File size: 40,238 Bytes
36bca9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
import gradio as gr
from transformers import AutoProcessor, Pix2StructForConditionalGeneration, T5Tokenizer, T5ForConditionalGeneration, Pix2StructProcessor
from PIL import Image
import torch
import warnings
import re
import json
import os
import numpy as np
import pandas as pd
from tqdm import tqdm
import argparse
from scipy import optimize
from typing import Optional
import dataclasses
import editdistance
import itertools
import sys
import time
import logging

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger()

warnings.filterwarnings('ignore')
MAX_PATCHES = 512
# Load the models and processor
#device = torch.device("cpu")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Paths to the models
ko_deplot_model_path = './model_epoch_1_210000.bin'
aihub_deplot_model_path='./deplot_k.pt'
t5_model_path = './ke_t5.pt'

# Load first model ko-deplot
processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
model1.load_state_dict(torch.load(ko_deplot_model_path, map_location=device))
model1.to(device)

# Load second model aihub-deplot
processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base")
model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base")
model2.load_state_dict(torch.load(aihub_deplot_model_path, map_location=device))


tokenizer = T5Tokenizer.from_pretrained("KETI-AIR/ke-t5-base")
t5_model = T5ForConditionalGeneration.from_pretrained("KETI-AIR/ke-t5-base")
t5_model.load_state_dict(torch.load(t5_model_path, map_location=device))

model2.to(device)
t5_model.to(device)


#ko-deplot ์ถ”๋ก ํ•จ์ˆ˜
# Function to format output
def format_output(prediction):
    return prediction.replace('<0x0A>', '\n')

# First model prediction ko-deplot
def predict_model1(image):
    images = [image]
    inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True)
    inputs = {k: v.to(device) for k, v in inputs.items()}  # Move to GPU

    model1.eval()
    with torch.no_grad():
        predictions = model1.generate(**inputs, max_new_tokens=4096)
    outputs = [processor1.decode(pred, skip_special_tokens=True) for pred in predictions]

    formatted_output = format_output(outputs[0])
    return formatted_output


def replace_unk(text):
    # 1. '์ œ๋ชฉ:', '์œ ํ˜•:' ๊ธ€์ž ์•ž์— ์žˆ๋Š” <unk>๋Š” \n๋กœ ๋ฐ”๊ฟˆ
    text = re.sub(r'<unk>(?=์ œ๋ชฉ:|์œ ํ˜•:)', '\n', text)
    # 2. '์„ธ๋กœ ' ๋˜๋Š” '๊ฐ€๋กœ '์™€ '๋Œ€ํ˜•' ์‚ฌ์ด์— ์žˆ๋Š” <unk>๋ฅผ ""๋กœ ๋ฐ”๊ฟˆ
    text = re.sub(r'(?<=์„ธ๋กœ |๊ฐ€๋กœ )<unk>(?=๋Œ€ํ˜•)', '', text)
    # 3. ์ˆซ์ž์™€ ํ…์ŠคํŠธ ์‚ฌ์ด์— ์žˆ๋Š” <unk>๋ฅผ \n๋กœ ๋ฐ”๊ฟˆ
    text = re.sub(r'(\d)<unk>([^\d])', r'\1\n\2', text)
    # 4. %, ์›, ๊ฑด, ๋ช… ๋’ค์— ๋‚˜์˜ค๋Š” <unk>๋ฅผ \n๋กœ ๋ฐ”๊ฟˆ
    text = re.sub(r'(?<=[%์›๊ฑด๋ช…\)])<unk>', '\n', text)
    # 5. ์ˆซ์ž์™€ ์ˆซ์ž ์‚ฌ์ด์— ์žˆ๋Š” <unk>๋ฅผ \n๋กœ ๋ฐ”๊ฟˆ
    text = re.sub(r'(\d)<unk>(\d)', r'\1\n\2', text)
    # 6. 'ํ˜•'์ด๋ผ๋Š” ๊ธ€์ž์™€ ' |' ์‚ฌ์ด์— ์žˆ๋Š” <unk>๋ฅผ \n๋กœ ๋ฐ”๊ฟˆ
    text = re.sub(r'ํ˜•<unk>(?= \|)', 'ํ˜•\n', text)
    # 7. ๋‚˜๋จธ์ง€ <unk>๋ฅผ ๋ชจ๋‘ ""๋กœ ๋ฐ”๊ฟˆ
    text = text.replace('<unk>', '')
    return text

# Second model prediction aihub_deplot
def predict_model2(image):
    image = image.convert("RGB")
    inputs = processor2(images=image, return_tensors="pt", max_patches=MAX_PATCHES).to(device)

    flattened_patches = inputs.flattened_patches.to(device)
    attention_mask = inputs.attention_mask.to(device)

    model2.eval()
    t5_model.eval()
    with torch.no_grad():
        deplot_generated_ids = model2.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=1000)
    generated_datatable = processor2.batch_decode(deplot_generated_ids, skip_special_tokens=False)[0]
    generated_datatable = generated_datatable.replace("<pad>", "<unk>").replace("</s>", "<unk>")
    refined_table = replace_unk(generated_datatable)
    return refined_table

#function for converting aihub dataset labeling json file to ko-deplot data table
def process_json_file(input_file):
    with open(input_file, 'r', encoding='utf-8') as file:
        data = json.load(file)

    # ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ์ถ”์ถœ
    chart_type = data['metadata']['chart_sub']
    title = data['annotations'][0]['title']
    x_axis = data['annotations'][0]['axis_label']['x_axis']
    y_axis = data['annotations'][0]['axis_label']['y_axis']
    legend = data['annotations'][0]['legend']
    data_labels = data['annotations'][0]['data_label']
    is_legend = data['annotations'][0]['is_legend']

    # ์›ํ•˜๋Š” ํ˜•์‹์œผ๋กœ ๋ณ€ํ™˜
    formatted_string = f"TITLE | {title} <0x0A> "
    if '๊ฐ€๋กœ' in chart_type:
        if is_legend:
            # ๊ฐ€๋กœ ์ฐจํŠธ ์ฒ˜๋ฆฌ
            formatted_string += " | ".join(legend) + " <0x0A> "
            for i in range(len(y_axis)):
                row = [y_axis[i]]
                for j in range(len(legend)):
                    if i < len(data_labels[j]):
                        row.append(str(data_labels[j][i]))  # ๋ฐ์ดํ„ฐ ๊ฐ’์„ ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜
                    else:
                        row.append("")  # ๋ฐ์ดํ„ฐ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ๋นˆ ๋ฌธ์ž์—ด ์ถ”๊ฐ€
                formatted_string += " | ".join(row) + " <0x0A> "
        else:
            # is_legend๊ฐ€ False์ธ ๊ฒฝ์šฐ
            for i in range(len(y_axis)):
                row = [y_axis[i], str(data_labels[0][i])]
                formatted_string += " | ".join(row) + " <0x0A> "
    elif chart_type == "์›ํ˜•":
        # ์›ํ˜• ์ฐจํŠธ ์ฒ˜๋ฆฌ
        if legend:
            used_labels = legend
        else:
            used_labels = x_axis

        formatted_string += " | ".join(used_labels) + " <0x0A> "
        row = [data_labels[0][i] for i in range(len(used_labels))]
        formatted_string += " | ".join(row) + " <0x0A> "
    elif chart_type == "ํ˜ผํ•ฉํ˜•":
        # ํ˜ผํ•ฉํ˜• ์ฐจํŠธ ์ฒ˜๋ฆฌ
        all_legends = [ann['legend'][0] for ann in data['annotations']]
        formatted_string += " | ".join(all_legends) + " <0x0A> "

        combined_data = []
        for i in range(len(x_axis)):
            row = [x_axis[i]]
            for ann in data['annotations']:
                if i < len(ann['data_label'][0]):
                    row.append(str(ann['data_label'][0][i]))  # ๋ฐ์ดํ„ฐ ๊ฐ’์„ ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜
                else:
                    row.append("")  # ๋ฐ์ดํ„ฐ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ๋นˆ ๋ฌธ์ž์—ด ์ถ”๊ฐ€
            combined_data.append(" | ".join(row))

        formatted_string += " <0x0A> ".join(combined_data) + " <0x0A> "
    else:
        # ๊ธฐํƒ€ ์ฐจํŠธ ์ฒ˜๋ฆฌ
        if is_legend:
            formatted_string += " | ".join(legend) + " <0x0A> "
            for i in range(len(x_axis)):
                row = [x_axis[i]]
                for j in range(len(legend)):
                    if i < len(data_labels[j]):
                        row.append(str(data_labels[j][i]))  # ๋ฐ์ดํ„ฐ ๊ฐ’์„ ๋ฌธ์ž์—ด๋กœ ๋ณ€ํ™˜
                    else:
                        row.append("")  # ๋ฐ์ดํ„ฐ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ๋นˆ ๋ฌธ์ž์—ด ์ถ”๊ฐ€
                formatted_string += " | ".join(row) + " <0x0A> "
        else:
            for i in range(len(x_axis)):
                if i < len(data_labels[0]):
                    formatted_string += f"{x_axis[i]} | {str(data_labels[0][i])} <0x0A> "
                else:
                    formatted_string += f"{x_axis[i]} |  <0x0A> "  # ๋ฐ์ดํ„ฐ๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ๋นˆ ๋ฌธ์ž์—ด ์ถ”๊ฐ€

    # ๋งˆ์ง€๋ง‰ "<0x0A> " ์ œ๊ฑฐ
    formatted_string = formatted_string[:-8]
    return format_output(formatted_string)

def chart_data(data):
    datatable = []
    num = len(data)
    for n in range(num):
        title = data[n]['title'] if data[n]['is_title'] else ''
        legend = data[n]['legend'] if data[n]['is_legend'] else ''
        datalabel = data[n]['data_label'] if data[n]['is_datalabel'] else [0]
        unit = data[n]['unit'] if data[n]['is_unit'] else ''
        base = data[n]['base'] if data[n]['is_base'] else ''
        x_axis_title = data[n]['axis_title']['x_axis']
        y_axis_title = data[n]['axis_title']['y_axis']
        x_axis = data[n]['axis_label']['x_axis'] if data[n]['is_axis_label_x_axis'] else [0]
        y_axis = data[n]['axis_label']['y_axis'] if data[n]['is_axis_label_y_axis'] else [0]

        if len(legend) > 1:
            datalabel = np.array(datalabel).transpose().tolist()

        datatable.append([title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis])

    return datatable

def datatable(data, chart_type):
    data_table = ''
    num = len(data)

    if len(data)  == 2:
        temp = []
        temp.append(f"๋Œ€์ƒ: {data[0][4]}")
        temp.append(f"์ œ๋ชฉ: {data[0][0]}")
        temp.append(f"์œ ํ˜•: {' '.join(chart_type[0:2])}")
        temp.append(f"{data[0][5]} | {data[0][1][0]}({data[0][3]}) | {data[1][1][0]}({data[1][3]})")

        x_axis = data[0][7]
        for idx, x in enumerate(x_axis):
            temp.append(f"{x} | {data[0][2][0][idx]} | {data[1][2][0][idx]}")

        data_table = '\n'.join(temp)
    else:
        for n in range(num):
            temp = []

            title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis = data[n]
            legend = [element + f"({unit})" for element in legend]

            if len(legend) > 1:
                temp.append(f"๋Œ€์ƒ: {base}")
                temp.append(f"์ œ๋ชฉ: {title}")
                temp.append(f"์œ ํ˜•: {' '.join(chart_type[0:2])}")
                temp.append(f"{x_axis_title} | {' | '.join(legend)}")

                if chart_type[2] == "์›ํ˜•":
                    datalabel = sum(datalabel, [])
                    temp.append(f"{' | '.join([str(d) for d in datalabel])}")
                    data_table = '\n'.join(temp)
                else:
                    axis = y_axis if chart_type[2] == "๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•" else x_axis
                    for idx, (x, d) in enumerate(zip(axis, datalabel)):
                        temp_d = [str(e) for e in d]
                        temp_d = " | ".join(temp_d)
                        row = f"{x} | {temp_d}"
                        temp.append(row)
                    data_table = '\n'.join(temp)
            else:
                temp.append(f"๋Œ€์ƒ: {base}")
                temp.append(f"์ œ๋ชฉ: {title}")
                temp.append(f"์œ ํ˜•: {' '.join(chart_type[0:2])}")
                temp.append(f"{x_axis_title} | {unit}")
                axis = y_axis if chart_type[2] == "๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•" else x_axis
                datalabel = datalabel[0]

                for idx, x in enumerate(axis):
                    row = f"{x} | {str(datalabel[idx])}"
                    temp.append(row)
                data_table = '\n'.join(temp)

    return data_table

#function for converting aihub dataset labeling json file to aihub-deplot data table
def process_json_file2(input_file):
    with open(input_file, 'r', encoding='utf-8') as file:
        data = json.load(file)
    # ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ ์ถ”์ถœ
    chart_multi = data['metadata']['chart_multi']
    chart_main = data['metadata']['chart_main']
    chart_sub = data['metadata']['chart_sub']
    chart_type = [chart_multi, chart_sub, chart_main]
    chart_annotations = data['annotations']

    charData = chart_data(chart_annotations)
    dataTable = datatable(charData, chart_type)
    return dataTable

# RMS
def _to_float(text):  # ๋‹จ์œ„ ๋–ผ๊ณ  ์ˆซ์ž๋งŒ..?
  try:
    if text.endswith("%"):
      # Convert percentages to floats.
      return float(text.rstrip("%")) / 100.0
    else:
      return float(text)
  except ValueError:
    return None


def _get_relative_distance(
    target, prediction, theta = 1.0
):
  """Returns min(1, |target-prediction|/|target|)."""
  if not target:
    return int(not prediction)
  distance = min(abs((target - prediction) / target), 1)
  return distance if distance < theta else 1

def anls_metric(target: str, prediction: str, theta: float = 0.5):
    edit_distance = editdistance.eval(target, prediction)
    normalize_ld = edit_distance / max(len(target), len(prediction))
    return 1 - normalize_ld if normalize_ld < theta else 0

def _permute(values, indexes):
    return tuple(values[i] if i < len(values) else "" for i in indexes)


@dataclasses.dataclass(frozen=True)
class Table:
  """Helper class for the content of a markdown table."""

  base: Optional[str] = None
  title: Optional[str] = None
  chartType: Optional[str] = None
  headers: tuple[str, Ellipsis] = dataclasses.field(default_factory=tuple)
  rows: tuple[tuple[str, Ellipsis], Ellipsis] = dataclasses.field(default_factory=tuple)

  def permuted(self, indexes):
    """Builds a version of the table changing the column order."""
    return Table(
        base=self.base,
        title=self.title,
        chartType=self.chartType,
        headers=_permute(self.headers, indexes),
        rows=tuple(_permute(row, indexes) for row in self.rows),
    )

  def aligned(
      self, headers, text_theta = 0.5
  ):
    """Builds a column permutation with headers in the most correct order."""
    if len(headers) != len(self.headers):
      raise ValueError(f"Header length {headers} must match {self.headers}.")
    distance = []
    for h2 in self.headers:
      distance.append(
          [
              1 - anls_metric(h1, h2, text_theta)
              for h1 in headers
          ]
      )
    cost_matrix = np.array(distance)
    row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
    permutation = [idx for _, idx in sorted(zip(col_ind, row_ind))]
    score = (1 - cost_matrix)[permutation[1:], range(1, len(row_ind))].prod()
    return self.permuted(permutation), score

def _parse_table(text, transposed = False): # ํ‘œ ์ œ๋ชฉ, ์—ด ์ด๋ฆ„, ํ–‰ ์ฐพ๊ธฐ
  """Builds a table from a markdown representation."""
  lines = text.lower().splitlines()
  if not lines:
    return Table()

  if lines[0].startswith("๋Œ€์ƒ: "):
      base = lines[0][len("๋Œ€์ƒ: ") :].strip()
      offset = 1 #
  else:
    base = None
    offset = 0
  if lines[1].startswith("์ œ๋ชฉ: "):
    title = lines[1][len("์ œ๋ชฉ: ") :].strip()
    offset = 2 #
  else:
    title = None
    offset = 1
  if lines[2].startswith("์œ ํ˜•: "):
    chartType = lines[2][len("์œ ํ˜•: ") :].strip()
    offset = 3 #
  else:
    chartType = None

  if len(lines) < offset + 1:
    return Table(base=base, title=title, chartType=chartType)

  rows = []
  for line in lines[offset:]:
    rows.append(tuple(v.strip() for v in line.split(" | ")))
  if transposed:
    rows = [tuple(row) for row in itertools.zip_longest(*rows, fillvalue="")]
  return Table(base=base, title=title, chartType=chartType, headers=rows[0], rows=tuple(rows[1:]))

def _get_table_datapoints(table):
    datapoints = {}
    if table.base is not None:
        datapoints["๋Œ€์ƒ"] = table.base
    if table.title is not None:
      datapoints["์ œ๋ชฉ"] = table.title
    if table.chartType is not None:
      datapoints["์œ ํ˜•"] = table.chartType
    if not table.rows or len(table.headers) <= 1:
        return datapoints
    for row in table.rows:
        for header, cell in zip(table.headers[1:], row[1:]):
            #print(f"{row[0]} {header} >> {cell}")
            datapoints[f"{row[0]} {header}"] = cell #
    return datapoints

def _get_datapoint_metric(  #
    target,
    prediction,
    text_theta=0.5,
    number_theta=0.1,
):
  """Computes a metric that scores how similar two datapoint pairs are."""
  key_metric = anls_metric(
      target[0], prediction[0], text_theta
  )
  pred_float = _to_float(prediction[1]) # ์ˆซ์ž์ธ์ง€ ํ™•์ธ
  target_float = _to_float(target[1])
  if pred_float is not None and target_float:
    return key_metric * (
        1 - _get_relative_distance(target_float, pred_float, number_theta)  # ์ˆซ์ž๋ฉด ์ƒ๋Œ€์  ๊ฑฐ๋ฆฌ๊ฐ’ ๊ณ„์‚ฐ
    )
  elif target[1] == prediction[1]:
    return key_metric
  else:
    return key_metric * anls_metric(
        target[1], prediction[1], text_theta
    )

def _table_datapoints_precision_recall_f1(  # ์ฐ ๊ณ„์‚ฐ
    target_table,
    prediction_table,
    text_theta = 0.5,
    number_theta = 0.1,
):
  """Calculates matching similarity between two tables as dicts."""
  target_datapoints = list(_get_table_datapoints(target_table).items())
  prediction_datapoints = list(_get_table_datapoints(prediction_table).items())
  if not target_datapoints and not prediction_datapoints:
    return 1, 1, 1
  if not target_datapoints:
    return 0, 1, 0
  if not prediction_datapoints:
    return 1, 0, 0
  distance = []
  for t, _ in target_datapoints:
    distance.append(
        [
            1 - anls_metric(t, p, text_theta)
            for p, _ in prediction_datapoints
        ]
    )
  cost_matrix = np.array(distance)
  row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
  score = 0
  for r, c in zip(row_ind, col_ind):
    score += _get_datapoint_metric(
        target_datapoints[r], prediction_datapoints[c], text_theta, number_theta
    )
  if score == 0:
    return 0, 0, 0
  precision = score / len(prediction_datapoints)
  recall = score / len(target_datapoints)
  return precision, recall, 2 * precision * recall / (precision + recall)

def table_datapoints_precision_recall_per_point(  # ๊ฐ๊ฐ ๊ณ„์‚ฐ...
    targets,
    predictions,
    text_theta = 0.5,
    number_theta = 0.1,
):
  """Computes precisin recall and F1 metrics given two flattened tables.

  Parses each string into a dictionary of keys and values using row and column
  headers. Then we match keys between the two dicts as long as their relative
  levenshtein distance is below a threshold. Values are also compared with
  ANLS if strings or relative distance if they are numeric.

  Args:
    targets: list of list of strings.
    predictions: list of strings.
    text_theta: relative edit distance above this is set to the maximum of 1.
    number_theta: relative error rate above this is set to the maximum of 1.

  Returns:
    Dictionary with per-point precision, recall and F1
  """
  assert len(targets) == len(predictions)
  per_point_scores = {"precision": [], "recall": [], "f1": []}
  for pred, target in zip(predictions, targets):
    all_metrics = []
    for transposed in [True, False]:
      pred_table = _parse_table(pred, transposed=transposed)
      target_table = _parse_table(target, transposed=transposed)

      all_metrics.extend([_table_datapoints_precision_recall_f1(target_table, pred_table, text_theta, number_theta)])

    p, r, f = max(all_metrics, key=lambda x: x[-1])
    per_point_scores["precision"].append(p)
    per_point_scores["recall"].append(r)
    per_point_scores["f1"].append(f)
  return per_point_scores

def table_datapoints_precision_recall(  # deplot ์„ฑ๋Šฅ์ง€ํ‘œ
    targets,
    predictions,
    text_theta = 0.5,
    number_theta = 0.1,
):
  """Aggregated version of table_datapoints_precision_recall_per_point().

  Same as table_datapoints_precision_recall_per_point() but returning aggregated
  scores instead of per-point scores.

  Args:
    targets: list of list of strings.
    predictions: list of strings.
    text_theta: relative edit distance above this is set to the maximum of 1.
    number_theta: relative error rate above this is set to the maximum of 1.

  Returns:
    Dictionary with aggregated precision, recall and F1
  """
  score_dict = table_datapoints_precision_recall_per_point(
      targets, predictions, text_theta, number_theta
  )
  return {
      "table_datapoints_precision": (
          sum(score_dict["precision"]) / len(targets)
      ),
      "table_datapoints_recall": (
          sum(score_dict["recall"]) / len(targets)
      ),
      "table_datapoints_f1": sum(score_dict["f1"]) / len(targets),
  }

def evaluate_rms(generated_table,label_table):
  predictions=[generated_table]
  targets=[label_table]
  RMS = table_datapoints_precision_recall(targets, predictions)
  return RMS

def is_float(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

def ko_deplot_convert_to_dataframe(table_str):
    lines = table_str.strip().split("\n")
    title=lines[0].split(" | ")[1]
    if(len(lines[1].split(" | "))==len(lines[2].split(" | "))):
        headers=["0","1"]
        if(is_float(lines[1].split(" | ")[1]) or lines[1].split(" | ")[0]==""):
            data=[line.split(" | ") for line in lines[1:]]
            df=pd.DataFrame(data,columns=headers)
            return df
        else:
            category=lines[1].split(" | ")
            value=lines[2].split(" | ")
            df=pd.DataFrame({"๋ฒ”๋ก€":category,"๊ฐ’":value})
            return df
    else:
        headers=[]
        data=[]
        for i in range(len(lines[2].split(" | "))):
            headers.append(f"{i}")
        line1=lines[1].split(" | ")
        line1.insert(0," ")
        data.append(line1)
        for line in lines[2:]:
            data.append(line.split(" | "))
        df = pd.DataFrame(data, columns=headers)
        return df

def aihub_deplot_convert_to_dataframe(table_str):
    lines = table_str.strip().split("\n")
    headers = []
    if(len(lines[3].split(" | "))>len(lines[4].split(" | "))):
        category=lines[3].split(" | ")
        del category[0]
        value=lines[4].split(" | ")
        df=pd.DataFrame({"๋ฒ”๋ก€":category,"๊ฐ’":value})
        return df
    else:
        for i in range(len(lines[3].split(" | "))):
            headers.append(f"{i}")
        data = [line.split(" | ") for line in lines[3:]]
        df = pd.DataFrame(data, columns=headers)
        return df

class Highlighter:
    def __init__(self):
        self.row = 0
        self.col = 0

    def compare_and_highlight(self, pred_table_elem, target_table, pred_table_row, props=''):
        if self.row >= pred_table_row:
            self.col += 1
            self.row = 0
        if pred_table_elem != target_table.iloc[self.row, self.col]:
            self.row += 1
            return props
        else:
            self.row += 1
            return None    

# 1. ๋ฐ์ดํ„ฐ ๋กœ๋“œ
aihub_deplot_result_df = pd.read_csv('./aihub_deplot_result.csv')
ko_deplot_result= './ko_deplot_result.json'

# 2. ์ฒดํฌํ•ด์•ผ ํ•˜๋Š” ์ด๋ฏธ์ง€ ํŒŒ์ผ ๋กœ๋“œ
def load_image_checklist(file):
    with open(file, 'r') as f:
        #image_names = [f'"{line.strip()}"' for line in f]
        image_names = f.read().splitlines()
    return image_names

# 3. ํ˜„์žฌ ์ธ๋ฑ์Šค๋ฅผ ์ถ”์ ํ•˜๊ธฐ ์œ„ํ•œ ๋ณ€์ˆ˜
current_index = 0
image_names = []
def show_image(current_idx):
    image_name=image_names[current_idx]
    image_path = f"./images/{image_name}.jpg"
    if not os.path.exists(image_path):
        raise FileNotFoundError(f"Image file not found: {image_path}")
    return Image.open(image_path)

# 4. ๋ฒ„ํŠผ ํด๋ฆญ ์ด๋ฒคํŠธ ํ•ธ๋“ค๋Ÿฌ
def non_real_time_check(file):
    highlighter1 = Highlighter()
    highlighter2 = Highlighter()
    #global image_names, current_index
    #image_names = load_image_checklist(file)
    #current_index = 0
    #image=show_image(current_index)
    file_name =image_names[current_index].replace("Source","Label")

    json_path="./ko_deplot_labeling_data.json"
    with open(json_path, 'r', encoding='utf-8') as file:
        json_data = json.load(file)
    for key, value in json_data.items():
        if key == file_name:
            ko_deplot_labeling_str=value.get("txt").replace("<0x0A>","\n")
            ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].replace("TITLE | ","์ œ๋ชฉ:")
            break

    ko_deplot_rms_path="./ko_deplot_rms.txt"

    with open(ko_deplot_rms_path,'r',encoding='utf-8') as file:
        lines=file.readlines()
    flag=0
    for line in lines:
        parts=line.strip().split(", ")
        if(len(parts)==2 and parts[0]==image_names[current_index]):
            ko_deplot_rms=parts[1]
            flag=1
            break
    if(flag==0):
        ko_deplot_rms="none"
    ko_deplot_generated_title,ko_deplot_generated_table=ko_deplot_display_results(current_index)
    aihub_deplot_generated_table,aihub_deplot_label_table,aihub_deplot_generated_title,aihub_deplot_label_title=aihub_deplot_display_results(current_index)
    #ko_deplot_RMS=evaluate_rms(ko_deplot_generated_table,ko_deplot_labeling_str)
    aihub_deplot_RMS=evaluate_rms(aihub_deplot_generated_table,aihub_deplot_label_table)

    
    if flag == 1:
        value = [round(float(ko_deplot_rms), 1)]
    else:
        value = [0]

    ko_deplot_score_table = pd.DataFrame({
    'category': ['f1'],
    'value': value
    })

    aihub_deplot_score_table=pd.DataFrame({
        'category': ['precision', 'recall', 'f1'],
        'value': [
            round(aihub_deplot_RMS['table_datapoints_precision'],1),
            round(aihub_deplot_RMS['table_datapoints_recall'],1),
            round(aihub_deplot_RMS['table_datapoints_f1'],1)
        ]
    })
    ko_deplot_generated_df=ko_deplot_convert_to_dataframe(ko_deplot_generated_table)
    aihub_deplot_generated_df=aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table)
    ko_deplot_labeling_df=ko_deplot_convert_to_dataframe(ko_deplot_labeling_str)
    aihub_deplot_labeling_df=aihub_deplot_convert_to_dataframe(aihub_deplot_label_table)

    ko_deplot_generated_df_row=ko_deplot_generated_df.shape[0]
    aihub_deplot_generated_df_row=aihub_deplot_generated_df.shape[0]


    styled_ko_deplot_table=ko_deplot_generated_df.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_labeling_df,pred_table_row=ko_deplot_generated_df_row,props='color:red')
    

    styled_aihub_deplot_table=aihub_deplot_generated_df.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_labeling_df,pred_table_row=aihub_deplot_generated_df_row,props='color:red')

    #return ko_deplot_convert_to_dataframe(ko_deplot_generated_table), aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table), aihub_deplot_convert_to_dataframe(label_table), ko_deplot_score_table, aihub_deplot_score_table
    return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(ko deplot ์ถ”๋ก  ๊ฒฐ๊ณผ)"),gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot ์ถ”๋ก  ๊ฒฐ๊ณผ)"),gr.DataFrame(ko_deplot_labeling_df,label=ko_deplot_label_title+"(ko deplot ์ •๋‹ต ํ…Œ์ด๋ธ”)"), gr.DataFrame(aihub_deplot_labeling_df,label=aihub_deplot_label_title+"(aihub deplot ์ •๋‹ต ํ…Œ์ด๋ธ”)"),ko_deplot_score_table, aihub_deplot_score_table

def ko_deplot_display_results(index):
      filename=image_names[index]+".jpg"
      with open(ko_deplot_result, 'r', encoding='utf-8') as f:
        data = json.load(f)
      for entry in data:
        if entry['filename'].endswith(filename):
            #return entry['table']
            parts=entry['table'].split(" \n ",1)
            return parts[0].replace("TITLE | ","์ œ๋ชฉ:"),entry['table']

def aihub_deplot_display_results(index):
    if index < 0 or index >= len(image_names):
        return "Index out of range", None, None
    image_name = image_names[index]
    image_row = aihub_deplot_result_df[aihub_deplot_result_df['data_id'] == image_name]
    if not image_row.empty:
        generated_table = image_row['generated_table'].values[0]
        generated_title=generated_table.split("\n")[1]
        label_table = image_row['label_table'].values[0]
        label_title=label_table.split("\n")[1]
        return generated_table, label_table, generated_title, label_title
    else:
        return "No results found for the image", None, None

def previous_image():
    global current_index
    if current_index>0:
        current_index-=1
    image=show_image(current_index)
    return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)
    
def next_image():
    global current_index
    if current_index<len(image_names)-1:
        current_index+=1
    image=show_image(current_index)
    return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)

def real_time_check(image_file):
    highlighter1 = Highlighter()
    highlighter2 = Highlighter()
    image = Image.open(image_file)
    result_model1 = predict_model1(image)
    ko_deplot_generated_title=result_model1.split("\n")[0].split(" | ")[1]
    ko_deplot_table=ko_deplot_convert_to_dataframe(result_model1)

    result_model2 = predict_model2(image)
    aihub_deplot_generated_title=result_model2.split("\n")[1].split(":")[1]
    aihub_deplot_table=aihub_deplot_convert_to_dataframe(result_model2)
    image_base_name = os.path.basename(image_file.name).replace("Source","Label")
    file_name, _ = os.path.splitext(image_base_name)
    aihub_labeling_data_json="./labeling_data/"+file_name+".json"
    #aihub_labeling_data_json="./labeling_data/line_graph.json"
    ko_deplot_labeling_str=process_json_file(aihub_labeling_data_json)
    ko_deplot_label_title=ko_deplot_labeling_str.split("\n")[0].split(" | ")[1]
    ko_deplot_label_table=ko_deplot_convert_to_dataframe(ko_deplot_labeling_str)

    aihub_deplot_labeling_str=process_json_file2(aihub_labeling_data_json)
    aihub_deplot_label_title=aihub_deplot_labeling_str.split("\n")[1].split(":")[1]
    aihub_deplot_label_table=aihub_deplot_convert_to_dataframe(aihub_deplot_labeling_str)

    ko_deplot_RMS=evaluate_rms(result_model1,ko_deplot_labeling_str)
    aihub_deplot_RMS=evaluate_rms(result_model2,aihub_deplot_labeling_str)

    ko_deplot_score_table=pd.DataFrame({
    'category': ['precision', 'recall', 'f1'],
    'value': [
        round(ko_deplot_RMS['table_datapoints_precision'],1),
        round(ko_deplot_RMS['table_datapoints_recall'],1),
        round(ko_deplot_RMS['table_datapoints_f1'],1)
    ]
})
    aihub_deplot_score_table=pd.DataFrame({
        'category': ['precision', 'recall', 'f1'],
        'value': [
            round(aihub_deplot_RMS['table_datapoints_precision'],1),
            round(aihub_deplot_RMS['table_datapoints_recall'],1),
            round(aihub_deplot_RMS['table_datapoints_f1'],1)
        ]
        })

    ko_deplot_generated_df_row=ko_deplot_table.shape[0]
    aihub_deplot_generated_df_row=aihub_deplot_table.shape[0]
    styled_ko_deplot_table=ko_deplot_table.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_label_table,pred_table_row=ko_deplot_generated_df_row,props='color:red')
    styled_aihub_deplot_table=aihub_deplot_table.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_label_table,pred_table_row=aihub_deplot_generated_df_row,props='color:red')

    return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(kodeplot ์ถ”๋ก ๊ฒฐ๊ณผ)") , gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot ์ถ”๋ก  ๊ฒฐ๊ณผ)"),gr.DataFrame(ko_deplot_label_table,label=ko_deplot_label_title+"(kodeplot ์ •๋‹ต ํ…Œ์ด๋ธ”)"),gr.DataFrame(aihub_deplot_label_table,label=aihub_deplot_label_title+"(aihub deplot ์ •๋‹ต ํ…Œ์ด๋ธ”)"),ko_deplot_score_table, aihub_deplot_score_table
    #return ko_deplot_table,aihub_deplot_table,aihub_deplot_label_table,ko_deplot_score_table,aihub_deplot_score_table
def inference(mode,image_uploader,file_uploader):
    if(mode=="์ด๋ฏธ์ง€ ์—…๋กœ๋“œ"):
        ko_deplot_table, aihub_deplot_table, ko_deplot_label_table,aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table = real_time_check(image_uploader)
        return ko_deplot_table, aihub_deplot_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table
    else:
        styled_ko_deplot_table, styled_aihub_deplot_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table =non_real_time_check(file_uploader)
        return styled_ko_deplot_table, styled_aihub_deplot_table, ko_deplot_label_table,aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table

def interface_selector(selector):
    if selector == "์ด๋ฏธ์ง€ ์—…๋กœ๋“œ":
        return gr.update(visible=True),gr.update(visible=False),gr.State("image_upload"),gr.update(visible=False),gr.update(visible=False)
    elif selector == "ํŒŒ์ผ ์—…๋กœ๋“œ":
        return gr.update(visible=False),gr.update(visible=True),gr.State("file_upload"), gr.update(visible=True),gr.update(visible=True)

def file_selector(selector):
    if selector == "low score ์ฐจํŠธ":
        return gr.File("./bottom_20_percent_images.txt")
    elif selector == "high score ์ฐจํŠธ":
        return gr.File("./top_20_percent_images.txt")

def update_results(model_type):
    if "ko_deplot" == model_type:
        return gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=False)
    elif "aihub_deplot" == model_type:
        return gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=True)
    else:
        return gr.update(visible=True), gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True)

def display_image(image_file):
    image=Image.open(image_file)
    return image, os.path.basename(image_file)

def display_image_in_file(image_checklist):
    global image_names, current_index
    image_names = load_image_checklist(image_checklist)
    image=show_image(current_index)
    return image,image_names[current_index]

def update_file_based_on_chart_type(chart_type, all_file_path):
    with open(all_file_path, 'r', encoding='utf-8') as file:
        lines = file.readlines()
    filtered_lines=[] 
    if chart_type == "์ „์ฒด":
        filtered_lines = lines
    elif chart_type == "์ผ๋ฐ˜ ๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•":
        filtered_lines = [line for line in lines if "_horizontal bar_standard" in line]
    elif chart_type=="๋ˆ„์  ๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•":
        filtered_lines = [line for line in lines if "_horizontal bar_accumulation" in line]     
    elif chart_type=="100% ๊ธฐ์ค€ ๋ˆ„์  ๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•":
        filtered_lines = [line for line in lines if "_horizontal bar_100per accumulation" in line] 
    elif chart_type=="์ผ๋ฐ˜ ์„ธ๋กœ ๋ง‰๋Œ€ํ˜•":
        filtered_lines = [line for line in lines if "_vertical bar_standard" in line]
    elif chart_type=="๋ˆ„์  ์„ธ๋กœ ๋ง‰๋Œ€ํ˜•":
        filtered_lines = [line for line in lines if "_vertical bar_accumulation" in line]     
    elif chart_type=="100% ๊ธฐ์ค€ ๋ˆ„์  ์„ธ๋กœ ๋ง‰๋Œ€ํ˜•":
        filtered_lines = [line for line in lines if "_vertical bar_100per accumulation" in line]
    elif chart_type=="์„ ํ˜•":
        filtered_lines = [line for line in lines if "_line_standard" in line]
    elif chart_type=="์›ํ˜•":
        filtered_lines = [line for line in lines if "_pie_standard" in line]
    elif chart_type=="๊ธฐํƒ€ ๋ฐฉ์‚ฌํ˜•":
        filtered_lines = [line for line in lines if "_etc_radial" in line]     
    elif chart_type=="๊ธฐํƒ€ ํ˜ผํ•ฉํ˜•":
        filtered_lines = [line for line in lines if "_etc_mix" in line]
    # ์ƒˆ๋กœ์šด ํŒŒ์ผ์— ๊ธฐ๋ก
    new_file_path = "./filtered_chart_images.txt"
    with open(new_file_path, 'w', encoding='utf-8') as file:
        file.writelines(filtered_lines)

    return new_file_path

def handle_chart_type_change(chart_type,all_file_path):
    new_file_path = update_file_based_on_chart_type(chart_type, all_file_path)
    global image_names, current_index
    image_names = load_image_checklist(new_file_path)
    current_index=0
    image=show_image(current_index)
    return image,image_names[current_index]

with gr.Blocks() as iface:
    mode=gr.State("image_upload")
    with gr.Row():
        with gr.Column():
            #mode_label=gr.Text("์ด๋ฏธ์ง€ ์—…๋กœ๋“œ๊ฐ€ ์„ ํƒ๋˜์—ˆ์Šต๋‹ˆ๋‹ค.")
            upload_option = gr.Radio(choices=["์ด๋ฏธ์ง€ ์—…๋กœ๋“œ", "ํŒŒ์ผ ์—…๋กœ๋“œ"], value="์ด๋ฏธ์ง€ ์—…๋กœ๋“œ", label="์—…๋กœ๋“œ ์˜ต์…˜")
            #with gr.Row():
                #image_button = gr.Button("์ด๋ฏธ์ง€ ์—…๋กœ๋“œ")
                #file_button = gr.Button("ํŒŒ์ผ ์—…๋กœ๋“œ")

            # ์ด๋ฏธ์ง€์™€ ํŒŒ์ผ ์—…๋กœ๋“œ ์ปดํฌ๋„ŒํŠธ (์ดˆ๊ธฐ์—๋Š” ์ˆจ๊น€ ์ƒํƒœ)
            # global image_uploader,file_uploader
            image_uploader= gr.File(file_count="single",file_types=["image"],visible=True)
            file_uploader= gr.File(file_count="single", file_types=[".txt"], visible=False)
            file_upload_option=gr.Radio(choices=["low score ์ฐจํŠธ","high score ์ฐจํŠธ"],label="ํŒŒ์ผ ์—…๋กœ๋“œ ์˜ต์…˜",visible=False)
            chart_type = gr.Dropdown(["์ผ๋ฐ˜ ๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•","๋ˆ„์  ๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•","100% ๊ธฐ์ค€ ๋ˆ„์  ๊ฐ€๋กœ ๋ง‰๋Œ€ํ˜•", "์ผ๋ฐ˜ ์„ธ๋กœ ๋ง‰๋Œ€ํ˜•","๋ˆ„์  ์„ธ๋กœ ๋ง‰๋Œ€ํ˜•","100% ๊ธฐ์ค€ ๋ˆ„์  ์„ธ๋กœ ๋ง‰๋Œ€ํ˜•","์„ ํ˜•", "์›ํ˜•", "๊ธฐํƒ€ ๋ฐฉ์‚ฌํ˜•", "๊ธฐํƒ€ ํ˜ผํ•ฉํ˜•", "์ „์ฒด"], label="Chart Type", value="all")
            model_type=gr.Dropdown(["ko_deplot","aihub_deplot","all"],label="model")
            image_displayer=gr.Image(visible=True)
            with gr.Row():
                pre_button=gr.Button("์ด์ „",interactive="False")
                next_button=gr.Button("๋‹ค์Œ")
            image_name=gr.Text("์ด๋ฏธ์ง€ ์ด๋ฆ„",visible=False)
            #image_button.click(interface_selector, inputs=gr.State("์ด๋ฏธ์ง€ ์—…๋กœ๋“œ"), outputs=[image_uploader,file_uploader,mode,mode_label,image_name])
            #file_button.click(interface_selector, inputs=gr.State("ํŒŒ์ผ ์—…๋กœ๋“œ"), outputs=[image_uploader, file_uploader,mode,mode_label,image_name])
            inference_button=gr.Button("์ถ”๋ก ")
        with gr.Column():
            ko_deplot_generated_table=gr.DataFrame(visible=False,label="ko-deplot ์ถ”๋ก  ๊ฒฐ๊ณผ")
            aihub_deplot_generated_table=gr.DataFrame(visible=False,label="aihub-deplot ์ถ”๋ก  ๊ฒฐ๊ณผ")
        with gr.Column():
            ko_deplot_label_table=gr.DataFrame(visible=False,label="ko-deplot ์ •๋‹ตํ…Œ์ด๋ธ”")
            aihub_deplot_label_table=gr.DataFrame(visible=False,label="aihub-deplot ์ •๋‹ตํ…Œ์ด๋ธ”")
        with gr.Column():
            ko_deplot_score_table=gr.DataFrame(visible=False,label="ko_deplot ์ ์ˆ˜")
            aihub_deplot_score_table=gr.DataFrame(visible=False,label="aihub_deplot ์ ์ˆ˜")
    model_type.change(
                        update_results,
                        inputs=[model_type],
                        outputs=[ko_deplot_generated_table,ko_deplot_score_table,aihub_deplot_generated_table,aihub_deplot_score_table,ko_deplot_label_table,aihub_deplot_label_table]
                        )  
    
    upload_option.change(
        interface_selector,
        inputs=[upload_option],
        outputs=[image_uploader, file_uploader, mode, image_name,file_upload_option]
    )

    file_upload_option.change(
        file_selector,
        inputs=[file_upload_option],
        outputs=[file_uploader]
    )

    chart_type.change(handle_chart_type_change, inputs=[chart_type,file_uploader],outputs=[image_displayer,image_name])
    image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name])
    file_uploader.change(display_image_in_file,inputs=[file_uploader],outputs=[image_displayer,image_name])
    pre_button.click(previous_image, outputs=[image_displayer,image_name,pre_button,next_button])
    next_button.click(next_image, outputs=[image_displayer,image_name,pre_button,next_button])
    inference_button.click(inference,inputs=[upload_option,image_uploader,file_uploader],outputs=[ko_deplot_generated_table, aihub_deplot_generated_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table])


if __name__ == "__main__":
    print("Launching Gradio interface...")
    sys.stdout.flush()  # stdout ๋ฒ„ํผ๋ฅผ ๋น„์›๋‹ˆ๋‹ค.
    iface.launch(share=True)
    time.sleep(2)  # Gradio URL์ด ์ถœ๋ ฅ๋  ๋•Œ๊นŒ์ง€ ์ž ์‹œ ๊ธฐ๋‹ค๋ฆฝ๋‹ˆ๋‹ค.
    sys.stdout.flush()  # ๋‹ค์‹œ stdout ๋ฒ„ํผ๋ฅผ ๋น„์›๋‹ˆ๋‹ค.
        # Gradio๊ฐ€ ์ œ๊ณตํ•˜๋Š” URLs์„ ํŒŒ์ผ์— ๊ธฐ๋กํ•ฉ๋‹ˆ๋‹ค.
    with open("gradio_url.log", "w") as f:
        print(iface.local_url, file=f)
        print(iface.share_url, file=f)