Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -11,103 +11,674 @@ import tempfile
|
|
11 |
from PIL import Image
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
import shutil
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
repo_id=MODEL_ID,
|
24 |
-
filename=CKPT_FILE,
|
25 |
-
cache_dir="./models",
|
26 |
-
local_dir_use_symlinks=False
|
27 |
)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
# -------------------------
|
83 |
-
css = """body { background-color:#111; color:#eee } .gradio-container { max-width:800px; }"""
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
with gr.Blocks(css=css) as demo:
|
86 |
-
gr.Markdown("#
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
from PIL import Image
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
import shutil
|
14 |
+
|
15 |
+
from inference import (
|
16 |
+
create_ltx_video_pipeline,
|
17 |
+
create_latent_upsampler,
|
18 |
+
load_image_to_tensor_with_resize_and_crop,
|
19 |
+
seed_everething,
|
20 |
+
get_device,
|
21 |
+
calculate_padding,
|
22 |
+
load_media_file
|
|
|
|
|
|
|
|
|
23 |
)
|
24 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
|
25 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
26 |
+
|
27 |
+
# Configuración del modelo gratuito optimizada
|
28 |
+
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
|
29 |
+
|
30 |
+
# Alternativas de modelos gratuitos que puedes usar:
|
31 |
+
AVAILABLE_FREE_MODELS = {
|
32 |
+
"ltx-video": {
|
33 |
+
"repo": "Lightricks/LTX-Video",
|
34 |
+
"config": "configs/ltxv-13b-0.9.7-distilled.yaml"
|
35 |
+
},
|
36 |
+
"zeroscope": {
|
37 |
+
"repo": "cerspense/zeroscope_v2_576w",
|
38 |
+
"config": None # Usar configuración por defecto
|
39 |
+
},
|
40 |
+
"animatediff": {
|
41 |
+
"repo": "guoyww/animatediff-motion-adapter-v1-5-2",
|
42 |
+
"config": None
|
43 |
+
}
|
44 |
+
}
|
45 |
+
|
46 |
+
# Configuración del modelo seleccionado
|
47 |
+
SELECTED_MODEL = "ltx-video" # Cambia esto por el modelo que prefieras
|
48 |
+
MODEL_CONFIG = AVAILABLE_FREE_MODELS[SELECTED_MODEL]
|
49 |
+
|
50 |
+
# Cargar configuración
|
51 |
+
if MODEL_CONFIG["config"]:
|
52 |
+
with open(MODEL_CONFIG["config"], "r") as file:
|
53 |
+
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
54 |
+
else:
|
55 |
+
# Configuración por defecto para modelos sin config específico
|
56 |
+
PIPELINE_CONFIG_YAML = {
|
57 |
+
"max_resolution": 1280,
|
58 |
+
"checkpoint_path": "model.safetensors",
|
59 |
+
"precision": "bfloat16",
|
60 |
+
"text_encoder_model_name_or_path": "google/flan-t5-xl",
|
61 |
+
"sampler": "from_checkpoint",
|
62 |
+
"spatial_upscaler_model_path": None,
|
63 |
+
"decode_timestep": 0.0,
|
64 |
+
"decode_noise_scale": 0.0,
|
65 |
+
"stochastic_sampling": False,
|
66 |
+
"first_pass": {
|
67 |
+
"guidance_scale": 3.0,
|
68 |
+
"timesteps": None,
|
69 |
+
"stg_scale": 0.0,
|
70 |
+
"rescaling_scale": 1.0,
|
71 |
+
"skip_block_list": None
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
+
LTX_REPO = MODEL_CONFIG["repo"]
|
76 |
+
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
|
77 |
+
MAX_NUM_FRAMES = 257
|
78 |
+
|
79 |
+
FPS = 30.0
|
80 |
+
|
81 |
+
# Variables globales para modelos cargados
|
82 |
+
pipeline_instance = None
|
83 |
+
latent_upsampler_instance = None
|
84 |
+
models_dir = "downloaded_models_gradio_cpu_init"
|
85 |
+
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
86 |
+
|
87 |
+
def setup_free_model():
|
88 |
+
"""Configura el modelo gratuito seleccionado"""
|
89 |
+
global pipeline_instance, latent_upsampler_instance
|
90 |
+
|
91 |
+
print(f"Configurando modelo gratuito: {SELECTED_MODEL}")
|
92 |
+
print(f"Repositorio: {LTX_REPO}")
|
93 |
+
|
94 |
+
try:
|
95 |
+
# Descargar modelo principal
|
96 |
+
print("Descargando modelo principal (si no está presente)...")
|
97 |
+
if SELECTED_MODEL == "ltx-video":
|
98 |
+
distilled_model_actual_path = hf_hub_download(
|
99 |
+
repo_id=LTX_REPO,
|
100 |
+
filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
101 |
+
local_dir=models_dir,
|
102 |
+
local_dir_use_symlinks=False
|
103 |
+
)
|
104 |
+
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
|
105 |
+
print(f"Ruta del modelo: {distilled_model_actual_path}")
|
106 |
+
|
107 |
+
# Descargar upscaler espacial si está disponible
|
108 |
+
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
|
109 |
+
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
|
110 |
+
spatial_upscaler_actual_path = hf_hub_download(
|
111 |
+
repo_id=LTX_REPO,
|
112 |
+
filename=SPATIAL_UPSCALER_FILENAME,
|
113 |
+
local_dir=models_dir,
|
114 |
+
local_dir_use_symlinks=False
|
115 |
+
)
|
116 |
+
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
|
117 |
+
print(f"Ruta del upscaler espacial: {spatial_upscaler_actual_path}")
|
118 |
+
|
119 |
+
elif SELECTED_MODEL == "zeroscope":
|
120 |
+
# Configuración específica para Zeroscope
|
121 |
+
print("Configurando Zeroscope...")
|
122 |
+
# Zeroscope usa una configuración diferente
|
123 |
+
from diffusers import DiffusionPipeline
|
124 |
+
pipeline_instance = DiffusionPipeline.from_pretrained(
|
125 |
+
LTX_REPO,
|
126 |
+
torch_dtype=torch.float16
|
127 |
+
)
|
128 |
+
return
|
129 |
+
|
130 |
+
elif SELECTED_MODEL == "animatediff":
|
131 |
+
# Configuración específica para AnimateDiff
|
132 |
+
print("Configurando AnimateDiff...")
|
133 |
+
from diffusers import AnimateDiffPipeline, MotionAdapter
|
134 |
+
adapter = MotionAdapter.from_pretrained(LTX_REPO)
|
135 |
+
pipeline_instance = AnimateDiffPipeline.from_pretrained(
|
136 |
+
"runwayml/stable-diffusion-v1-5",
|
137 |
+
motion_adapter=adapter,
|
138 |
+
torch_dtype=torch.float16
|
139 |
+
)
|
140 |
+
return
|
141 |
+
|
142 |
+
# Crear pipeline LTX Video en CPU
|
143 |
+
print("Creando pipeline LTX Video en CPU...")
|
144 |
+
pipeline_instance = create_ltx_video_pipeline(
|
145 |
+
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
|
146 |
+
precision=PIPELINE_CONFIG_YAML["precision"],
|
147 |
+
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
148 |
+
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
149 |
+
device="cpu",
|
150 |
+
enhance_prompt=False,
|
151 |
+
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML.get("prompt_enhancer_image_caption_model_name_or_path"),
|
152 |
+
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML.get("prompt_enhancer_llm_model_name_or_path"),
|
153 |
+
)
|
154 |
+
print("Pipeline LTX Video creado en CPU.")
|
155 |
+
|
156 |
+
# Crear upsampler latente si está disponible
|
157 |
+
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
|
158 |
+
print("Creando upsampler latente en CPU...")
|
159 |
+
latent_upsampler_instance = create_latent_upsampler(
|
160 |
+
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
|
161 |
+
device="cpu"
|
162 |
+
)
|
163 |
+
print("Upsampler latente creado en CPU.")
|
164 |
+
|
165 |
+
# Mover a dispositivo de inferencia
|
166 |
+
target_inference_device = "cuda" if torch.cuda.is_available() else "cpu"
|
167 |
+
print(f"Dispositivo de inferencia objetivo: {target_inference_device}")
|
168 |
+
|
169 |
+
pipeline_instance.to(target_inference_device)
|
170 |
+
if latent_upsampler_instance:
|
171 |
+
latent_upsampler_instance.to(target_inference_device)
|
172 |
+
|
173 |
+
except Exception as e:
|
174 |
+
print(f"Error configurando el modelo: {e}")
|
175 |
+
print("Intentando configuración alternativa...")
|
176 |
+
# Configuración de respaldo
|
177 |
+
setup_fallback_model()
|
178 |
+
|
179 |
+
def setup_fallback_model():
|
180 |
+
"""Configuración de respaldo usando un modelo más simple"""
|
181 |
+
global pipeline_instance
|
182 |
+
print("Configurando modelo de respaldo...")
|
183 |
+
|
184 |
+
try:
|
185 |
+
from diffusers import DiffusionPipeline
|
186 |
+
# Usar un modelo más ligero como respaldo
|
187 |
+
pipeline_instance = DiffusionPipeline.from_pretrained(
|
188 |
+
"cerspense/zeroscope_v2_576w",
|
189 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
190 |
+
)
|
191 |
+
print("Modelo de respaldo configurado exitosamente.")
|
192 |
+
except Exception as e:
|
193 |
+
print(f"Error configurando modelo de respaldo: {e}")
|
194 |
+
raise
|
195 |
+
|
196 |
+
# Configurar el modelo
|
197 |
+
setup_free_model()
|
198 |
+
|
199 |
+
# Función para cambiar de modelo dinámicamente
|
200 |
+
def switch_model(model_name):
|
201 |
+
"""Cambia dinámicamente entre modelos disponibles"""
|
202 |
+
global SELECTED_MODEL, pipeline_instance, latent_upsampler_instance
|
203 |
+
|
204 |
+
if model_name not in AVAILABLE_FREE_MODELS:
|
205 |
+
raise ValueError(f"Modelo {model_name} no está disponible")
|
206 |
+
|
207 |
+
print(f"Cambiando a modelo: {model_name}")
|
208 |
+
SELECTED_MODEL = model_name
|
209 |
+
|
210 |
+
# Limpiar memoria
|
211 |
+
if pipeline_instance:
|
212 |
+
del pipeline_instance
|
213 |
+
if latent_upsampler_instance:
|
214 |
+
del latent_upsampler_instance
|
215 |
+
|
216 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
217 |
+
|
218 |
+
# Reconfigurar con el nuevo modelo
|
219 |
+
setup_free_model()
|
220 |
+
|
221 |
+
return f"Modelo cambiado a: {model_name}"
|
222 |
+
|
223 |
+
# Resto del código permanece igual...
|
224 |
+
MIN_DIM_SLIDER = 256
|
225 |
+
TARGET_FIXED_SIDE = 768
|
226 |
+
|
227 |
+
def calculate_new_dimensions(orig_w, orig_h):
|
228 |
+
"""
|
229 |
+
Calcula nuevas dimensiones para los sliders de altura y anchura basándose en las dimensiones originales del medio.
|
230 |
+
"""
|
231 |
+
if orig_w == 0 or orig_h == 0:
|
232 |
+
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
|
233 |
+
|
234 |
+
if orig_w >= orig_h: # Paisaje o cuadrado
|
235 |
+
new_h = TARGET_FIXED_SIDE
|
236 |
+
aspect_ratio = orig_w / orig_h
|
237 |
+
new_w_ideal = new_h * aspect_ratio
|
238 |
+
|
239 |
+
new_w = round(new_w_ideal / 32) * 32
|
240 |
+
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
|
241 |
+
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
|
242 |
+
else: # Retrato
|
243 |
+
new_w = TARGET_FIXED_SIDE
|
244 |
+
aspect_ratio = orig_h / orig_w
|
245 |
+
new_h_ideal = new_w * aspect_ratio
|
246 |
+
|
247 |
+
new_h = round(new_h_ideal / 32) * 32
|
248 |
+
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
|
249 |
+
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
|
250 |
+
|
251 |
+
return int(new_h), int(new_w)
|
252 |
+
|
253 |
+
def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
254 |
+
height_ui, width_ui, mode,
|
255 |
+
duration_ui,
|
256 |
+
ui_frames_to_use,
|
257 |
+
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
|
258 |
+
progress):
|
259 |
+
# Optimización para recursos limitados
|
260 |
+
if duration_ui > 5: # Reducido de 7 a 5 para modelos gratuitos
|
261 |
+
return 60 # Reducido de 75 a 60
|
262 |
+
else:
|
263 |
+
return 45 # Reducido de 60 a 45
|
264 |
+
|
265 |
+
@spaces.GPU(duration=get_duration)
|
266 |
+
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
|
267 |
+
height_ui, width_ui, mode,
|
268 |
+
duration_ui,
|
269 |
+
ui_frames_to_use,
|
270 |
+
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
|
271 |
+
progress=gr.Progress(track_tqdm=True)):
|
272 |
+
|
273 |
+
if randomize_seed:
|
274 |
+
seed_ui = random.randint(0, 2**32 - 1)
|
275 |
+
seed_everething(int(seed_ui))
|
276 |
+
|
277 |
+
# Optimizar para modelos gratuitos
|
278 |
+
target_frames_ideal = min(duration_ui * FPS, 120) # Limitar frames para recursos
|
279 |
+
target_frames_rounded = round(target_frames_ideal)
|
280 |
+
if target_frames_rounded < 1:
|
281 |
+
target_frames_rounded = 1
|
282 |
+
|
283 |
+
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
284 |
+
actual_num_frames = int(n_val * 8 + 1)
|
285 |
+
|
286 |
+
actual_num_frames = max(9, actual_num_frames)
|
287 |
+
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
|
288 |
+
|
289 |
+
# Optimizar resolución para modelos gratuitos
|
290 |
+
actual_height = min(int(height_ui), 512) # Limitar altura
|
291 |
+
actual_width = min(int(width_ui), 768) # Limitar anchura
|
292 |
+
|
293 |
+
height_padded = ((actual_height - 1) // 32 + 1) * 32
|
294 |
+
width_padded = ((actual_width - 1) // 32 + 1) * 32
|
295 |
+
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
|
296 |
+
|
297 |
+
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
|
298 |
+
|
299 |
+
# Configuración optimizada para modelos gratuitos
|
300 |
+
call_kwargs = {
|
301 |
+
"prompt": prompt,
|
302 |
+
"negative_prompt": negative_prompt,
|
303 |
+
"height": height_padded,
|
304 |
+
"width": width_padded,
|
305 |
+
"num_frames": num_frames_padded,
|
306 |
+
"frame_rate": int(FPS),
|
307 |
+
"generator": torch.Generator(device=get_device()).manual_seed(int(seed_ui)),
|
308 |
+
"output_type": "pt",
|
309 |
+
"conditioning_items": None,
|
310 |
+
"media_items": None,
|
311 |
+
"decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep", 0.0),
|
312 |
+
"decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale", 0.0),
|
313 |
+
"stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling", False),
|
314 |
+
"image_cond_noise_scale": 0.15,
|
315 |
+
"is_video": True,
|
316 |
+
"vae_per_channel_normalize": True,
|
317 |
+
"mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"),
|
318 |
+
"offload_to_cpu": True, # Activar para ahorrar memoria
|
319 |
+
"enhance_prompt": False,
|
320 |
+
}
|
321 |
+
|
322 |
+
# Configurar estrategia de capa de salto
|
323 |
+
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
|
324 |
+
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
|
325 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
|
326 |
+
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
|
327 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
|
328 |
+
elif stg_mode_str.lower() in ["stg_r", "residual"]:
|
329 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
|
330 |
+
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
|
331 |
+
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
|
332 |
+
|
333 |
+
# Procesar entrada de imagen o video
|
334 |
+
target_inference_device = get_device()
|
335 |
+
|
336 |
+
if mode == "image-to-video" and input_image_filepath:
|
337 |
+
try:
|
338 |
+
media_tensor = load_image_to_tensor_with_resize_and_crop(
|
339 |
+
input_image_filepath, actual_height, actual_width
|
340 |
+
)
|
341 |
+
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
|
342 |
+
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
|
343 |
+
except Exception as e:
|
344 |
+
print(f"Error cargando imagen {input_image_filepath}: {e}")
|
345 |
+
raise gr.Error(f"No se pudo cargar la imagen: {e}")
|
346 |
+
|
347 |
+
elif mode == "video-to-video" and input_video_filepath:
|
348 |
+
try:
|
349 |
+
call_kwargs["media_items"] = load_media_file(
|
350 |
+
media_path=input_video_filepath,
|
351 |
+
height=actual_height,
|
352 |
+
width=actual_width,
|
353 |
+
max_frames=int(ui_frames_to_use),
|
354 |
+
padding=padding_values
|
355 |
+
).to(target_inference_device)
|
356 |
+
except Exception as e:
|
357 |
+
print(f"Error cargando video {input_video_filepath}: {e}")
|
358 |
+
raise gr.Error(f"No se pudo cargar el video: {e}")
|
359 |
+
|
360 |
+
print(f"Moviendo modelos a {target_inference_device} para inferencia...")
|
361 |
+
|
362 |
+
# Generar video
|
363 |
+
result_images_tensor = None
|
364 |
+
try:
|
365 |
+
if improve_texture_flag and latent_upsampler_instance:
|
366 |
+
# Usar pipeline multi-escala
|
367 |
+
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, latent_upsampler_instance)
|
368 |
+
|
369 |
+
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
|
370 |
+
first_pass_args["guidance_scale"] = float(ui_guidance_scale)
|
371 |
+
first_pass_args.pop("num_inference_steps", None)
|
372 |
+
|
373 |
+
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
|
374 |
+
second_pass_args["guidance_scale"] = float(ui_guidance_scale)
|
375 |
+
second_pass_args.pop("num_inference_steps", None)
|
376 |
+
|
377 |
+
multi_scale_call_kwargs = call_kwargs.copy()
|
378 |
+
multi_scale_call_kwargs.update({
|
379 |
+
"downscale_factor": PIPELINE_CONFIG_YAML.get("downscale_factor", 2),
|
380 |
+
"first_pass": first_pass_args,
|
381 |
+
"second_pass": second_pass_args,
|
382 |
+
})
|
383 |
+
|
384 |
+
print(f"Llamando pipeline multi-escala...")
|
385 |
+
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
|
386 |
+
else:
|
387 |
+
# Usar pipeline simple
|
388 |
+
single_pass_call_kwargs = call_kwargs.copy()
|
389 |
+
first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {})
|
390 |
+
|
391 |
+
single_pass_call_kwargs["timesteps"] = first_pass_config.get("timesteps")
|
392 |
+
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale)
|
393 |
+
single_pass_call_kwargs["stg_scale"] = first_pass_config.get("stg_scale", 0.0)
|
394 |
+
single_pass_call_kwargs["rescaling_scale"] = first_pass_config.get("rescaling_scale", 1.0)
|
395 |
+
single_pass_call_kwargs["skip_block_list"] = first_pass_config.get("skip_block_list")
|
396 |
+
|
397 |
+
print(f"Llamando pipeline base...")
|
398 |
+
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
|
399 |
+
|
400 |
+
except Exception as e:
|
401 |
+
print(f"Error en la generación: {e}")
|
402 |
+
raise gr.Error(f"Error en la generación: {e}")
|
403 |
+
|
404 |
+
if result_images_tensor is None:
|
405 |
+
raise gr.Error("La generación falló.")
|
406 |
+
|
407 |
+
# Procesar resultado
|
408 |
+
pad_left, pad_right, pad_top, pad_bottom = padding_values
|
409 |
+
slice_h_end = -pad_bottom if pad_bottom > 0 else None
|
410 |
+
slice_w_end = -pad_right if pad_right > 0 else None
|
411 |
|
412 |
+
result_images_tensor = result_images_tensor[
|
413 |
+
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
|
414 |
+
]
|
415 |
+
|
416 |
+
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
|
417 |
+
video_np = np.clip(video_np, 0, 1)
|
418 |
+
video_np = (video_np * 255).astype(np.uint8)
|
419 |
+
|
420 |
+
# Guardar video
|
421 |
+
temp_dir = tempfile.mkdtemp()
|
422 |
+
timestamp = random.randint(10000,99999)
|
423 |
+
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
|
424 |
+
|
425 |
+
try:
|
426 |
+
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
|
427 |
+
for frame_idx in range(video_np.shape[0]):
|
428 |
+
progress(frame_idx / video_np.shape[0], desc="Guardando video")
|
429 |
+
video_writer.append_data(video_np[frame_idx])
|
430 |
+
except Exception as e:
|
431 |
+
print(f"Error guardando video: {e}")
|
432 |
+
try:
|
433 |
+
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
|
434 |
+
for frame_idx in range(video_np.shape[0]):
|
435 |
+
progress(frame_idx / video_np.shape[0], desc="Guardando video (respaldo)")
|
436 |
+
video_writer.append_data(video_np[frame_idx])
|
437 |
+
except Exception as e2:
|
438 |
+
print(f"Error en respaldo de guardado: {e2}")
|
439 |
+
raise gr.Error(f"Error guardando video: {e2}")
|
440 |
+
|
441 |
+
return output_video_path, seed_ui
|
442 |
+
|
443 |
+
# Funciones de actualización de tarea
|
444 |
+
def update_task_image():
|
445 |
+
return "image-to-video"
|
446 |
|
447 |
+
def update_task_text():
|
448 |
+
return "text-to-video"
|
|
|
|
|
449 |
|
450 |
+
def update_task_video():
|
451 |
+
return "video-to-video"
|
452 |
+
|
453 |
+
# CSS para la interfaz
|
454 |
+
css="""
|
455 |
+
#col-container {
|
456 |
+
margin: 0 auto;
|
457 |
+
max-width: 900px;
|
458 |
+
}
|
459 |
+
.model-info {
|
460 |
+
background: #f0f0f0;
|
461 |
+
padding: 10px;
|
462 |
+
border-radius: 5px;
|
463 |
+
margin-bottom: 10px;
|
464 |
+
}
|
465 |
+
"""
|
466 |
+
|
467 |
+
# Interfaz Gradio
|
468 |
with gr.Blocks(css=css) as demo:
|
469 |
+
gr.Markdown("# Generador de Video LTX - Modelos Gratuitos")
|
470 |
+
gr.Markdown("Generación de video de alta calidad usando modelos completamente gratuitos.")
|
471 |
+
|
472 |
+
with gr.Row():
|
473 |
+
with gr.Column():
|
474 |
+
# Selector de modelo
|
475 |
+
with gr.Accordion("Configuración de Modelo", open=False):
|
476 |
+
model_selector = gr.Dropdown(
|
477 |
+
choices=list(AVAILABLE_FREE_MODELS.keys()),
|
478 |
+
value=SELECTED_MODEL,
|
479 |
+
label="Modelo a usar",
|
480 |
+
info="Todos los modelos son completamente gratuitos"
|
481 |
+
)
|
482 |
+
model_info = gr.Markdown(f"**Modelo actual:** {SELECTED_MODEL}\n**Repositorio:** {LTX_REPO}", elem_classes="model-info")
|
483 |
+
switch_btn = gr.Button("Cambiar Modelo", variant="secondary")
|
484 |
+
|
485 |
+
with gr.Tab("imagen-a-video") as image_tab:
|
486 |
+
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
|
487 |
+
image_i2v = gr.Image(label="Imagen de Entrada", type="filepath", sources=["upload", "webcam", "clipboard"])
|
488 |
+
i2v_prompt = gr.Textbox(label="Prompt", value="La criatura de la imagen comienza a moverse", lines=3)
|
489 |
+
i2v_button = gr.Button("Generar Imagen-a-Video", variant="primary")
|
490 |
+
|
491 |
+
with gr.Tab("texto-a-video") as text_tab:
|
492 |
+
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
|
493 |
+
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
|
494 |
+
t2v_prompt = gr.Textbox(label="Prompt", value="Un majestuoso dragón volando sobre un castillo medieval", lines=3)
|
495 |
+
t2v_button = gr.Button("Generar Texto-a-Video", variant="primary")
|
496 |
+
|
497 |
+
with gr.Tab("video-a-video", visible=False) as video_tab:
|
498 |
+
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
|
499 |
+
video_v2v = gr.Video(label="Video de Entrada", sources=["upload", "webcam"])
|
500 |
+
frames_to_use = gr.Slider(label="Frames a usar del video de entrada", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8)
|
501 |
+
v2v_prompt = gr.Textbox(label="Prompt", value="Cambiar el estilo a anime cinematográfico", lines=3)
|
502 |
+
v2v_button = gr.Button("Generar Video-a-Video", variant="primary")
|
503 |
+
|
504 |
+
duration_input = gr.Slider(
|
505 |
+
label="Duración del Video (segundos)",
|
506 |
+
minimum=0.3,
|
507 |
+
maximum=5.0, # Reducido para modelos gratuitos
|
508 |
+
value=2,
|
509 |
+
step=0.1,
|
510 |
+
info="Duración objetivo del video (0.3s a 5.0s)"
|
511 |
+
)
|
512 |
+
improve_texture = gr.Checkbox(
|
513 |
+
label="Mejorar Textura (multi-escala)",
|
514 |
+
value=False, # Desactivado por defecto para ahorrar recursos
|
515 |
+
info="Usa generación de dos pasadas para mejor calidad, pero es más lento."
|
516 |
+
)
|
517 |
+
|
518 |
+
with gr.Column():
|
519 |
+
output_video = gr.Video(label="Video Generado", interactive=False)
|
520 |
+
|
521 |
+
with gr.Accordion("Configuración Avanzada", open=False):
|
522 |
+
mode = gr.Dropdown(["texto-a-video", "imagen-a-video", "video-a-video"], label="tarea", value="imagen-a-video", visible=False)
|
523 |
+
negative_prompt_input = gr.Textbox(
|
524 |
+
label="Prompt Negativo",
|
525 |
+
value="peor calidad, movimiento inconsistente, borroso, tembloroso, distorsionado",
|
526 |
+
lines=2
|
527 |
+
)
|
528 |
+
with gr.Row():
|
529 |
+
seed_input = gr.Number(label="Semilla", value=42, precision=0, minimum=0, maximum=2**32-1)
|
530 |
+
randomize_seed_input = gr.Checkbox(label="Semilla Aleatoria", value=True)
|
531 |
+
with gr.Row():
|
532 |
+
guidance_scale_input = gr.Slider(
|
533 |
+
label="Escala de Guía (CFG)",
|
534 |
+
minimum=1.0,
|
535 |
+
maximum=7.0, # Reducido para modelos gratuitos
|
536 |
+
value=3.0,
|
537 |
+
step=0.1
|
538 |
+
)
|
539 |
+
with gr.Row():
|
540 |
+
height_input = gr.Slider(
|
541 |
+
label="Altura",
|
542 |
+
value=512,
|
543 |
+
step=32,
|
544 |
+
minimum=MIN_DIM_SLIDER,
|
545 |
+
maximum=512, # Limitado para modelos gratuitos
|
546 |
+
info="Debe ser divisible por 32."
|
547 |
+
)
|
548 |
+
width_input = gr.Slider(
|
549 |
+
label="Anchura",
|
550 |
+
value=704,
|
551 |
+
step=32,
|
552 |
+
minimum=MIN_DIM_SLIDER,
|
553 |
+
maximum=768, # Limitado para modelos gratuitos
|
554 |
+
info="Debe ser divisible por 32."
|
555 |
+
)
|
556 |
+
|
557 |
+
# Manejadores de eventos
|
558 |
+
def handle_image_upload_for_dims(image_filepath, current_h, current_w):
|
559 |
+
if not image_filepath:
|
560 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
561 |
+
try:
|
562 |
+
img = Image.open(image_filepath)
|
563 |
+
orig_w, orig_h = img.size
|
564 |
+
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
|
565 |
+
# Limitar para modelos gratuitos
|
566 |
+
new_h = min(new_h, 512)
|
567 |
+
new_w = min(new_w, 768)
|
568 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
569 |
+
except Exception as e:
|
570 |
+
print(f"Error procesando imagen: {e}")
|
571 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
572 |
+
|
573 |
+
def handle_video_upload_for_dims(video_filepath, current_h, current_w):
|
574 |
+
if not video_filepath:
|
575 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
576 |
+
try:
|
577 |
+
video_filepath_str = str(video_filepath)
|
578 |
+
if not os.path.exists(video_filepath_str):
|
579 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
580 |
+
|
581 |
+
with imageio.get_reader(video_filepath_str) as reader:
|
582 |
+
meta = reader.get_meta_data()
|
583 |
+
if 'size' in meta:
|
584 |
+
orig_w, orig_h = meta['size']
|
585 |
+
else:
|
586 |
+
first_frame = reader.get_data(0)
|
587 |
+
orig_h, orig_w = first_frame.shape[0], first_frame.shape[1]
|
588 |
+
|
589 |
+
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
|
590 |
+
# Limitar para modelos gratuitos
|
591 |
+
new_h = min(new_h, 512)
|
592 |
+
new_w = min(new_w, 768)
|
593 |
+
return gr.update(value=new_h), gr.update(value=new_w)
|
594 |
+
except Exception as e:
|
595 |
+
print(f"Error procesando video: {e}")
|
596 |
+
return gr.update(value=current_h), gr.update(value=current_w)
|
597 |
+
|
598 |
+
# Configurar eventos
|
599 |
+
image_i2v.upload(
|
600 |
+
fn=handle_image_upload_for_dims,
|
601 |
+
inputs=[image_i2v, height_input, width_input],
|
602 |
+
outputs=[height_input, width_input]
|
603 |
+
)
|
604 |
+
|
605 |
+
video_v2v.upload(
|
606 |
+
fn=handle_video_upload_for_dims,
|
607 |
+
inputs=[video_v2v, height_input, width_input],
|
608 |
+
outputs=[height_input, width_input]
|
609 |
+
)
|
610 |
+
|
611 |
+
# Cambio de modelo
|
612 |
+
# Cambio de modelo
|
613 |
+
switch_btn.click(
|
614 |
+
fn=switch_model,
|
615 |
+
inputs=[model_selector],
|
616 |
+
outputs=[model_info]
|
617 |
+
)
|
618 |
+
|
619 |
+
# Botón: Imagen a Video
|
620 |
+
i2v_button.click(
|
621 |
+
fn=generate,
|
622 |
+
inputs=[
|
623 |
+
i2v_prompt,
|
624 |
+
negative_prompt_input,
|
625 |
+
image_i2v,
|
626 |
+
video_i_hidden,
|
627 |
+
height_input,
|
628 |
+
width_input,
|
629 |
+
mode,
|
630 |
+
duration_input,
|
631 |
+
frames_to_use,
|
632 |
+
seed_input,
|
633 |
+
randomize_seed_input,
|
634 |
+
guidance_scale_input,
|
635 |
+
improve_texture
|
636 |
+
],
|
637 |
+
outputs=[output_video, seed_input]
|
638 |
+
)
|
639 |
+
|
640 |
+
# Botón: Texto a Video
|
641 |
+
t2v_button.click(
|
642 |
+
fn=generate,
|
643 |
+
inputs=[
|
644 |
+
t2v_prompt,
|
645 |
+
negative_prompt_input,
|
646 |
+
image_n_hidden,
|
647 |
+
video_n_hidden,
|
648 |
+
height_input,
|
649 |
+
width_input,
|
650 |
+
mode,
|
651 |
+
duration_input,
|
652 |
+
frames_to_use,
|
653 |
+
seed_input,
|
654 |
+
randomize_seed_input,
|
655 |
+
guidance_scale_input,
|
656 |
+
improve_texture
|
657 |
+
],
|
658 |
+
outputs=[output_video, seed_input]
|
659 |
+
)
|
660 |
+
|
661 |
+
# Botón: Video a Video
|
662 |
+
v2v_button.click(
|
663 |
+
fn=generate,
|
664 |
+
inputs=[
|
665 |
+
v2v_prompt,
|
666 |
+
negative_prompt_input,
|
667 |
+
image_v_hidden,
|
668 |
+
video_v2v,
|
669 |
+
height_input,
|
670 |
+
width_input,
|
671 |
+
mode,
|
672 |
+
duration_input,
|
673 |
+
frames_to_use,
|
674 |
+
seed_input,
|
675 |
+
randomize_seed_input,
|
676 |
+
guidance_scale_input,
|
677 |
+
improve_texture
|
678 |
+
],
|
679 |
+
outputs=[output_video, seed_input]
|
680 |
+
)
|
681 |
+
|
682 |
+
# Ejecutar la app
|
683 |
+
if __name__ == "__main__":
|
684 |
+
demo.launch()
|