onedemoengg / app.py
Shankarm08's picture
Update app.py
280b1b2 verified
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
model_name = "microsoft/DialoGPT-small"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Track chat history across calls
chat_history_ids = None
def chatbot(user_input):
global chat_history_ids
# Encode user input + eos
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt')
# Append new user input to chat history
if chat_history_ids is not None:
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1)
else:
bot_input_ids = new_user_input_ids
# Generate response adding ~50 tokens
chat_history_ids = model.generate(
bot_input_ids,
max_length=bot_input_ids.shape[-1]+50,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_k=50,
temperature=0.7
)
# Decode only new tokens
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
return response
iface = gr.Interface(
fn=chatbot,
inputs="text",
outputs="text",
title="DialoGPT Chatbot"
)
iface.launch()