ShazaAly commited on
Commit
3e16432
·
verified ·
1 Parent(s): 99f5bd6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +94 -57
app.py CHANGED
@@ -1,64 +1,101 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import os
4
+ import gradio as gr
5
+ from openai import OpenAI
6
+ from dotenv import load_dotenv
7
+ from pypdf import PdfReader
8
+
9
+ load_dotenv(override=True)
10
+
11
+ api_key = os.getenv("OPENROUTER_API_KEY")
12
+ cv_link= os.getenv("CV_LINK")
13
+ name = os.getenv("NAME")
14
+
15
+
16
+ if not api_key:
17
+ raise ValueError("OPENROUTER_API_KEY not found in .env file. Please set it.")
18
 
19
+ client = OpenAI(
20
+ base_url="https://openrouter.ai/api/v1",
21
+ api_key=api_key
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  )
23
 
24
 
25
+
26
+ summary = (
27
+ "I am a 3 years experienced Backend Software Engineer with a strong focus on building scalable, well-architected systems "
28
+ "using NestJS, GraphQL, and PostgreSQL. I have proven experience in developing high-performance APIs, "
29
+ "applying Domain-Driven Design (DDD), and leading AI-powered solutions such as RAG-based chatbots "
30
+ "integrated with vector databases like Qdrant and Pinecone. I am skilled in clean architecture, "
31
+ "microservices, and production-grade e-commerce systems, and I'm adept at bridging business needs with "
32
+ "technical implementation through both code and technical writing. I have contributed to real-time systems "
33
+ "using gRPC, Redis, and message queues (e.g., RabbitMQ). I'm passionate about automation, developer "
34
+ "tools (e.g., n8n, Copilot, Cursor), and mentoring through technical content. As an ALX alumna, I have a "
35
+ "hands-on mindset and a continuous learning attitude. I am also the author of a technical blog on "
36
+ "software engineering and AI systems: shazaali.substack.com."
37
+ )
38
+
39
+ linkedin_text = "My LinkedIn Profile: https://www.linkedin.com/in/shazaali/\n\n"
40
+ try:
41
+ reader = PdfReader("linkedin.pdf")
42
+ for page in reader.pages:
43
+ linkedin_text += page.extract_text() + "\n"
44
+ except FileNotFoundError:
45
+ print("Warning: 'linkedin.pdf' not found. The bot will rely only on the summary.")
46
+ linkedin_text = "LinkedIn profile data is not available."
47
+
48
+ system_prompt = (
49
+ f"You are acting as {name}. You are answering questions on my personal website, "
50
+ f"particularly questions related to my career, background, skills, and experience. "
51
+ f"Your responsibility is to represent me as faithfully as possible. "
52
+ f"You are given a summary of my background and my LinkedIn profile to use for answering questions. "
53
+ f"Be professional, friendly, and engaging, as if you are talking to a potential client or future employer. "
54
+ f"If you don't know the answer based on the provided context, it's better to say so than to invent information. "
55
+ f"Always stay in character as {name}. Answer in the same language as the user's question without disclosing any private information."
56
+ f"\n\n## My Summary:\n{summary}\n\n## My LinkedIn Profile Text:\n{linkedin_text}\n\n## My CV:\n{cv_link}"
57
+ )
58
+
59
+
60
+ def chat(message, history):
61
+ """
62
+ Handles the chat logic by formatting messages and calling the OpenAI API.
63
+ """
64
+
65
+ formatted_history = []
66
+ for user_msg, assistant_msg in history:
67
+ formatted_history.append({"role": "user", "content": user_msg})
68
+ formatted_history.append({"role": "assistant", "content": assistant_msg})
69
+
70
+ messages = [
71
+ {"role": "system", "content": system_prompt},
72
+ *formatted_history,
73
+ {"role": "user", "content": message}
74
+ ]
75
+
76
+ try:
77
+ response = client.chat.completions.create(
78
+ model="openai/gpt-3.5-turbo",
79
+ max_tokens=300,
80
+ messages=messages,
81
+ temperature=0.7
82
+ )
83
+ return response.choices[0].message.content
84
+ except Exception as e:
85
+ print(f"An error occurred: {e}")
86
+ return "Sorry, I encountered an error while processing your request. Please try again."
87
+
88
+
89
+ interface = gr.ChatInterface(
90
+ fn=chat,
91
+ title=f"Chat with {name}",
92
+ description="Ask me about my experience, skills, or projects",
93
+ examples=[
94
+ ["What are your main technical skills?"],
95
+ ["Tell me about your experience with AI and RAG chatbots."],
96
+ ["¿Hablas español?"]
97
+ ]
98
+ )
99
+
100
  if __name__ == "__main__":
101
+ interface.launch()