Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -21,11 +21,18 @@ class Net(keras.Model):
|
|
| 21 |
self.fc2 = keras.layers.Dense(10, activation='relu')
|
| 22 |
self.fc3 = keras.layers.Dense(2)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
def call(self, x):
|
| 25 |
x = self.fc1(x)
|
| 26 |
x = self.fc2(x)
|
| 27 |
x = self.fc3(x)
|
| 28 |
return x
|
|
|
|
| 29 |
# Define a genetic algorithm class
|
| 30 |
class GeneticAlgorithm:
|
| 31 |
def __init__(self, population_size, task_id):
|
|
@@ -38,38 +45,36 @@ class GeneticAlgorithm:
|
|
| 38 |
fitness = []
|
| 39 |
for i, net in enumerate(self.population):
|
| 40 |
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
|
|
|
| 41 |
net.fit(X_train, y_train, epochs=10, verbose=0)
|
| 42 |
loss, accuracy = net.evaluate(X_test, y_test, verbose=0)
|
| 43 |
fitness.append(accuracy)
|
| 44 |
if len(fitness) > 0:
|
| 45 |
-
self.population = [self.population[i] for i in np.argsort(fitness)[-
|
| 46 |
|
| 47 |
def crossover(self):
|
| 48 |
offspring = []
|
| 49 |
-
|
|
|
|
| 50 |
parent1, parent2 = random.sample(self.population, 2)
|
| 51 |
child = Net()
|
| 52 |
-
child.
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
#
|
| 55 |
parent1_weights = parent1.get_weights()
|
| 56 |
parent2_weights = parent2.get_weights()
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
child_weights = []
|
| 60 |
-
for w1, w2 in zip(parent1_weights, parent2_weights):
|
| 61 |
-
child_weights.append((w1 + w2) / 2)
|
| 62 |
-
|
| 63 |
-
# Set the weights of the child network
|
| 64 |
-
child.fc1.set_weights(child_weights[:2])
|
| 65 |
-
child.fc2.set_weights(child_weights[2:4])
|
| 66 |
-
child.fc3.set_weights(child_weights[4:])
|
| 67 |
|
| 68 |
offspring.append(child)
|
| 69 |
self.population += offspring
|
| 70 |
|
| 71 |
def mutation(self):
|
|
|
|
| 72 |
for net in self.population:
|
|
|
|
| 73 |
if random.random() < 0.1:
|
| 74 |
weights = net.get_weights()
|
| 75 |
new_weights = [np.array(w) + np.random.randn(*w.shape) * 0.1 for w in weights]
|
|
@@ -87,9 +92,7 @@ num_generations = st.sidebar.slider("Number of generations", 1, 100, 10)
|
|
| 87 |
gas = None
|
| 88 |
|
| 89 |
# Run the evolution
|
| 90 |
-
gas = []
|
| 91 |
if st.button("Run evolution"):
|
| 92 |
-
gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
|
| 93 |
gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
|
| 94 |
for generation in range(num_generations):
|
| 95 |
for ga in gas:
|
|
@@ -98,47 +101,50 @@ if st.button("Run evolution"):
|
|
| 98 |
ga.mutation()
|
| 99 |
st.write(f"Generation {generation+1} complete")
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
for i in range(len(gas)):
|
| 118 |
-
for j in range(i+1, len(gas)):
|
| 119 |
-
ga1 = gas[i]
|
| 120 |
-
ga2 = gas[j]
|
| 121 |
-
population1 = ga1.population
|
| 122 |
-
population2 = ga2.population
|
| 123 |
-
num_trade = int(0.1 * population_size)
|
| 124 |
-
trade1 = random.sample(population1, num_trade)
|
| 125 |
-
trade2 = random.sample(population2, num_trade)
|
| 126 |
-
ga1.population = population1 + trade2
|
| 127 |
-
ga2.population = population2 + trade1
|
| 128 |
|
| 129 |
-
#
|
| 130 |
-
|
| 131 |
-
for
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
st.write(f"Final accuracy: {np.mean(final_accuracy)}")
|
| 143 |
-
st.write(f"Final accuracy after trading: {np.mean(final_accuracy_after_trade)}")
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
self.fc2 = keras.layers.Dense(10, activation='relu')
|
| 22 |
self.fc3 = keras.layers.Dense(2)
|
| 23 |
|
| 24 |
+
def build(self, input_shape):
|
| 25 |
+
self.fc1.build(input_shape)
|
| 26 |
+
self.fc2.build(self.fc1.output_shape)
|
| 27 |
+
self.fc3.build(self.fc2.output_shape)
|
| 28 |
+
self.built = True
|
| 29 |
+
|
| 30 |
def call(self, x):
|
| 31 |
x = self.fc1(x)
|
| 32 |
x = self.fc2(x)
|
| 33 |
x = self.fc3(x)
|
| 34 |
return x
|
| 35 |
+
|
| 36 |
# Define a genetic algorithm class
|
| 37 |
class GeneticAlgorithm:
|
| 38 |
def __init__(self, population_size, task_id):
|
|
|
|
| 45 |
fitness = []
|
| 46 |
for i, net in enumerate(self.population):
|
| 47 |
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
| 48 |
+
net.build(input_shape=(None, 10))
|
| 49 |
net.fit(X_train, y_train, epochs=10, verbose=0)
|
| 50 |
loss, accuracy = net.evaluate(X_test, y_test, verbose=0)
|
| 51 |
fitness.append(accuracy)
|
| 52 |
if len(fitness) > 0:
|
| 53 |
+
self.population = [self.population[i] for i in np.argsort(fitness)[-self.population_size//2:]]
|
| 54 |
|
| 55 |
def crossover(self):
|
| 56 |
offspring = []
|
| 57 |
+
X = np.random.rand(1, 10)
|
| 58 |
+
for _ in range(self.population_size//2):
|
| 59 |
parent1, parent2 = random.sample(self.population, 2)
|
| 60 |
child = Net()
|
| 61 |
+
child.build(input_shape=(None, 10))
|
| 62 |
+
parent1.build(input_shape=(None, 10))
|
| 63 |
+
parent2.build(input_shape=(None, 10))
|
| 64 |
|
| 65 |
+
# Average the weights of the two parents
|
| 66 |
parent1_weights = parent1.get_weights()
|
| 67 |
parent2_weights = parent2.get_weights()
|
| 68 |
+
child_weights = [(np.array(w1) + np.array(w2)) / 2 for w1, w2 in zip(parent1_weights, parent2_weights)]
|
| 69 |
+
child.set_weights(child_weights)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
offspring.append(child)
|
| 72 |
self.population += offspring
|
| 73 |
|
| 74 |
def mutation(self):
|
| 75 |
+
X = np.random.rand(1, 10)
|
| 76 |
for net in self.population:
|
| 77 |
+
net.build(input_shape=(None, 10))
|
| 78 |
if random.random() < 0.1:
|
| 79 |
weights = net.get_weights()
|
| 80 |
new_weights = [np.array(w) + np.random.randn(*w.shape) * 0.1 for w in weights]
|
|
|
|
| 92 |
gas = None
|
| 93 |
|
| 94 |
# Run the evolution
|
|
|
|
| 95 |
if st.button("Run evolution"):
|
|
|
|
| 96 |
gas = [GeneticAlgorithm(population_size, task_id) for task_id in range(num_tasks)]
|
| 97 |
for generation in range(num_generations):
|
| 98 |
for ga in gas:
|
|
|
|
| 101 |
ga.mutation()
|
| 102 |
st.write(f"Generation {generation+1} complete")
|
| 103 |
|
| 104 |
+
# Evaluate the final population
|
| 105 |
+
if gas is not None:
|
| 106 |
+
final_accuracy = []
|
| 107 |
+
for task_id, ga in enumerate(gas):
|
| 108 |
+
X_train, X_test, y_train, y_test = generate_dataset(task_id)
|
| 109 |
+
accuracy = []
|
| 110 |
+
for net in ga.population:
|
| 111 |
+
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
| 112 |
+
net.build(input_shape=(None, 10))
|
| 113 |
+
net.fit(X_train, y_train, epochs=10, verbose=0)
|
| 114 |
+
loss, acc = net.evaluate(X_test, y_test, verbose=0)
|
| 115 |
+
accuracy.append(acc)
|
| 116 |
+
if len(accuracy) > 0:
|
| 117 |
+
final_accuracy.append(np.mean(accuracy))
|
| 118 |
+
if len(final_accuracy) > 0:
|
| 119 |
+
st.write(f"Final accuracy: {np.mean(final_accuracy)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
# Trade populations between tasks
|
| 122 |
+
if gas is not None:
|
| 123 |
+
for i in range(len(gas)):
|
| 124 |
+
for j in range(i+1, len(gas)):
|
| 125 |
+
ga1 = gas[i]
|
| 126 |
+
ga2 = gas[j]
|
| 127 |
+
population1 = ga1.population
|
| 128 |
+
population2 = ga2.population
|
| 129 |
+
num_trade = int(0.1 * population_size)
|
| 130 |
+
trade1 = random.sample(population1, num_trade)
|
| 131 |
+
trade2 = random.sample(population2, num_trade)
|
| 132 |
+
ga1.population = population1 + trade2
|
| 133 |
+
ga2.population = population2 + trade1
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
# Evaluate the final population after trading
|
| 136 |
+
if gas is not None:
|
| 137 |
+
final_accuracy_after_trade = []
|
| 138 |
+
for task_id, ga in enumerate(gas):
|
| 139 |
+
X_train, X_test, y_train, y_test = generate_dataset(task_id)
|
| 140 |
+
accuracy = []
|
| 141 |
+
for net in ga.population:
|
| 142 |
+
net.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
|
| 143 |
+
net.build(input_shape=(None, 10))
|
| 144 |
+
net.fit(X_train, y_train, epochs=10, verbose=0)
|
| 145 |
+
loss, acc = net.evaluate(X_test, y_test, verbose=0)
|
| 146 |
+
accuracy.append(acc)
|
| 147 |
+
final_accuracy_after_trade.append(np.mean(accuracy))
|
| 148 |
+
if len(final_accuracy) > 0 and len(final_accuracy_after_trade) > 0:
|
| 149 |
+
st.write(f"Final accuracy: {np.mean(final_accuracy)}")
|
| 150 |
+
st.write(f"Final accuracy after trading: {np.mean(final_accuracy_after_trade)}")
|