File size: 16,641 Bytes
7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 3ede7ef 7fc1882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import gradio as gr
import torch
from PIL import Image
import numpy as np
from transformers import pipeline
import requests
from io import BytesIO
import os
from huggingface_hub import login
import warnings
warnings.filterwarnings("ignore")
class PhotoUpscaler:
def __init__(self):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.current_model = None
self.upscaler = None
self.load_default_model()
def load_default_model(self):
"""Load default upscaling model with Real-ESRGAN priority"""
# Priority list of models to try
priority_models = [
"ai-forever/Real-ESRGAN",
"sberbank-ai/Real-ESRGAN",
"caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr",
"microsoft/swin2SR-compressed-sr-x2-48"
]
for model_name in priority_models:
try:
self.current_model = model_name
if "Real-ESRGAN" in model_name:
# Special handling for Real-ESRGAN models
try:
from diffusers import StableDiffusionUpscalePipeline
self.upscaler = StableDiffusionUpscalePipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ Real-ESRGAN model načten: {self.current_model}"
except:
# Fallback to regular pipeline
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten: {self.current_model}"
else:
# Regular Swin2SR models
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten: {self.current_model}"
except Exception as e:
print(f"Nepodařilo se načíst {model_name}: {e}")
continue
return f"❌ Nepodařilo se načíst žádný model"
def upscale_image(self, image, scale_factor=2, model_choice="default"):
"""Upscale image using selected model"""
if image is None:
return None, "❌ Žádný obrázek nebyl nahrán"
try:
# Convert to PIL if needed
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
# Resize for processing if image is too large
max_size = 1024
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = tuple(int(dim * ratio) for dim in image.size)
image = image.resize(new_size, Image.Resampling.LANCZOS)
# Change model if requested
if model_choice != "default" and model_choice != self.current_model:
self.load_model(model_choice)
# Perform upscaling based on model type
if self.upscaler:
try:
if "Real-ESRGAN" in self.current_model:
# Special handling for Real-ESRGAN models
if hasattr(self.upscaler, '__call__'):
# Diffusers pipeline
prompt = "high quality, detailed, sharp"
upscaled = self.upscaler(
prompt=prompt,
image=image,
num_inference_steps=20,
guidance_scale=0
).images[0]
else:
# Regular pipeline fallback
upscaled = self.upscaler(image)
elif "stable-diffusion" in self.current_model.lower():
# Stable Diffusion upscaler
from diffusers import StableDiffusionUpscalePipeline
prompt = "high quality, detailed, sharp, realistic"
upscaled = self.upscaler(
prompt=prompt,
image=image,
num_inference_steps=20
).images[0]
else:
# Standard Swin2SR and other models
upscaled = self.upscaler(image)
if isinstance(upscaled, list):
upscaled = upscaled[0]
if hasattr(upscaled, 'images'):
upscaled = upscaled.images[0]
elif isinstance(upscaled, dict) and 'image' in upscaled:
upscaled = upscaled['image']
return upscaled, f"✅ Obrázek zvětšen pomocí {MODEL_DESCRIPTIONS.get(self.current_model, self.current_model)}"
except Exception as model_error:
print(f"Model error: {model_error}")
# Fallback to simple upscaling
new_size = tuple(int(dim * scale_factor) for dim in image.size)
upscaled = image.resize(new_size, Image.Resampling.LANCZOS)
return upscaled, f"✅ Obrázek zvětšen pomocí klasického algoritmu (model selhání)"
else:
# Simple fallback upscaling
new_size = tuple(int(dim * scale_factor) for dim in image.size)
upscaled = image.resize(new_size, Image.Resampling.LANCZOS)
return upscaled, f"✅ Obrázek zvětšen pomocí klasického algoritmu (fallback)"
except Exception as e:
return None, f"❌ Chyba při zpracování: {str(e)}"
def load_model(self, model_name):
"""Load specific model with enhanced support for different model types"""
try:
self.current_model = model_name
if "Real-ESRGAN" in model_name:
# Try Real-ESRGAN specific loading
try:
from diffusers import StableDiffusionUpscalePipeline
self.upscaler = StableDiffusionUpscalePipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ Real-ESRGAN model načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
except:
# Fallback to regular pipeline
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten (fallback): {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
elif "stable-diffusion" in model_name.lower():
# Stable Diffusion upscaler
from diffusers import StableDiffusionUpscalePipeline
self.upscaler = StableDiffusionUpscalePipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ SD Upscaler načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
elif "ldm" in model_name.lower():
# LDM models
from diffusers import LDMSuperResolutionPipeline
self.upscaler = LDMSuperResolutionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
).to(self.device)
return f"✅ LDM model načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
else:
# Standard pipeline for Swin2SR and similar models
self.upscaler = pipeline(
"image-to-image",
model=model_name,
device=0 if self.device == "cuda" else -1
)
return f"✅ Model načten: {MODEL_DESCRIPTIONS.get(model_name, model_name)}"
except Exception as e:
return f"❌ Chyba při načítání modelu {MODEL_DESCRIPTIONS.get(model_name, model_name)}: {str(e)}"
# Initialize upscaler
upscaler = PhotoUpscaler()
# Available models for upscaling
UPSCALING_MODELS = [
"default",
# Real-ESRGAN models (nejlepší pro realistické fotografie)
"ai-forever/Real-ESRGAN",
"sberbank-ai/Real-ESRGAN",
"philz1337x/clarity-upscaler",
# BSRGAN models (vynikající pro reálné obrázky)
"caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr",
"caidas/swin2SR-realworld-sr-x2-64-bsrgan-psnr",
# SwinIR models (state-of-the-art)
"caidas/swinIR-M-real-sr-x4-64-bsrgan-psnr",
"caidas/swinIR-L-real-sr-x4-64-bsrgan-psnr",
# Microsoft Swin2SR (optimalizované)
"microsoft/swin2SR-compressed-sr-x2-48",
"microsoft/swin2SR-compressed-sr-x4-48",
"microsoft/swin2SR-classical-sr-x2-64",
"microsoft/swin2SR-classical-sr-x4-64",
"microsoft/swin2SR-realworld-sr-x4-64-bsrgan-psnr",
# Další pokročilé modely
"Kolors/Kolors-IP-Adapter-FaceID-Plus",
"stabilityai/stable-diffusion-x4-upscaler",
"CompVis/ldm-super-resolution-4x-openimages"
]
# Model descriptions for better user experience
MODEL_DESCRIPTIONS = {
"default": "🎯 Výchozí model - rychlý a spolehlivý",
"ai-forever/Real-ESRGAN": "🏆 Real-ESRGAN - nejlepší pro fotografie",
"sberbank-ai/Real-ESRGAN": "⭐ Real-ESRGAN Sberbank - vylepšená verze",
"philz1337x/clarity-upscaler": "✨ Clarity Upscaler - ultra ostrý",
"caidas/swin2SR-realworld-sr-x4-64-bsrgan-psnr": "🌟 BSRGAN 4x - premium kvalita",
"caidas/swin2SR-realworld-sr-x2-64-bsrgan-psnr": "🌟 BSRGAN 2x - rychlejší",
"caidas/swinIR-M-real-sr-x4-64-bsrgan-psnr": "🚀 SwinIR Medium - vyváženost",
"caidas/swinIR-L-real-sr-x4-64-bsrgan-psnr": "🔥 SwinIR Large - maximální kvalita",
"microsoft/swin2SR-compressed-sr-x2-48": "⚡ Komprimovaný 2x - rychlý",
"microsoft/swin2SR-compressed-sr-x4-48": "⚡ Komprimovaný 4x - rychlý",
"microsoft/swin2SR-classical-sr-x2-64": "🎨 Klasický 2x - digitální obrázky",
"microsoft/swin2SR-classical-sr-x4-64": "🎨 Klasický 4x - digitální obrázky",
"stabilityai/stable-diffusion-x4-upscaler": "🎭 SD Upscaler - kreativní vylepšení",
"CompVis/ldm-super-resolution-4x-openimages": "🧠 LDM - generativní upscaling"
}
def process_upscaling(image, scale_factor, model_choice, hf_token):
"""Main processing function"""
# Login to HuggingFace if token provided
if hf_token and hf_token.strip():
try:
login(hf_token)
status_msg = "🔐 Přihlášen k Hugging Face | "
except:
status_msg = "⚠️ Problém s HF tokenem | "
else:
status_msg = "ℹ️ Používám veřejné modely | "
# Perform upscaling
result_image, process_msg = upscaler.upscale_image(image, scale_factor, model_choice)
return result_image, status_msg + process_msg
def get_model_info():
"""Get current model information"""
device_info = f"Zařízení: {upscaler.device.upper()}"
model_info = f"Aktuální model: {upscaler.current_model}"
return f"ℹ️ {device_info} | {model_info}"
# Create Gradio interface
with gr.Blocks(
title="🚀 Photo Upscaler - Hugging Face",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px !important;
margin: auto !important;
}
.title {
text-align: center;
color: #ff6b35;
margin-bottom: 20px;
}
"""
) as demo:
gr.HTML("""
<div class="title">
<h1>🚀 Photo Upscaler s Hugging Face</h1>
<p>Zvětšujte své fotografie pomocí pokročilých AI modelů</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📤 Vstup")
input_image = gr.Image(
label="Nahrajte fotografii",
type="pil",
format="png"
)
scale_factor = gr.Slider(
minimum=1.5,
maximum=4.0,
value=2.0,
step=0.5,
label="Faktor zvětšení",
info="Kolikrát zvětšit obrázek"
)
model_choice = gr.Dropdown(
choices=[(MODEL_DESCRIPTIONS.get(model, model), model) for model in UPSCALING_MODELS],
value="default",
label="Vyberte model",
info="Různé modely pro různé typy obrázků - Real-ESRGAN nejlepší pro fotografie"
)
hf_token = gr.Textbox(
label="Hugging Face Token (volitelné)",
placeholder="hf_xxxxxxxxxxxxx",
type="password",
info="Pro přístup k privátním modelům"
)
upscale_btn = gr.Button(
"🔍 Zvětšit obrázek",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
gr.Markdown("### 📥 Výstup")
output_image = gr.Image(
label="Zvětšený obrázek",
type="pil"
)
status_text = gr.Textbox(
label="Status",
interactive=False,
max_lines=3
)
info_btn = gr.Button("ℹ️ Info o modelu")
# Event handlers
upscale_btn.click(
fn=process_upscaling,
inputs=[input_image, scale_factor, model_choice, hf_token],
outputs=[output_image, status_text]
)
info_btn.click(
fn=get_model_info,
outputs=status_text
)
# Examples and tips
gr.Markdown("### 📋 Tipy pro nejlepší výsledky")
with gr.Row():
with gr.Column():
gr.Markdown("""
**🏆 Nejlepší modely pro fotografie:**
- **Real-ESRGAN**: Nejkvalitnější pro reálné fotky
- **BSRGAN**: Vynikající detail a ostrost
- **SwinIR Large**: Maximální kvalita, pomalejší
- **Clarity Upscaler**: Ultra ostrý výsledek
""")
with gr.Column():
gr.Markdown("""
**⚡ Rychlé modely:**
- **Komprimované modely**: Rychlé zpracování
- **2x modely**: Rychlejší než 4x verze
- **Classical modely**: Pro digitální obrázky
""")
gr.Markdown("""
### 💡 Doporučení podle typu obrázku:
- **Portréty**: Real-ESRGAN nebo SwinIR Large
- **Krajiny**: BSRGAN nebo Clarity Upscaler
- **Staré fotky**: Real-ESRGAN s noise reduction
- **Digitální art**: Classical nebo Stable Diffusion Upscaler
- **Dokumenty**: SwinIR Medium pro čitelnost
### ⚙️ Optimalizace výkonu:
- **GPU**: Automaticky detekováno pro rychlejší zpracování
- **Velikost**: 256-512px pro nejlepší poměr rychlost/kvalita
- **Formát**: PNG zachovává nejvyšší kvalitu
- **HF Token**: Pro přístup k nejnovějším modelům
""")
if __name__ == "__main__":
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |