Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| from typing import Dict, Union | |
| from gliner import GLiNER | |
| model = GLiNER.from_pretrained("numind/NuNER_Zero") | |
| classifier = pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1") | |
| css = """ | |
| h1 { | |
| text-align: center; | |
| display:block; | |
| } | |
| """ | |
| #define a function to process your input and output | |
| def zero_shot(doc, candidates): | |
| given_labels = candidates.split(", ") | |
| dictionary = classifier(doc, given_labels) | |
| labels = dictionary['labels'] | |
| scores = dictionary['scores'] | |
| return dict(zip(labels, scores)) | |
| examples_text = [ | |
| [ | |
| "Pasar saham ngalaman panurunan nu signifikan akibat kateupastian global.", | |
| "ékonomi, pulitik, bisnis, kauangan, téknologi" | |
| ], | |
| [ | |
| "I am very happy today but suddenly sad because of the recent news.", | |
| "positive, negative, neutral" | |
| ], | |
| [ | |
| "I just received the best news ever! I got the job I always wanted!", | |
| "joy, sadness, anger, surprise, fear, disgust" | |
| ], | |
| ] | |
| examples_ner = [ | |
| [ | |
| "Pada tahun 1945, Indonesia memproklamasikan kemerdekaannya dari penjajahan Belanda. Proklamasi tersebut dibacakan oleh Soekarno dan Mohammad Hatta di Jakarta.", | |
| "tahun, negara, tokoh, lokasi", | |
| 0.3 | |
| ], | |
| [ | |
| "Mount Everest is the highest mountain above sea level, located in the Himalayas. It stands at 8,848 meters (29,029 ft) and attracts many climbers.", | |
| "location, measurement, person", | |
| 0.3 | |
| ], | |
| [ | |
| "Perusahaan teknologi raksasa, Google, mbukak kantor cabang anyar ing Jakarta ing wulan Januari 2020 kanggo nggedhekake operasine ing Asia Tenggara", | |
| "perusahaan, lokasi, wulan, taun", | |
| 0.3 | |
| ], | |
| ] | |
| def merge_entities(entities): | |
| if not entities: | |
| return [] | |
| merged = [] | |
| current = entities[0] | |
| for next_entity in entities[1:]: | |
| if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']): | |
| current['word'] += ' ' + next_entity['word'] | |
| current['end'] = next_entity['end'] | |
| else: | |
| merged.append(current) | |
| current = next_entity | |
| merged.append(current) | |
| return merged | |
| def ner( | |
| text, labels: str, threshold: float, nested_ner: bool | |
| ) -> Dict[str, Union[str, int, float]]: | |
| labels = labels.split(",") | |
| r = { | |
| "text": text, | |
| "entities": [ | |
| { | |
| "entity": entity["label"], | |
| "word": entity["text"], | |
| "start": entity["start"], | |
| "end": entity["end"], | |
| "score": 0, | |
| } | |
| for entity in model.predict_entities( | |
| text, labels, flat_ner=not nested_ner, threshold=threshold | |
| ) | |
| ], | |
| } | |
| r["entities"] = merge_entities(r["entities"]) | |
| return r | |
| with gr.Blocks(title="Zero-Shot Demo", css=css) as demo: #, theme=gr.themes.Soft() | |
| gr.Markdown( | |
| """ | |
| # Zero-Shot Model Demo | |
| """ | |
| ) | |
| #create input and output objects | |
| with gr.Tab("Zero-Shot Text Classification"): | |
| gr.Markdown( | |
| """ | |
| ## Zero-Shot Text Classification | |
| """ | |
| ) | |
| input1 = gr.Textbox(label="Text", value=examples_text[0][0]) | |
| input2 = gr.Textbox(label="Labels",value=examples_text[0][1]) | |
| output = gr.Label(label="Output") | |
| gui = gr.Interface( | |
| # title="Zero-Shot Text Classification", | |
| fn=zero_shot, | |
| inputs=[input1, input2], | |
| outputs=[output] | |
| ) | |
| examples = gr.Examples( | |
| examples_text, | |
| fn=zero_shot, | |
| inputs=[input1, input2], | |
| outputs=output, | |
| cache_examples=True, | |
| ) | |
| with gr.Tab("Zero-Shot NER"): | |
| gr.Markdown( | |
| """ | |
| ## Zero-Shot Named Entity Recognition (NER) | |
| """ | |
| ) | |
| input_text = gr.Textbox( | |
| value=examples_ner[0][0], label="Text input", placeholder="Enter your text here", lines=3 | |
| ) | |
| with gr.Row() as row: | |
| labels = gr.Textbox( | |
| value=examples_ner[0][1], | |
| label="Labels", | |
| placeholder="Enter your labels here (comma separated)", | |
| scale=2, | |
| ) | |
| threshold = gr.Slider( | |
| 0, | |
| 1, | |
| value=examples_ner[0][2], | |
| step=0.01, | |
| label="Threshold", | |
| info="Lower the threshold to increase how many entities get predicted.", | |
| scale=1, | |
| ) | |
| output = gr.HighlightedText(label="Predicted Entities") | |
| submit_btn = gr.Button("Submit") | |
| examples = gr.Examples( | |
| examples_ner, | |
| fn=ner, | |
| inputs=[input_text, labels, threshold], | |
| outputs=output, | |
| cache_examples=True, | |
| ) | |
| submit_btn.click( | |
| fn=ner, inputs=[input_text, labels, threshold], outputs=output | |
| ) | |
| demo.queue() | |
| demo.launch(debug=True) |