Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,48 +1,48 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from PIL import Image
|
| 3 |
-
import pytesseract
|
| 4 |
-
import re
|
| 5 |
-
|
| 6 |
-
def highlight_text(text, keyword):
|
| 7 |
-
escaped_key = re.escape(keyword)
|
| 8 |
-
highlighted_text = re.sub(f'({escaped_key})', r'<mark>\1</mark>', text, flags = re.IGNORECASE)
|
| 9 |
-
return highlighted_text
|
| 10 |
-
|
| 11 |
-
st.title('OCR Document Search Web App')
|
| 12 |
-
st.divider()
|
| 13 |
-
|
| 14 |
-
'''
|
| 15 |
-
def got_ocr(image_path):
|
| 16 |
-
from transformers import AutoModel, AutoTokenizer
|
| 17 |
-
tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
|
| 18 |
-
model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
| 19 |
-
model=model.eval().cuda()
|
| 20 |
-
image = Image.open(image_path)
|
| 21 |
-
res = model.chat(tokenizer, image, ocr_type='ocr')
|
| 22 |
-
return res
|
| 23 |
-
'''
|
| 24 |
-
|
| 25 |
-
uploaded_img = st.file_uploader('Upload an image', type=['jpg', 'jpeg', 'png'])
|
| 26 |
-
|
| 27 |
-
if uploaded_img is not None:
|
| 28 |
-
image = Image.open(uploaded_img)
|
| 29 |
-
|
| 30 |
-
st.image(image, caption='Uploaded image', use_column_width=True)
|
| 31 |
-
|
| 32 |
-
extracted_text = pytesseract.image_to_string(image, lang='eng+hin')
|
| 33 |
-
|
| 34 |
-
st.subheader('Extracted text')
|
| 35 |
-
st.divider()
|
| 36 |
-
|
| 37 |
-
st.text(extracted_text)
|
| 38 |
-
|
| 39 |
-
st.divider()
|
| 40 |
-
|
| 41 |
-
search_query = st.text_input('Enter a keyword to search in the extracted text - ')
|
| 42 |
-
|
| 43 |
-
if search_query:
|
| 44 |
-
|
| 45 |
-
highlighted_text = highlight_text(extracted_text, search_query)
|
| 46 |
-
|
| 47 |
-
st.subheader('Text with Highlighted Keyword')
|
| 48 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import pytesseract
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
def highlight_text(text, keyword):
|
| 7 |
+
escaped_key = re.escape(keyword)
|
| 8 |
+
highlighted_text = re.sub(f'({escaped_key})', r'<mark>\1</mark>', text, flags = re.IGNORECASE)
|
| 9 |
+
return highlighted_text
|
| 10 |
+
|
| 11 |
+
st.title('OCR Document Search Web App')
|
| 12 |
+
st.divider()
|
| 13 |
+
|
| 14 |
+
_ = '''
|
| 15 |
+
def got_ocr(image_path):
|
| 16 |
+
from transformers import AutoModel, AutoTokenizer
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
|
| 18 |
+
model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
| 19 |
+
model=model.eval().cuda()
|
| 20 |
+
image = Image.open(image_path)
|
| 21 |
+
res = model.chat(tokenizer, image, ocr_type='ocr')
|
| 22 |
+
return res
|
| 23 |
+
'''
|
| 24 |
+
|
| 25 |
+
uploaded_img = st.file_uploader('Upload an image', type=['jpg', 'jpeg', 'png'])
|
| 26 |
+
|
| 27 |
+
if uploaded_img is not None:
|
| 28 |
+
image = Image.open(uploaded_img)
|
| 29 |
+
|
| 30 |
+
st.image(image, caption='Uploaded image', use_column_width=True)
|
| 31 |
+
|
| 32 |
+
extracted_text = pytesseract.image_to_string(image, lang='eng+hin')
|
| 33 |
+
|
| 34 |
+
st.subheader('Extracted text')
|
| 35 |
+
st.divider()
|
| 36 |
+
|
| 37 |
+
st.text(extracted_text)
|
| 38 |
+
|
| 39 |
+
st.divider()
|
| 40 |
+
|
| 41 |
+
search_query = st.text_input('Enter a keyword to search in the extracted text - ')
|
| 42 |
+
|
| 43 |
+
if search_query:
|
| 44 |
+
|
| 45 |
+
highlighted_text = highlight_text(extracted_text, search_query)
|
| 46 |
+
|
| 47 |
+
st.subheader('Text with Highlighted Keyword')
|
| 48 |
st.markdown(highlighted_text, unsafe_allow_html=True)
|