|
import streamlit as st |
|
import pandas as pd |
|
import requests |
|
|
|
|
|
st.title("Super kart Sales Prediction") |
|
|
|
|
|
st.subheader("Sales Prediction") |
|
|
|
|
|
Product_Id = st.text_input("Product ID") |
|
Product_Weight = st.number_input("Product Weight ", min_value=1, value=2) |
|
Product_Sugar_Content = st.selectbox("Product Sugar Content", ["No Sugar", "Low Sugar", "Regular", "reg"]) |
|
Product_Allocated_Area = st.number_input("Product Allocated area ", min_value=1, value=2) |
|
Product_Type = st.selectbox("Product Type", ["Fruits and Vegetables","Snack Foods","Frozen Foods", |
|
"Dairy","Household", |
|
"Baking Goods", |
|
"Canned", |
|
"Health and Hygiene", |
|
"Meat", |
|
"Soft Drinks", |
|
"Breads", |
|
"Hard Drinks", |
|
"Starchy Foods", |
|
"Breakfast", |
|
"Seafood", |
|
"Household", |
|
"Baking Goods", |
|
"Canned", |
|
"Health and Hygiene", |
|
"Meat", |
|
"Soft Drinks", |
|
"Breads", |
|
"Hard Drinks", |
|
"Starchy Foods", |
|
"Breakfast", |
|
"Seafood", |
|
"Others"]) |
|
Product_MRP = st.number_input("Product MRP ", min_value=1, value=2) |
|
Store_Id = st.selectbox ("Store ID", ["OUT001","OUT002","OUT003","OUT004"]) |
|
Store_Establishment_Year = st.number_input("Store Establishement year ", min_value=1980, max_value=2025) |
|
Store_Size = t.selectbox ("Store Size", ["Small","Medium","High"]) |
|
Store_Location_City_Type = t.selectbox ("Store Location city", ["Tier 1","Tier 2","Tier 3"]) |
|
Store_Type = t.selectbox ("Store Type", ["Departmental Store","Food Mart","Supermarket Type1","Supermarket Type2"]) |
|
|
|
|
|
input_data = pd.DataFrame([{ |
|
'Product_Id': Product_Id. |
|
'Product_Weight':Product_Weight, |
|
'Product_Sugar_Content':Product_Sugar_Content, |
|
'Product_Allocated_Area':Product_Allocated_Area, |
|
'Product_Type':Product_Type, |
|
'Product_MRP':Product_MRP, |
|
'Store_Id'Store_Id, |
|
'Store_Establishment_Year':Store_Establishment_Year, |
|
'Store_Size':Store_Size, |
|
'Store_Location_City_Type':Store_Location_City_Type, |
|
'Store_Type':Store_Type |
|
}]) |
|
|
|
|
|
if st.button("Predict"): |
|
response = requests.post("https://Shanmuganathan75-SuperKartPredictionBackend.hf.space/v1/sales", json=input_data.to_dict(orient='records')[0]) |
|
if response.status_code == 200: |
|
prediction = response.json()['Predicted Price (in dollars)'] |
|
st.success(f"Predicted Rental Price (in dollars): {prediction}") |
|
else: |
|
st.error("Error making prediction.") |
|
|