(len(lines[3].split(" | "))):
headers.append(f"{i}")
data = [line.split(" | ") for line in lines[3:]]
df = pd.DataFrame(data, columns=headers)
return df
class Highlighter:
def __init__(self):
self.row = 0
self.col = 0
def compare_and_highlight(self, pred_table_elem, target_table, pred_table_row, props=''):
if self.row >= pred_table_row:
self.col += 1
self.row = 0
if pred_table_elem != target_table.iloc[self.row, self.col]:
self.row += 1
return props
else:
self.row += 1
return None
# 1. ๋ฐ์ดํฐ ๋ก๋
aihub_deplot_result_df = pd.read_csv('./aihub_deplot_result.csv')
ko_deplot_result= './ko_deplot_result.json'
# 2. ์ฒดํฌํด์ผ ํ๋ ์ด๋ฏธ์ง ํ์ผ ๋ก๋
def load_image_checklist(file):
with open(file, 'r') as f:
#image_names = [f'"{line.strip()}"' for line in f]
image_names = f.read().splitlines()
return image_names
# 3. ํ์ฌ ์ธ๋ฑ์ค๋ฅผ ์ถ์ ํ๊ธฐ ์ํ ๋ณ์
current_index = 0
image_names = []
def show_image(current_idx):
image_name=image_names[current_idx]
image_path = f"./images/{image_name}.jpg"
if not os.path.exists(image_path):
raise FileNotFoundError(f"Image file not found: {image_path}")
return Image.open(image_path)
# 4. ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ํธ๋ค๋ฌ
def non_real_time_check(file):
highlighter1 = Highlighter()
highlighter2 = Highlighter()
#global image_names, current_index
#image_names = load_image_checklist(file)
#current_index = 0
#image=show_image(current_index)
file_name =image_names[current_index].replace("Source","Label")
json_path="./ko_deplot_labeling_data.json"
with open(json_path, 'r', encoding='utf-8') as file:
json_data = json.load(file)
for key, value in json_data.items():
if key == file_name:
ko_deplot_labeling_str=value.get("txt").replace("<0x0A>","\n")
ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].replace("TITLE | ","์ ๋ชฉ:")
break
ko_deplot_rms_path="./ko_deplot_rms.txt"
with open(ko_deplot_rms_path,'r',encoding='utf-8') as file:
lines=file.readlines()
flag=0
for line in lines:
parts=line.strip().split(", ")
if(len(parts)==2 and parts[0]==image_names[current_index]):
ko_deplot_rms=parts[1]
flag=1
break
if(flag==0):
ko_deplot_rms="none"
ko_deplot_generated_title,ko_deplot_generated_table=ko_deplot_display_results(current_index)
aihub_deplot_generated_table,aihub_deplot_label_table,aihub_deplot_generated_title,aihub_deplot_label_title=aihub_deplot_display_results(current_index)
#ko_deplot_RMS=evaluate_rms(ko_deplot_generated_table,ko_deplot_labeling_str)
aihub_deplot_RMS=evaluate_rms(aihub_deplot_generated_table,aihub_deplot_label_table)
if flag == 1:
value = [round(float(ko_deplot_rms), 1)]
else:
value = [0]
ko_deplot_score_table = pd.DataFrame({
'category': ['f1'],
'value': value
})
aihub_deplot_score_table=pd.DataFrame({
'category': ['precision', 'recall', 'f1'],
'value': [
round(aihub_deplot_RMS['table_datapoints_precision'],1),
round(aihub_deplot_RMS['table_datapoints_recall'],1),
round(aihub_deplot_RMS['table_datapoints_f1'],1)
]
})
ko_deplot_generated_df=ko_deplot_convert_to_dataframe(ko_deplot_generated_table)
aihub_deplot_generated_df=aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table)
ko_deplot_labeling_df=ko_deplot_convert_to_dataframe(ko_deplot_labeling_str)
aihub_deplot_labeling_df=aihub_deplot_convert_to_dataframe(aihub_deplot_label_table)
ko_deplot_generated_df_row=ko_deplot_generated_df.shape[0]
aihub_deplot_generated_df_row=aihub_deplot_generated_df.shape[0]
styled_ko_deplot_table=ko_deplot_generated_df.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_labeling_df,pred_table_row=ko_deplot_generated_df_row,props='color:red')
styled_aihub_deplot_table=aihub_deplot_generated_df.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_labeling_df,pred_table_row=aihub_deplot_generated_df_row,props='color:red')
#return ko_deplot_convert_to_dataframe(ko_deplot_generated_table), aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table), aihub_deplot_convert_to_dataframe(label_table), ko_deplot_score_table, aihub_deplot_score_table
return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(ko deplot ์ถ๋ก ๊ฒฐ๊ณผ)"),gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot ์ถ๋ก ๊ฒฐ๊ณผ)"),gr.DataFrame(ko_deplot_labeling_df,label=ko_deplot_label_title+"(ko deplot ์ ๋ต ํ
์ด๋ธ)"), gr.DataFrame(aihub_deplot_labeling_df,label=aihub_deplot_label_title+"(aihub deplot ์ ๋ต ํ
์ด๋ธ)"),ko_deplot_score_table, aihub_deplot_score_table
def ko_deplot_display_results(index):
filename=image_names[index]+".jpg"
with open(ko_deplot_result, 'r', encoding='utf-8') as f:
data = json.load(f)
for entry in data:
if entry['filename'].endswith(filename):
#return entry['table']
parts=entry['table'].split(" \n ",1)
return parts[0].replace("TITLE | ","์ ๋ชฉ:"),entry['table']
def aihub_deplot_display_results(index):
if index < 0 or index >= len(image_names):
return "Index out of range", None, None
image_name = image_names[index]
image_row = aihub_deplot_result_df[aihub_deplot_result_df['data_id'] == image_name]
if not image_row.empty:
generated_table = image_row['generated_table'].values[0]
generated_title=generated_table.split("\n")[1]
label_table = image_row['label_table'].values[0]
label_title=label_table.split("\n")[1]
return generated_table, label_table, generated_title, label_title
else:
return "No results found for the image", None, None
def previous_image():
global current_index
if current_index>0:
current_index-=1
image=show_image(current_index)
return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)
def next_image():
global current_index
if current_index<len(image_names)-1:
current_index+=1
image=show_image(current_index)
return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)
def real_time_check(image_file):
highlighter1 = Highlighter()
highlighter2 = Highlighter()
image = Image.open(image_file)
result_model1 = predict_model1(image)
ko_deplot_generated_title=result_model1.split("\n")[0].split(" | ")[1]
ko_deplot_table=ko_deplot_convert_to_dataframe(result_model1)
result_model2 = predict_model2(image)
aihub_deplot_generated_title=result_model2.split("\n")[1].split(":")[1]
aihub_deplot_table=aihub_deplot_convert_to_dataframe(result_model2)
image_base_name = os.path.basename(image_file.name).replace("Source","Label")
file_name, _ = os.path.splitext(image_base_name)
aihub_labeling_data_json="./labeling_data/"+file_name+".json"
#aihub_labeling_data_json="./labeling_data/line_graph.json"
ko_deplot_labeling_str=process_json_file(aihub_labeling_data_json)
ko_deplot_label_title=ko_deplot_labeling_str.split("\n")[0].split(" | ")[1]
ko_deplot_label_table=ko_deplot_convert_to_dataframe(ko_deplot_labeling_str)
aihub_deplot_labeling_str=process_json_file2(aihub_labeling_data_json)
aihub_deplot_label_title=aihub_deplot_labeling_str.split("\n")[1].split(":")[1]
aihub_deplot_label_table=aihub_deplot_convert_to_dataframe(aihub_deplot_labeling_str)
ko_deplot_RMS=evaluate_rms(result_model1,ko_deplot_labeling_str)
aihub_deplot_RMS=evaluate_rms(result_model2,aihub_deplot_labeling_str)
ko_deplot_score_table=pd.DataFrame({
'category': ['precision', 'recall', 'f1'],
'value': [
round(ko_deplot_RMS['table_datapoints_precision'],1),
round(ko_deplot_RMS['table_datapoints_recall'],1),
round(ko_deplot_RMS['table_datapoints_f1'],1)
]
})
aihub_deplot_score_table=pd.DataFrame({
'category': ['precision', 'recall', 'f1'],
'value': [
round(aihub_deplot_RMS['table_datapoints_precision'],1),
round(aihub_deplot_RMS['table_datapoints_recall'],1),
round(aihub_deplot_RMS['table_datapoints_f1'],1)
]
})
ko_deplot_generated_df_row=ko_deplot_table.shape[0]
aihub_deplot_generated_df_row=aihub_deplot_table.shape[0]
styled_ko_deplot_table=ko_deplot_table.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_label_table,pred_table_row=ko_deplot_generated_df_row,props='color:red')
styled_aihub_deplot_table=aihub_deplot_table.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_label_table,pred_table_row=aihub_deplot_generated_df_row,props='color:red')
return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(kodeplot ์ถ๋ก ๊ฒฐ๊ณผ)") , gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot ์ถ๋ก ๊ฒฐ๊ณผ)"),gr.DataFrame(ko_deplot_label_table,label=ko_deplot_label_title+"(kodeplot ์ ๋ต ํ
์ด๋ธ)"),gr.DataFrame(aihub_deplot_label_table,label=aihub_deplot_label_title+"(aihub deplot ์ ๋ต ํ
์ด๋ธ)"),ko_deplot_score_table, aihub_deplot_score_table
#return ko_deplot_table,aihub_deplot_table,aihub_deplot_label_table,ko_deplot_score_table,aihub_deplot_score_table
def inference(mode,image_uploader,file_uploader):
if(mode=="์ด๋ฏธ์ง ์
๋ก๋"):
ko_deplot_table, aihub_deplot_table, ko_deplot_label_table,aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table = real_time_check(image_uploader)
return ko_deplot_table, aihub_deplot_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table
else:
styled_ko_deplot_table, styled_aihub_deplot_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table =non_real_time_check(file_uploader)
return styled_ko_deplot_table, styled_aihub_deplot_table, ko_deplot_label_table,aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table
def interface_selector(selector):
if selector == "์ด๋ฏธ์ง ์
๋ก๋":
return gr.update(visible=True),gr.update(visible=False),gr.State("image_upload"),gr.update(visible=False),gr.update(visible=False)
elif selector == "ํ์ผ ์
๋ก๋":
return gr.update(visible=False),gr.update(visible=True),gr.State("file_upload"), gr.update(visible=True),gr.update(visible=True)
def file_selector(selector):
if selector == "low score ์ฐจํธ":
return gr.File("./bottom_20_percent_images.txt")
elif selector == "high score ์ฐจํธ":
return gr.File("./top_20_percent_images.txt")
def update_results(model_type):
if "ko_deplot" == model_type:
return gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=False)
elif "aihub_deplot" == model_type:
return gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=True)
else:
return gr.update(visible=True), gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True)
def display_image(image_file):
image=Image.open(image_file)
return image, os.path.basename(image_file)
def display_image_in_file(image_checklist):
global image_names, current_index
image_names = load_image_checklist(image_checklist)
image=show_image(current_index)
return image,image_names[current_index]
def update_file_based_on_chart_type(chart_type, all_file_path):
with open(all_file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
filtered_lines=[]
if chart_type == "์ ์ฒด":
filtered_lines = lines
elif chart_type == "์ผ๋ฐ ๊ฐ๋ก ๋ง๋ํ":
filtered_lines = [line for line in lines if "_horizontal bar_standard" in line]
elif chart_type=="๋์ ๊ฐ๋ก ๋ง๋ํ":
filtered_lines = [line for line in lines if "_horizontal bar_accumulation" in line]
elif chart_type=="100% ๊ธฐ์ค ๋์ ๊ฐ๋ก ๋ง๋ํ":
filtered_lines = [line for line in lines if "_horizontal bar_100per accumulation" in line]
elif chart_type=="์ผ๋ฐ ์ธ๋ก ๋ง๋ํ":
filtered_lines = [line for line in lines if "_vertical bar_standard" in line]
elif chart_type=="๋์ ์ธ๋ก ๋ง๋ํ":
filtered_lines = [line for line in lines if "_vertical bar_accumulation" in line]
elif chart_type=="100% ๊ธฐ์ค ๋์ ์ธ๋ก ๋ง๋ํ":
filtered_lines = [line for line in lines if "_vertical bar_100per accumulation" in line]
elif chart_type=="์ ํ":
filtered_lines = [line for line in lines if "_line_standard" in line]
elif chart_type=="์ํ":
filtered_lines = [line for line in lines if "_pie_standard" in line]
elif chart_type=="๊ธฐํ ๋ฐฉ์ฌํ":
filtered_lines = [line for line in lines if "_etc_radial" in line]
elif chart_type=="๊ธฐํ ํผํฉํ":
filtered_lines = [line for line in lines if "_etc_mix" in line]
# ์๋ก์ด ํ์ผ์ ๊ธฐ๋ก
new_file_path = "./filtered_chart_images.txt"
with open(new_file_path, 'w', encoding='utf-8') as file:
file.writelines(filtered_lines)
return new_file_path
def handle_chart_type_change(chart_type,all_file_path):
new_file_path = update_file_based_on_chart_type(chart_type, all_file_path)
global image_names, current_index
image_names = load_image_checklist(new_file_path)
current_index=0
image=show_image(current_index)
return image,image_names[current_index]
with gr.Blocks() as iface:
mode=gr.State("image_upload")
with gr.Row():
with gr.Column():
#mode_label=gr.Text("์ด๋ฏธ์ง ์
๋ก๋๊ฐ ์ ํ๋์์ต๋๋ค.")
upload_option = gr.Radio(choices=["์ด๋ฏธ์ง ์
๋ก๋", "ํ์ผ ์
๋ก๋"], value="์ด๋ฏธ์ง ์
๋ก๋", label="์
๋ก๋ ์ต์
")
#with gr.Row():
#image_button = gr.Button("์ด๋ฏธ์ง ์
๋ก๋")
#file_button = gr.Button("ํ์ผ ์
๋ก๋")
# ์ด๋ฏธ์ง์ ํ์ผ ์
๋ก๋ ์ปดํฌ๋ํธ (์ด๊ธฐ์๋ ์จ๊น ์ํ)
# global image_uploader,file_uploader
image_uploader= gr.File(file_count="single",file_types=["image"],visible=True)
file_uploader= gr.File(file_count="single", file_types=[".txt"], visible=False)
file_upload_option=gr.Radio(choices=["low score ์ฐจํธ","high score ์ฐจํธ"],label="ํ์ผ ์
๋ก๋ ์ต์
",visible=False)
chart_type = gr.Dropdown(["์ผ๋ฐ ๊ฐ๋ก ๋ง๋ํ","๋์ ๊ฐ๋ก ๋ง๋ํ","100% ๊ธฐ์ค ๋์ ๊ฐ๋ก ๋ง๋ํ", "์ผ๋ฐ ์ธ๋ก ๋ง๋ํ","๋์ ์ธ๋ก ๋ง๋ํ","100% ๊ธฐ์ค ๋์ ์ธ๋ก ๋ง๋ํ","์ ํ", "์ํ", "๊ธฐํ ๋ฐฉ์ฌํ", "๊ธฐํ ํผํฉํ", "์ ์ฒด"], label="Chart Type", value="all")
model_type=gr.Dropdown(["ko_deplot","aihub_deplot","all"],label="model")
image_displayer=gr.Image(visible=True)
with gr.Row():
pre_button=gr.Button("์ด์ ",interactive="False")
next_button=gr.Button("๋ค์")
image_name=gr.Text("์ด๋ฏธ์ง ์ด๋ฆ",visible=False)
#image_button.click(interface_selector, inputs=gr.State("์ด๋ฏธ์ง ์
๋ก๋"), outputs=[image_uploader,file_uploader,mode,mode_label,image_name])
#file_button.click(interface_selector, inputs=gr.State("ํ์ผ ์
๋ก๋"), outputs=[image_uploader, file_uploader,mode,mode_label,image_name])
inference_button=gr.Button("์ถ๋ก ")
with gr.Column():
ko_deplot_generated_table=gr.DataFrame(visible=False,label="ko-deplot ์ถ๋ก ๊ฒฐ๊ณผ")
aihub_deplot_generated_table=gr.DataFrame(visible=False,label="aihub-deplot ์ถ๋ก ๊ฒฐ๊ณผ")
with gr.Column():
ko_deplot_label_table=gr.DataFrame(visible=False,label="ko-deplot ์ ๋ตํ
์ด๋ธ")
aihub_deplot_label_table=gr.DataFrame(visible=False,label="aihub-deplot ์ ๋ตํ
์ด๋ธ")
with gr.Column():
ko_deplot_score_table=gr.DataFrame(visible=False,label="ko_deplot ์ ์")
aihub_deplot_score_table=gr.DataFrame(visible=False,label="aihub_deplot ์ ์")
model_type.change(
update_results,
inputs=[model_type],
outputs=[ko_deplot_generated_table,ko_deplot_score_table,aihub_deplot_generated_table,aihub_deplot_score_table,ko_deplot_label_table,aihub_deplot_label_table]
)
upload_option.change(
interface_selector,
inputs=[upload_option],
outputs=[image_uploader, file_uploader, mode, image_name,file_upload_option]
)
file_upload_option.change(
file_selector,
inputs=[file_upload_option],
outputs=[file_uploader]
)
chart_type.change(handle_chart_type_change, inputs=[chart_type,file_uploader],outputs=[image_displayer,image_name])
image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name])
file_uploader.change(display_image_in_file,inputs=[file_uploader],outputs=[image_displayer,image_name])
pre_button.click(previous_image, outputs=[image_displayer,image_name,pre_button,next_button])
next_button.click(next_image, outputs=[image_displayer,image_name,pre_button,next_button])
inference_button.click(inference,inputs=[upload_option,image_uploader,file_uploader],outputs=[ko_deplot_generated_table, aihub_deplot_generated_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table])
if __name__ == "__main__":
print("Launching Gradio interface...")
sys.stdout.flush() # stdout ๋ฒํผ๋ฅผ ๋น์๋๋ค.
iface.launch(share=True)
time.sleep(2) # Gradio URL์ด ์ถ๋ ฅ๋ ๋๊น์ง ์ ์ ๊ธฐ๋ค๋ฆฝ๋๋ค.
sys.stdout.flush() # ๋ค์ stdout ๋ฒํผ๋ฅผ ๋น์๋๋ค.
# Gradio๊ฐ ์ ๊ณตํ๋ URLs์ ํ์ผ์ ๊ธฐ๋กํฉ๋๋ค.
with open("gradio_url.log", "w") as f:
print(iface.local_url, file=f)
print(iface.share_url, file=f)
|