Spaces:
Runtime error
Runtime error
create app.py
Browse filesgradio
open_clip-torch
torch # <--- Ensure this line is present
datasets
torchvision
Pillow
numpy
transformers # (if you are using any transformer models directly besides open_clip)
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import open_clip
|
3 |
+
import gradio as gr
|
4 |
+
from datasets import load_dataset
|
5 |
+
from torchvision import transforms
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
# Load the dataset (fashion product images dataset)
|
10 |
+
dataset = load_dataset("ceyda/fashion-products-small", split="train")
|
11 |
+
|
12 |
+
# Load CLIP model with correct unpacking and QuickGELU
|
13 |
+
model = open_clip.create_model("ViT-B-32-quickgelu", pretrained="openai")
|
14 |
+
|
15 |
+
# Corrected image transform function
|
16 |
+
preprocess = open_clip.image_transform(model.visual.image_size, is_train=False)
|
17 |
+
|
18 |
+
# Load tokenizer
|
19 |
+
tokenizer = open_clip.get_tokenizer("ViT-B-32")
|
20 |
+
|
21 |
+
# Move model to GPU if available
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
model.to(device)
|
24 |
+
|
25 |
+
# Function to compute image embeddings
|
26 |
+
def get_image_embedding(image):
|
27 |
+
image = preprocess(image).unsqueeze(0).to(device)
|
28 |
+
with torch.no_grad():
|
29 |
+
image_features = model.encode_image(image)
|
30 |
+
return image_features / image_features.norm(dim=-1, keepdim=True)
|
31 |
+
|
32 |
+
# Function to compute text embeddings
|
33 |
+
def get_text_embedding(text):
|
34 |
+
text_inputs = tokenizer([text]).to(device)
|
35 |
+
with torch.no_grad():
|
36 |
+
text_features = model.encode_text(text_inputs)
|
37 |
+
return text_features / text_features.norm(dim=-1, keepdim=True)
|
38 |
+
|
39 |
+
# Precompute embeddings for all images in the dataset
|
40 |
+
image_embeddings = []
|
41 |
+
image_paths = []
|
42 |
+
for item in dataset.select(range(1000)): # Limit to 100 images for speed
|
43 |
+
image = item["image"]
|
44 |
+
image_embeddings.append(get_image_embedding(image))
|
45 |
+
image_paths.append(image)
|
46 |
+
|
47 |
+
# Stack all embeddings into a tensor
|
48 |
+
image_embeddings = torch.cat(image_embeddings, dim=0)
|
49 |
+
|
50 |
+
# Function to search for similar images based on text
|
51 |
+
def search_similar_image(query_text):
|
52 |
+
text_embedding = get_text_embedding(query_text)
|
53 |
+
similarities = (image_embeddings @ text_embedding.T).squeeze(1).cpu().numpy()
|
54 |
+
|
55 |
+
# Get top 20 matches
|
56 |
+
best_match_idxs = np.argsort(similarities)[-20:][::-1]
|
57 |
+
|
58 |
+
return [image_paths[i] for i in best_match_idxs]
|
59 |
+
|
60 |
+
# Function to search for similar images based on an uploaded image
|
61 |
+
def search_similar_by_image(uploaded_image):
|
62 |
+
query_embedding = get_image_embedding(uploaded_image)
|
63 |
+
similarities = (image_embeddings @ query_embedding.T).squeeze(1).cpu().numpy()
|
64 |
+
|
65 |
+
# Get top 20 matches
|
66 |
+
best_match_idxs = np.argsort(similarities)[-20:][::-1]
|
67 |
+
|
68 |
+
return [image_paths[i] for i in best_match_idxs]
|
69 |
+
|
70 |
+
# Gradio UI
|
71 |
+
with gr.Blocks() as demo:
|
72 |
+
gr.Markdown("## 🛍️ Visual Search for Fashion Products")
|
73 |
+
gr.Markdown("Search using **text** or **upload an image** to find similar items.")
|
74 |
+
|
75 |
+
with gr.Row():
|
76 |
+
query_input = gr.Textbox(label="Search by Text", placeholder="e.g., red sneakers")
|
77 |
+
search_button = gr.Button("Search by Text")
|
78 |
+
|
79 |
+
with gr.Row():
|
80 |
+
image_input = gr.Image(type="pil", label="Upload an Image")
|
81 |
+
image_search_button = gr.Button("Search by Image")
|
82 |
+
|
83 |
+
output_gallery = gr.Gallery(label="Similar Items", columns=4, height=500)
|
84 |
+
|
85 |
+
search_button.click(search_similar_image, inputs=[query_input], outputs=[output_gallery])
|
86 |
+
image_search_button.click(search_similar_by_image, inputs=[image_input], outputs=[output_gallery])
|
87 |
+
|
88 |
+
demo.launch(share=True)
|