Shanmuganathan75's picture
Upload folder using huggingface_hub
ee86a01 verified
# Import necessary libraries
import numpy as np
import joblib # For loading the serialized model
import pandas as pd # For data manipulation
from flask import Flask, request, jsonify # For creating the Flask API
# Initialize the Flask application
Super_Kart_predictor_api = Flask("Super Kart Sales Prediction")
# Load the trained machine learning model
model = joblib.load("SuperKart_prediction_model_v1_0.joblib")
# Define a route for the home page (GET request)
@Super_Kart_predictor_api.get('/')
def home():
"""
This function handles GET requests to the root URL ('/') of the API.
It returns a simple welcome message.
"""
return "Welcome to the Super kart Sales Prediction API!"
# Define an endpoint for single property prediction (POST request)
@Super_Kart_predictor_api.post('/v1/sales')
def predict_sales_price():
"""
This function handles POST requests to the '/v1/sales' endpoint.
It expects a JSON payload containing property details and returns
the predicted sales price as a JSON response.
"""
# Get the JSON data from the request body
sales_data = request.get_json()
# Extract relevant features from the JSON data
sample = {
'Product_Id': sales_data['Product_Id'],
'Product_Weight': sales_data['Product_Weight'],
'Product_Sugar_Content': sales_data['Product_Sugar_Content'],
'Product_Allocated_Area': sales_data['Product_Allocated_Area'],
'Product_Type': sales_data['Product_Type'],
'Product_MRP': sales_data['Product_MRP'],
'Store_Id': sales_data['Store_Id'],
'Store_Establishment_Year': sales_data['Store_Establishment_Year'],
'Store_Size': sales_data['Store_Size'],
'Store_Location_City_Type': sales_data['Store_Location_City_Type'],
'Store_Type': sales_data['Store_Type'],
}
# Convert the extracted data into a Pandas DataFrame
input_data = pd.DataFrame([sample])
# Make prediction (get log_price)
predicted_log_sales_price = model.predict(input_data)[0]
# Convert predicted_price to Python float
predicted_price = round(float(predicted_log_sales_price), 2)
# Return the actual price
return jsonify({'Predicted Price (in dollars)': predicted_price})
# Define an endpoint for batch prediction (POST request)
@Super_Kart_predictor_api.post('/v1/salesbatch')
def predict_sales_price_batch():
"""
This function handles POST requests to the '/v1/salesbatch' endpoint.
It expects a CSV file containing property details for multiple properties
and returns the predicted rental prices as a dictionary in the JSON response.
"""
# Get the uploaded CSV file from the request
file = request.files['file']
# Read the CSV file into a Pandas DataFrame
input_data = pd.read_csv(file)
# Make predictions for all properties in the DataFrame (get log_prices)
predicted_sales_batch_price = model.predict(input_data).tolist()
# Calculate actual prices
predicted_batch_log_sales_prices = [round(float(pred), 2) for pred in predicted_sales_batch_price]
# Create a dictionary of predictions with property IDs as keys
Product_Ids = input_data['Product_Id'].tolist() # Assuming 'id' is the property ID column
output_dict = dict(zip(Product_Ids, predicted_batch_log_sales_prices)) # Use actual prices
# Return the predictions dictionary as a JSON response
return output_dict
# Run the Flask application in debug mode if this script is executed directly
if __name__ == '__main__':
Super_Kart_predictor_api.run(debug=True)