|
|
|
import numpy as np |
|
import joblib |
|
import pandas as pd |
|
from flask import Flask, request, jsonify |
|
|
|
|
|
Super_Kart_predictor_api = Flask("Super Kart Sales Prediction") |
|
|
|
|
|
model = joblib.load("SuperKart_prediction_model_v1_0.joblib") |
|
|
|
|
|
@Super_Kart_predictor_api.get('/') |
|
def home(): |
|
""" |
|
This function handles GET requests to the root URL ('/') of the API. |
|
It returns a simple welcome message. |
|
""" |
|
return "Welcome to the Super kart Sales Prediction API!" |
|
|
|
|
|
@Super_Kart_predictor_api.post('/v1/sales') |
|
def predict_sales_price(): |
|
""" |
|
This function handles POST requests to the '/v1/sales' endpoint. |
|
It expects a JSON payload containing property details and returns |
|
the predicted sales price as a JSON response. |
|
""" |
|
|
|
sales_data = request.get_json() |
|
|
|
|
|
sample = { |
|
'Product_Id': sales_data['Product_Id'], |
|
'Product_Weight': sales_data['Product_Weight'], |
|
'Product_Sugar_Content': sales_data['Product_Sugar_Content'], |
|
'Product_Allocated_Area': sales_data['Product_Allocated_Area'], |
|
'Product_Type': sales_data['Product_Type'], |
|
'Product_MRP': sales_data['Product_MRP'], |
|
'Store_Id': sales_data['Store_Id'], |
|
'Store_Establishment_Year': sales_data['Store_Establishment_Year'], |
|
'Store_Size': sales_data['Store_Size'], |
|
'Store_Location_City_Type': sales_data['Store_Location_City_Type'], |
|
'Store_Type': sales_data['Store_Type'], |
|
} |
|
|
|
|
|
input_data = pd.DataFrame([sample]) |
|
|
|
|
|
predicted_log_sales_price = model.predict(input_data)[0] |
|
|
|
|
|
predicted_price = round(float(predicted_log_sales_price), 2) |
|
|
|
|
|
return jsonify({'Predicted Price (in dollars)': predicted_price}) |
|
|
|
|
|
|
|
@Super_Kart_predictor_api.post('/v1/salesbatch') |
|
def predict_sales_price_batch(): |
|
""" |
|
This function handles POST requests to the '/v1/salesbatch' endpoint. |
|
It expects a CSV file containing property details for multiple properties |
|
and returns the predicted rental prices as a dictionary in the JSON response. |
|
""" |
|
|
|
file = request.files['file'] |
|
|
|
|
|
input_data = pd.read_csv(file) |
|
|
|
|
|
predicted_sales_batch_price = model.predict(input_data).tolist() |
|
|
|
|
|
predicted_batch_log_sales_prices = [round(float(pred), 2) for pred in predicted_sales_batch_price] |
|
|
|
|
|
|
|
Product_Ids = input_data['Product_Id'].tolist() |
|
output_dict = dict(zip(Product_Ids, predicted_batch_log_sales_prices)) |
|
|
|
|
|
return output_dict |
|
|
|
|
|
if __name__ == '__main__': |
|
Super_Kart_predictor_api.run(debug=True) |
|
|