Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load a pre-trained image classification model
|
7 |
+
model_name = "microsoft/resnet-50"
|
8 |
+
image_processor = AutoImageProcessor.from_pretrained(model_name)
|
9 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def classify_image(image):
|
12 |
+
# Ensure the image is in RGB mode
|
13 |
+
if image is None:
|
14 |
+
return "No image uploaded"
|
15 |
+
|
16 |
+
# Convert image to RGB if needed
|
17 |
+
if image.mode != 'RGB':
|
18 |
+
image = image.convert('RGB')
|
19 |
+
|
20 |
+
# Preprocess the image
|
21 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
22 |
+
|
23 |
+
# Perform prediction
|
24 |
+
with torch.no_grad():
|
25 |
+
outputs = model(**inputs)
|
26 |
+
logits = outputs.logits
|
27 |
+
|
28 |
+
# Get predictions
|
29 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
30 |
+
|
31 |
+
# Get class labels and handle fewer than 5 classes
|
32 |
+
labels = model.config.id2label
|
33 |
+
num_classes = len(labels)
|
34 |
+
|
35 |
+
# Determine number of predictions to show
|
36 |
+
top_k = min(num_classes, 3)
|
37 |
+
|
38 |
+
# Get top predictions
|
39 |
+
top_prob, top_indices = probabilities.topk(top_k)
|
40 |
+
|
41 |
+
# Format results
|
42 |
+
results = []
|
43 |
+
for prob, idx in zip(top_prob[0], top_indices[0]):
|
44 |
+
label = labels[idx.item()]
|
45 |
+
percentage = prob.item() * 100
|
46 |
+
results.append(f"{label}: {percentage:.2f}%")
|
47 |
+
|
48 |
+
return "\n".join(results)
|
49 |
+
|
50 |
+
# Create Gradio interface
|
51 |
+
iface = gr.Interface(
|
52 |
+
fn=classify_image,
|
53 |
+
inputs=gr.Image(type="pil"),
|
54 |
+
outputs=gr.Textbox(label="Top Predictions"),
|
55 |
+
title="Image Classification with Hugging Face",
|
56 |
+
description="Upload an image to get classification predictions"
|
57 |
+
)
|
58 |
+
|
59 |
+
# Launch the app
|
60 |
+
if __name__ == "__main__":
|
61 |
+
iface.launch()
|