Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,11 @@
|
|
1 |
# app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import torch.nn as nn
|
@@ -7,15 +14,19 @@ import torchvision.models as tv_models
|
|
7 |
import torchvision.transforms as T
|
8 |
import numpy as np
|
9 |
from PIL import Image
|
10 |
-
|
11 |
warnings.filterwarnings("ignore")
|
12 |
|
|
|
13 |
try:
|
14 |
import timm
|
15 |
HAS_TIMM = True
|
16 |
except Exception:
|
17 |
HAS_TIMM = False
|
18 |
|
|
|
|
|
|
|
19 |
DEFAULT_CLASSES = [
|
20 |
"Ayrshire cattle","Brown Swiss cattle","Holstein Friesian cattle",
|
21 |
"Jaffrabadi","Jersey cattle","Murrah","Red Dane cattle",
|
@@ -83,20 +94,19 @@ BREED_INFO = {
|
|
83 |
IMAGENET_MEAN = [0.485, 0.456, 0.406]
|
84 |
IMAGENET_STD = [0.229, 0.224, 0.225]
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
if not k.startswith("module."):
|
91 |
-
new_sd[k] = v
|
92 |
clean = {}
|
93 |
-
for k, v in
|
94 |
if k.startswith("module."):
|
95 |
-
|
96 |
-
|
|
|
97 |
return clean
|
98 |
|
99 |
-
def file_to_path(file_obj):
|
100 |
if isinstance(file_obj, str):
|
101 |
return file_obj
|
102 |
if hasattr(file_obj, "name"):
|
@@ -105,9 +115,12 @@ def file_to_path(file_obj):
|
|
105 |
return file_obj.get("name") or file_obj.get("path") or file_obj.get("file")
|
106 |
raise ValueError("Unsupported file input type")
|
107 |
|
108 |
-
def make_head(in_dim, num_classes):
|
109 |
return nn.Sequential(nn.Dropout(0.2), nn.Linear(in_dim, num_classes))
|
110 |
|
|
|
|
|
|
|
111 |
class IndianBovineClassifier:
|
112 |
def __init__(self):
|
113 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -116,50 +129,51 @@ class IndianBovineClassifier:
|
|
116 |
self.class_names = list(DEFAULT_CLASSES)
|
117 |
self.num_classes = len(self.class_names)
|
118 |
self.preprocess = T.Compose([
|
119 |
-
T.Resize((224,224)),
|
120 |
T.ToTensor(),
|
121 |
-
T.Normalize(IMAGENET_MEAN, IMAGENET_STD)
|
122 |
])
|
123 |
self._try_autoload()
|
124 |
|
125 |
-
def _build_arch(self, arch: str, num_classes: int):
|
126 |
a = (arch or "").strip()
|
127 |
if a and HAS_TIMM:
|
128 |
try:
|
129 |
m = timm.create_model(a, pretrained=False, num_classes=num_classes)
|
130 |
cfg = getattr(m, "default_cfg", None)
|
131 |
if cfg:
|
132 |
-
size = cfg.get("input_size", (3,224,224))[-1]
|
133 |
mean = list(cfg.get("mean", IMAGENET_MEAN))
|
134 |
-
std
|
135 |
self.preprocess = T.Compose([
|
136 |
-
T.Resize((size,size)),
|
137 |
T.ToTensor(),
|
138 |
-
T.Normalize(mean, std)
|
139 |
])
|
140 |
return m
|
141 |
except Exception:
|
142 |
pass
|
143 |
-
if a.lower() in {"resnet18","tv_resnet18"}:
|
144 |
m = tv_models.resnet18(weights=None)
|
145 |
m.fc = nn.Linear(m.fc.in_features, num_classes)
|
146 |
return m
|
147 |
-
if a.lower() in {"efficientnet_b0","tv_efficientnet_b0"}:
|
148 |
m = tv_models.efficientnet_b0(weights=None)
|
149 |
in_dim = m.classifier[1].in_features
|
150 |
m.classifier = make_head(in_dim, num_classes)
|
151 |
return m
|
|
|
152 |
return self._simple_cnn(num_classes)
|
153 |
|
154 |
-
def _simple_cnn(self, nc: int):
|
155 |
class Simple(nn.Module):
|
156 |
def __init__(self, out_dim):
|
157 |
super().__init__()
|
158 |
self.features = nn.Sequential(
|
159 |
-
nn.Conv2d(3,64,3,padding=1), nn.ReLU(True), nn.MaxPool2d(2),
|
160 |
-
nn.Conv2d(64,128,3,padding=1), nn.ReLU(True), nn.MaxPool2d(2),
|
161 |
-
nn.Conv2d(128,256,3,padding=1), nn.ReLU(True),
|
162 |
-
nn.AdaptiveAvgPool2d((1,1))
|
163 |
)
|
164 |
self.classifier = nn.Sequential(nn.Dropout(0.5), nn.Linear(256, out_dim))
|
165 |
def forward(self, x):
|
@@ -169,6 +183,7 @@ class IndianBovineClassifier:
|
|
169 |
return Simple(nc)
|
170 |
|
171 |
def _try_autoload(self):
|
|
|
172 |
candidates = [
|
173 |
("indian_bovine_breeds.pth","pytorch"),
|
174 |
("indian_bovine_model.pth","pytorch"),
|
@@ -176,12 +191,12 @@ class IndianBovineClassifier:
|
|
176 |
("indian_bovine_breeds.pkl","pickle"),
|
177 |
("model.pkl","pickle"),
|
178 |
("indian_bovine_breeds.joblib","joblib"),
|
179 |
-
("model.joblib","joblib")
|
180 |
]
|
181 |
for path, kind in candidates:
|
182 |
if os.path.exists(path):
|
183 |
try:
|
184 |
-
self._load_from_path(path, kind)
|
185 |
print(f"Loaded model: {path}")
|
186 |
return
|
187 |
except Exception as e:
|
@@ -189,15 +204,15 @@ class IndianBovineClassifier:
|
|
189 |
self.model = self._simple_cnn(self.num_classes).to(self.device).eval()
|
190 |
self.model_type = "demo"
|
191 |
|
192 |
-
def _maybe_set_classes_from_meta(self, meta: dict):
|
193 |
-
keys = ["classes","class_names","labels","breeds"]
|
194 |
for k in keys:
|
195 |
if k in meta and isinstance(meta[k], (list, tuple)) and len(meta[k]) > 1:
|
196 |
self.class_names = list(meta[k])
|
197 |
self.num_classes = len(self.class_names)
|
198 |
return True
|
199 |
if "class_to_idx" in meta and isinstance(meta["class_to_idx"], dict):
|
200 |
-
inv = {v:k for k,v in meta["class_to_idx"].items()}
|
201 |
self.class_names = [inv[i] for i in range(len(inv))]
|
202 |
self.num_classes = len(self.class_names)
|
203 |
return True
|
@@ -210,11 +225,12 @@ class IndianBovineClassifier:
|
|
210 |
nc = ckpt.get("num_classes", self.num_classes)
|
211 |
state = ckpt.get("model_state_dict", ckpt.get("state_dict"))
|
212 |
if state is None and all(isinstance(k, str) for k in ckpt.keys()):
|
213 |
-
state = ckpt
|
214 |
if state is None:
|
215 |
raise ValueError("No state_dict in checkpoint.")
|
216 |
state = strip_module_prefix(state)
|
217 |
model = self._build_arch(arch or "efficientnet_b0", nc)
|
|
|
218 |
if hasattr(model, "classifier") and isinstance(model.classifier, nn.Sequential):
|
219 |
last = model.classifier[-1]
|
220 |
if isinstance(last, nn.Linear) and last.out_features != nc:
|
@@ -226,6 +242,7 @@ class IndianBovineClassifier:
|
|
226 |
self.model = model.to(self.device).eval()
|
227 |
self.model_type = f"pytorch:{arch or 'tv_efficientnet_b0'}"
|
228 |
else:
|
|
|
229 |
self.model = ckpt.to(self.device).eval()
|
230 |
self.model_type = "pytorch:serialized"
|
231 |
|
@@ -237,44 +254,67 @@ class IndianBovineClassifier:
|
|
237 |
self.model = obj
|
238 |
self.model_type = "sklearn"
|
239 |
else:
|
240 |
-
raise ValueError("Unsupported object in file.")
|
241 |
|
242 |
-
def _load_from_path(self, path, kind="auto"):
|
243 |
ext = os.path.splitext(path)[1].lower()
|
244 |
if kind == "auto":
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
try:
|
251 |
ckpt = torch.load(path, map_location=self.device)
|
252 |
-
self._load_pytorch_checkpoint(ckpt)
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
if kind == "joblib":
|
259 |
obj = joblib.load(path)
|
260 |
-
self._load_generic_object(obj)
|
|
|
|
|
261 |
raise ValueError(f"Unknown model kind: {kind}")
|
262 |
|
263 |
-
|
|
|
264 |
path = file_to_path(file_obj)
|
265 |
self._load_from_path(path, kind="auto")
|
266 |
return f"✅ Loaded model: {os.path.basename(path)} | Type: {self.model_type} | Classes: {self.num_classes}"
|
267 |
|
268 |
-
def load_classes_json(self, file_obj):
|
269 |
path = file_to_path(file_obj)
|
270 |
with open(path, "r", encoding="utf-8") as f:
|
271 |
names = json.load(f)
|
272 |
if not isinstance(names, list) or len(names) < 2:
|
273 |
-
raise ValueError("classes.json must be a list
|
274 |
self.class_names = list(names)
|
275 |
self.num_classes = len(names)
|
276 |
return f"✅ Loaded {len(names)} class names from {os.path.basename(path)}"
|
277 |
|
|
|
278 |
def preprocess_img(self, image: Image.Image):
|
279 |
if image.mode != "RGB":
|
280 |
image = image.convert("RGB")
|
@@ -282,18 +322,18 @@ class IndianBovineClassifier:
|
|
282 |
x = self.preprocess(image).unsqueeze(0).to(self.device)
|
283 |
return x
|
284 |
else:
|
285 |
-
arr = np.array(image.resize((224,224))).astype(np.float32)/255.0
|
286 |
-
return arr.flatten().reshape(1
|
287 |
|
288 |
-
def predict(self, image: Image.Image):
|
289 |
if self.model is None:
|
290 |
-
return {"Error":"Model not loaded"}, "Unknown"
|
291 |
x = self.preprocess_img(image)
|
292 |
if self.model_type.startswith("pytorch") or self.model_type == "demo":
|
293 |
with torch.no_grad():
|
294 |
if self.model_type == "demo":
|
295 |
np.random.seed(hash(str(image.size)) % (2**32))
|
296 |
-
probs = np.random.dirichlet(np.ones(self.num_classes)*3.0)
|
297 |
else:
|
298 |
logits = self.model(x)
|
299 |
probs = F.softmax(logits, dim=1).cpu().numpy()[0]
|
@@ -301,11 +341,14 @@ class IndianBovineClassifier:
|
|
301 |
probs = self.model.predict_proba(x)[0]
|
302 |
else:
|
303 |
np.random.seed(42)
|
304 |
-
probs = np.random.dirichlet(np.ones(self.num_classes)*2.0)
|
305 |
top_idx = np.argsort(probs)[::-1][:3]
|
306 |
results = {f"Top {i+1}: {self.class_names[idx]}": float(probs[idx]) for i, idx in enumerate(top_idx)}
|
307 |
return results, self.class_names[top_idx[0]]
|
308 |
|
|
|
|
|
|
|
309 |
classifier = IndianBovineClassifier()
|
310 |
|
311 |
def classify_image(image: Image.Image):
|
@@ -323,12 +366,13 @@ def classify_image(image: Image.Image):
|
|
323 |
"Error occurred during classification",
|
324 |
f"| Attribute | Value |\n|-----------|-------|\n| Status | Error: {msg} |",
|
325 |
)
|
326 |
-
indicator = "
|
327 |
md = f"{indicator}Classification Results:\n\n"
|
328 |
for k, v in preds.items():
|
329 |
md += f"- {k}: {v:.2%}\n"
|
330 |
if classifier.model_type == "demo":
|
331 |
md += "\nDemo mode: Upload a .pth/.pkl/.joblib model for real predictions."
|
|
|
332 |
if top_breed in BREED_INFO:
|
333 |
info = BREED_INFO[top_breed]
|
334 |
desc = f"""
|
@@ -372,27 +416,32 @@ def upload_classes(file_obj):
|
|
372 |
except Exception as e:
|
373 |
return f"❌ Failed to load classes.json: {e}"
|
374 |
|
375 |
-
#
|
|
|
|
|
376 |
CUSTOM_CSS = """
|
377 |
.gradio-container { min-height: 100vh; }
|
378 |
.header { text-align:center; padding: 1rem; }
|
379 |
.header .title { font-size: 2em; font-weight: 700; }
|
380 |
.footer { text-align:center; opacity:.75; padding:.75rem; }
|
381 |
@media (max-width: 768px) {
|
382 |
-
.title { font-size: 1.
|
383 |
}
|
384 |
"""
|
385 |
|
|
|
|
|
|
|
386 |
def create_interface():
|
387 |
-
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft(), fill_width=True, title="
|
388 |
gr.HTML(f"""
|
389 |
<div class="header">
|
390 |
-
<div class="title"
|
391 |
<div>PyTorch runtime • {len(DEFAULT_CLASSES)} default classes • Device: {classifier.device}</div>
|
392 |
</div>
|
393 |
""")
|
394 |
|
395 |
-
# Collapsible sidebar
|
396 |
with gr.Sidebar():
|
397 |
gr.Markdown("### Model loader")
|
398 |
model_file = gr.File(label="Upload .pth / .pkl / .joblib", file_types=[".pth",".pkl",".joblib"], file_count="single")
|
@@ -406,22 +455,23 @@ def create_interface():
|
|
406 |
classes_status = gr.Markdown("No external classes.json loaded.")
|
407 |
load_classes_btn.click(upload_classes, inputs=[classes_file], outputs=[classes_status])
|
408 |
|
409 |
-
# Main
|
410 |
with gr.Row(equal_height=True):
|
411 |
with gr.Column(scale=1, min_width=320, variant="panel"):
|
412 |
gr.Markdown("### Upload image")
|
413 |
image_input = gr.Image(type="pil", label="Cattle/Buffalo image")
|
414 |
-
classify_btn = gr.Button("
|
415 |
with gr.Column(scale=2, min_width=360, variant="panel"):
|
416 |
with gr.Tab("Results"):
|
417 |
-
prediction_output = gr.Markdown(value="
|
418 |
with gr.Tab("Breed info"):
|
419 |
-
breed_info_output = gr.Markdown(value="
|
420 |
with gr.Tab("Stats"):
|
421 |
breed_stats_table = gr.Markdown(value="| Attribute | Value |\n|-----------|-------|\n| Status | Awaiting classification... |")
|
422 |
|
423 |
gr.Markdown(f"""<div class="footer">Model type: {classifier.model_type} • PyTorch {torch.__version__}</div>""")
|
424 |
|
|
|
425 |
classify_btn.click(classify_image, inputs=[image_input], outputs=[prediction_output, breed_info_output, breed_stats_table])
|
426 |
image_input.change(classify_image, inputs=[image_input], outputs=[prediction_output, breed_info_output, breed_stats_table])
|
427 |
|
@@ -429,4 +479,7 @@ def create_interface():
|
|
429 |
|
430 |
if __name__ == "__main__":
|
431 |
app = create_interface()
|
432 |
-
|
|
|
|
|
|
|
|
1 |
# app.py
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
import pickle
|
5 |
+
import joblib
|
6 |
+
import warnings
|
7 |
+
from typing import Tuple, Dict
|
8 |
+
|
9 |
import gradio as gr
|
10 |
import torch
|
11 |
import torch.nn as nn
|
|
|
14 |
import torchvision.transforms as T
|
15 |
import numpy as np
|
16 |
from PIL import Image
|
17 |
+
|
18 |
warnings.filterwarnings("ignore")
|
19 |
|
20 |
+
# Optional timm
|
21 |
try:
|
22 |
import timm
|
23 |
HAS_TIMM = True
|
24 |
except Exception:
|
25 |
HAS_TIMM = False
|
26 |
|
27 |
+
# ---------------------------
|
28 |
+
# Defaults & metadata
|
29 |
+
# ---------------------------
|
30 |
DEFAULT_CLASSES = [
|
31 |
"Ayrshire cattle","Brown Swiss cattle","Holstein Friesian cattle",
|
32 |
"Jaffrabadi","Jersey cattle","Murrah","Red Dane cattle",
|
|
|
94 |
IMAGENET_MEAN = [0.485, 0.456, 0.406]
|
95 |
IMAGENET_STD = [0.229, 0.224, 0.225]
|
96 |
|
97 |
+
# ---------------------------
|
98 |
+
# Helpers
|
99 |
+
# ---------------------------
|
100 |
+
def strip_module_prefix(state_dict: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
|
|
|
|
101 |
clean = {}
|
102 |
+
for k, v in state_dict.items():
|
103 |
if k.startswith("module."):
|
104 |
+
clean[k[7:]] = v
|
105 |
+
else:
|
106 |
+
clean[k] = v
|
107 |
return clean
|
108 |
|
109 |
+
def file_to_path(file_obj) -> str:
|
110 |
if isinstance(file_obj, str):
|
111 |
return file_obj
|
112 |
if hasattr(file_obj, "name"):
|
|
|
115 |
return file_obj.get("name") or file_obj.get("path") or file_obj.get("file")
|
116 |
raise ValueError("Unsupported file input type")
|
117 |
|
118 |
+
def make_head(in_dim: int, num_classes: int) -> nn.Module:
|
119 |
return nn.Sequential(nn.Dropout(0.2), nn.Linear(in_dim, num_classes))
|
120 |
|
121 |
+
# ---------------------------
|
122 |
+
# Classifier
|
123 |
+
# ---------------------------
|
124 |
class IndianBovineClassifier:
|
125 |
def __init__(self):
|
126 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
129 |
self.class_names = list(DEFAULT_CLASSES)
|
130 |
self.num_classes = len(self.class_names)
|
131 |
self.preprocess = T.Compose([
|
132 |
+
T.Resize((224, 224)),
|
133 |
T.ToTensor(),
|
134 |
+
T.Normalize(IMAGENET_MEAN, IMAGENET_STD),
|
135 |
])
|
136 |
self._try_autoload()
|
137 |
|
138 |
+
def _build_arch(self, arch: str, num_classes: int) -> nn.Module:
|
139 |
a = (arch or "").strip()
|
140 |
if a and HAS_TIMM:
|
141 |
try:
|
142 |
m = timm.create_model(a, pretrained=False, num_classes=num_classes)
|
143 |
cfg = getattr(m, "default_cfg", None)
|
144 |
if cfg:
|
145 |
+
size = cfg.get("input_size", (3, 224, 224))[-1]
|
146 |
mean = list(cfg.get("mean", IMAGENET_MEAN))
|
147 |
+
std = list(cfg.get("std", IMAGENET_STD))
|
148 |
self.preprocess = T.Compose([
|
149 |
+
T.Resize((size, size)),
|
150 |
T.ToTensor(),
|
151 |
+
T.Normalize(mean, std),
|
152 |
])
|
153 |
return m
|
154 |
except Exception:
|
155 |
pass
|
156 |
+
if a.lower() in {"resnet18", "tv_resnet18"}:
|
157 |
m = tv_models.resnet18(weights=None)
|
158 |
m.fc = nn.Linear(m.fc.in_features, num_classes)
|
159 |
return m
|
160 |
+
if a.lower() in {"efficientnet_b0", "tv_efficientnet_b0"}:
|
161 |
m = tv_models.efficientnet_b0(weights=None)
|
162 |
in_dim = m.classifier[1].in_features
|
163 |
m.classifier = make_head(in_dim, num_classes)
|
164 |
return m
|
165 |
+
# fallback
|
166 |
return self._simple_cnn(num_classes)
|
167 |
|
168 |
+
def _simple_cnn(self, nc: int) -> nn.Module:
|
169 |
class Simple(nn.Module):
|
170 |
def __init__(self, out_dim):
|
171 |
super().__init__()
|
172 |
self.features = nn.Sequential(
|
173 |
+
nn.Conv2d(3, 64, 3, padding=1), nn.ReLU(True), nn.MaxPool2d(2),
|
174 |
+
nn.Conv2d(64, 128, 3, padding=1), nn.ReLU(True), nn.MaxPool2d(2),
|
175 |
+
nn.Conv2d(128, 256, 3, padding=1), nn.ReLU(True),
|
176 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
177 |
)
|
178 |
self.classifier = nn.Sequential(nn.Dropout(0.5), nn.Linear(256, out_dim))
|
179 |
def forward(self, x):
|
|
|
183 |
return Simple(nc)
|
184 |
|
185 |
def _try_autoload(self):
|
186 |
+
# Attempt common filenames; quietly fall back to demo if none
|
187 |
candidates = [
|
188 |
("indian_bovine_breeds.pth","pytorch"),
|
189 |
("indian_bovine_model.pth","pytorch"),
|
|
|
191 |
("indian_bovine_breeds.pkl","pickle"),
|
192 |
("model.pkl","pickle"),
|
193 |
("indian_bovine_breeds.joblib","joblib"),
|
194 |
+
("model.joblib","joblib"),
|
195 |
]
|
196 |
for path, kind in candidates:
|
197 |
if os.path.exists(path):
|
198 |
try:
|
199 |
+
self._load_from_path(path, kind=kind)
|
200 |
print(f"Loaded model: {path}")
|
201 |
return
|
202 |
except Exception as e:
|
|
|
204 |
self.model = self._simple_cnn(self.num_classes).to(self.device).eval()
|
205 |
self.model_type = "demo"
|
206 |
|
207 |
+
def _maybe_set_classes_from_meta(self, meta: dict) -> bool:
|
208 |
+
keys = ["classes", "class_names", "labels", "breeds"]
|
209 |
for k in keys:
|
210 |
if k in meta and isinstance(meta[k], (list, tuple)) and len(meta[k]) > 1:
|
211 |
self.class_names = list(meta[k])
|
212 |
self.num_classes = len(self.class_names)
|
213 |
return True
|
214 |
if "class_to_idx" in meta and isinstance(meta["class_to_idx"], dict):
|
215 |
+
inv = {v: k for k, v in meta["class_to_idx"].items()}
|
216 |
self.class_names = [inv[i] for i in range(len(inv))]
|
217 |
self.num_classes = len(self.class_names)
|
218 |
return True
|
|
|
225 |
nc = ckpt.get("num_classes", self.num_classes)
|
226 |
state = ckpt.get("model_state_dict", ckpt.get("state_dict"))
|
227 |
if state is None and all(isinstance(k, str) for k in ckpt.keys()):
|
228 |
+
state = ckpt # raw state dict
|
229 |
if state is None:
|
230 |
raise ValueError("No state_dict in checkpoint.")
|
231 |
state = strip_module_prefix(state)
|
232 |
model = self._build_arch(arch or "efficientnet_b0", nc)
|
233 |
+
# ensure classifier head matches
|
234 |
if hasattr(model, "classifier") and isinstance(model.classifier, nn.Sequential):
|
235 |
last = model.classifier[-1]
|
236 |
if isinstance(last, nn.Linear) and last.out_features != nc:
|
|
|
242 |
self.model = model.to(self.device).eval()
|
243 |
self.model_type = f"pytorch:{arch or 'tv_efficientnet_b0'}"
|
244 |
else:
|
245 |
+
# direct serialized torch.nn.Module
|
246 |
self.model = ckpt.to(self.device).eval()
|
247 |
self.model_type = "pytorch:serialized"
|
248 |
|
|
|
254 |
self.model = obj
|
255 |
self.model_type = "sklearn"
|
256 |
else:
|
257 |
+
raise ValueError("Unsupported object in file (expect torch module/state_dict or sklearn estimator).")
|
258 |
|
259 |
+
def _load_from_path(self, path: str, kind: str = "auto"):
|
260 |
ext = os.path.splitext(path)[1].lower()
|
261 |
if kind == "auto":
|
262 |
+
if ext in {".pth"}:
|
263 |
+
kind = "pytorch"
|
264 |
+
elif ext in {".pkl"}:
|
265 |
+
kind = "pickle"
|
266 |
+
elif ext in {".joblib"}:
|
267 |
+
kind = "joblib"
|
268 |
+
else:
|
269 |
+
kind = "pytorch"
|
270 |
+
|
271 |
+
if kind in ("pytorch", "pickle"):
|
272 |
+
# Prefer torch.load first for torch checkpoints, even if extension is .pkl
|
273 |
try:
|
274 |
ckpt = torch.load(path, map_location=self.device)
|
275 |
+
self._load_pytorch_checkpoint(ckpt)
|
276 |
+
return
|
277 |
+
except Exception as torch_err:
|
278 |
+
if kind == "pytorch":
|
279 |
+
raise RuntimeError(f"PyTorch load failed: {torch_err}") from torch_err
|
280 |
+
# try sklearn-style pickle below
|
281 |
+
|
282 |
+
# sklearn pickle fallback
|
283 |
+
try:
|
284 |
+
with open(path, "rb") as f:
|
285 |
+
obj = pickle.load(f)
|
286 |
+
self._load_generic_object(obj)
|
287 |
+
return
|
288 |
+
except pickle.UnpicklingError as pe:
|
289 |
+
# Likely a torch checkpoint mislabeled as .pkl
|
290 |
+
raise RuntimeError(
|
291 |
+
"This .pkl appears to be a PyTorch checkpoint; load via torch.load or rename to .pth."
|
292 |
+
) from pe
|
293 |
+
|
294 |
if kind == "joblib":
|
295 |
obj = joblib.load(path)
|
296 |
+
self._load_generic_object(obj)
|
297 |
+
return
|
298 |
+
|
299 |
raise ValueError(f"Unknown model kind: {kind}")
|
300 |
|
301 |
+
# public API for UI
|
302 |
+
def load_user_model(self, file_obj) -> str:
|
303 |
path = file_to_path(file_obj)
|
304 |
self._load_from_path(path, kind="auto")
|
305 |
return f"✅ Loaded model: {os.path.basename(path)} | Type: {self.model_type} | Classes: {self.num_classes}"
|
306 |
|
307 |
+
def load_classes_json(self, file_obj) -> str:
|
308 |
path = file_to_path(file_obj)
|
309 |
with open(path, "r", encoding="utf-8") as f:
|
310 |
names = json.load(f)
|
311 |
if not isinstance(names, list) or len(names) < 2:
|
312 |
+
raise ValueError("classes.json must be a list with 2 or more class names.")
|
313 |
self.class_names = list(names)
|
314 |
self.num_classes = len(names)
|
315 |
return f"✅ Loaded {len(names)} class names from {os.path.basename(path)}"
|
316 |
|
317 |
+
# inference
|
318 |
def preprocess_img(self, image: Image.Image):
|
319 |
if image.mode != "RGB":
|
320 |
image = image.convert("RGB")
|
|
|
322 |
x = self.preprocess(image).unsqueeze(0).to(self.device)
|
323 |
return x
|
324 |
else:
|
325 |
+
arr = np.array(image.resize((224, 224))).astype(np.float32) / 255.0
|
326 |
+
return arr.flatten().reshape(1, -1)
|
327 |
|
328 |
+
def predict(self, image: Image.Image) -> Tuple[Dict[str, float], str]:
|
329 |
if self.model is None:
|
330 |
+
return {"Error": "Model not loaded"}, "Unknown"
|
331 |
x = self.preprocess_img(image)
|
332 |
if self.model_type.startswith("pytorch") or self.model_type == "demo":
|
333 |
with torch.no_grad():
|
334 |
if self.model_type == "demo":
|
335 |
np.random.seed(hash(str(image.size)) % (2**32))
|
336 |
+
probs = np.random.dirichlet(np.ones(self.num_classes) * 3.0)
|
337 |
else:
|
338 |
logits = self.model(x)
|
339 |
probs = F.softmax(logits, dim=1).cpu().numpy()[0]
|
|
|
341 |
probs = self.model.predict_proba(x)[0]
|
342 |
else:
|
343 |
np.random.seed(42)
|
344 |
+
probs = np.random.dirichlet(np.ones(self.num_classes) * 2.0)
|
345 |
top_idx = np.argsort(probs)[::-1][:3]
|
346 |
results = {f"Top {i+1}: {self.class_names[idx]}": float(probs[idx]) for i, idx in enumerate(top_idx)}
|
347 |
return results, self.class_names[top_idx[0]]
|
348 |
|
349 |
+
# ---------------------------
|
350 |
+
# UI callbacks
|
351 |
+
# ---------------------------
|
352 |
classifier = IndianBovineClassifier()
|
353 |
|
354 |
def classify_image(image: Image.Image):
|
|
|
366 |
"Error occurred during classification",
|
367 |
f"| Attribute | Value |\n|-----------|-------|\n| Status | Error: {msg} |",
|
368 |
)
|
369 |
+
indicator = "DEMO - " if classifier.model_type == "demo" else f"{classifier.model_type} - "
|
370 |
md = f"{indicator}Classification Results:\n\n"
|
371 |
for k, v in preds.items():
|
372 |
md += f"- {k}: {v:.2%}\n"
|
373 |
if classifier.model_type == "demo":
|
374 |
md += "\nDemo mode: Upload a .pth/.pkl/.joblib model for real predictions."
|
375 |
+
|
376 |
if top_breed in BREED_INFO:
|
377 |
info = BREED_INFO[top_breed]
|
378 |
desc = f"""
|
|
|
416 |
except Exception as e:
|
417 |
return f"❌ Failed to load classes.json: {e}"
|
418 |
|
419 |
+
# ---------------------------
|
420 |
+
# Minimal, responsive CSS
|
421 |
+
# ---------------------------
|
422 |
CUSTOM_CSS = """
|
423 |
.gradio-container { min-height: 100vh; }
|
424 |
.header { text-align:center; padding: 1rem; }
|
425 |
.header .title { font-size: 2em; font-weight: 700; }
|
426 |
.footer { text-align:center; opacity:.75; padding:.75rem; }
|
427 |
@media (max-width: 768px) {
|
428 |
+
.title { font-size: 1.6em !important; }
|
429 |
}
|
430 |
"""
|
431 |
|
432 |
+
# ---------------------------
|
433 |
+
# Interface
|
434 |
+
# ---------------------------
|
435 |
def create_interface():
|
436 |
+
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft(), fill_width=True, title="Indian Bovine Classifier") as app:
|
437 |
gr.HTML(f"""
|
438 |
<div class="header">
|
439 |
+
<div class="title">Indian Bovine Breeds Classifier</div>
|
440 |
<div>PyTorch runtime • {len(DEFAULT_CLASSES)} default classes • Device: {classifier.device}</div>
|
441 |
</div>
|
442 |
""")
|
443 |
|
444 |
+
# Collapsible sidebar
|
445 |
with gr.Sidebar():
|
446 |
gr.Markdown("### Model loader")
|
447 |
model_file = gr.File(label="Upload .pth / .pkl / .joblib", file_types=[".pth",".pkl",".joblib"], file_count="single")
|
|
|
455 |
classes_status = gr.Markdown("No external classes.json loaded.")
|
456 |
load_classes_btn.click(upload_classes, inputs=[classes_file], outputs=[classes_status])
|
457 |
|
458 |
+
# Main canvas
|
459 |
with gr.Row(equal_height=True):
|
460 |
with gr.Column(scale=1, min_width=320, variant="panel"):
|
461 |
gr.Markdown("### Upload image")
|
462 |
image_input = gr.Image(type="pil", label="Cattle/Buffalo image")
|
463 |
+
classify_btn = gr.Button("Classify", variant="secondary")
|
464 |
with gr.Column(scale=2, min_width=360, variant="panel"):
|
465 |
with gr.Tab("Results"):
|
466 |
+
prediction_output = gr.Markdown(value="Upload an image to see classification.")
|
467 |
with gr.Tab("Breed info"):
|
468 |
+
breed_info_output = gr.Markdown(value="Breed info will appear here.")
|
469 |
with gr.Tab("Stats"):
|
470 |
breed_stats_table = gr.Markdown(value="| Attribute | Value |\n|-----------|-------|\n| Status | Awaiting classification... |")
|
471 |
|
472 |
gr.Markdown(f"""<div class="footer">Model type: {classifier.model_type} • PyTorch {torch.__version__}</div>""")
|
473 |
|
474 |
+
# Wiring
|
475 |
classify_btn.click(classify_image, inputs=[image_input], outputs=[prediction_output, breed_info_output, breed_stats_table])
|
476 |
image_input.change(classify_image, inputs=[image_input], outputs=[prediction_output, breed_info_output, breed_stats_table])
|
477 |
|
|
|
479 |
|
480 |
if __name__ == "__main__":
|
481 |
app = create_interface()
|
482 |
+
# Launch controls via env vars (optional)
|
483 |
+
share_flag = os.getenv("GRADIO_SHARE", "0").lower() in {"1", "true", "yes"}
|
484 |
+
ssr_flag = os.getenv("GRADIO_SSR_MODE", "true").lower() in {"1", "true", "yes"}
|
485 |
+
app.launch(server_name="0.0.0.0", server_port=7860, share=share_flag, ssr_mode=ssr_flag)
|