Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import time
|
| 3 |
+
import moviepy.editor as mp
|
| 4 |
+
import psutil
|
| 5 |
import gradio as gr
|
| 6 |
+
import spaces
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
| 9 |
|
| 10 |
+
DEFAULT_MODEL_NAME = "ivrit-ai/whisper-13-v2-e2"
|
| 11 |
+
BATCH_SIZE = 8
|
| 12 |
+
|
| 13 |
+
print('start app')
|
| 14 |
+
|
| 15 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
| 16 |
+
if device == "cpu":
|
| 17 |
+
DEFAULT_MODEL_NAME = "ivrit-ai/whisper-13-v2-e2"
|
| 18 |
+
|
| 19 |
+
def load_pipeline(model_name):
|
| 20 |
+
return pipeline(
|
| 21 |
+
task="automatic-speech-recognition",
|
| 22 |
+
model=model_name,
|
| 23 |
+
chunk_length_s=30,
|
| 24 |
+
device=device,
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
pipe = load_pipeline(DEFAULT_MODEL_NAME)
|
| 28 |
+
openai_pipe=load_pipeline("openai/whisper-large-v3")
|
| 29 |
+
default_pipe = load_pipeline(DEFAULT_MODEL_NAME)
|
| 30 |
+
|
| 31 |
+
#pipe = None
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
from gpustat import GPUStatCollection
|
| 35 |
+
|
| 36 |
+
def update_gpu_status():
|
| 37 |
+
if torch.cuda.is_available() == False:
|
| 38 |
+
return "No Nvidia Device"
|
| 39 |
+
try:
|
| 40 |
+
gpu_stats = GPUStatCollection.new_query()
|
| 41 |
+
for gpu in gpu_stats:
|
| 42 |
+
# Assuming you want to monitor the first GPU, index 0
|
| 43 |
+
gpu_id = gpu.index
|
| 44 |
+
gpu_name = gpu.name
|
| 45 |
+
gpu_utilization = gpu.utilization
|
| 46 |
+
memory_used = gpu.memory_used
|
| 47 |
+
memory_total = gpu.memory_total
|
| 48 |
+
memory_utilization = (memory_used / memory_total) * 100
|
| 49 |
+
gpu_status=(f"GPU {gpu_id}: {gpu_name}, Utilization: {gpu_utilization}%, Memory Used: {memory_used}MB, Memory Total: {memory_total}MB, Memory Utilization: {memory_utilization:.2f}%")
|
| 50 |
+
return gpu_status
|
| 51 |
+
|
| 52 |
+
except Exception as e:
|
| 53 |
+
print(f"Error getting GPU stats: {e}")
|
| 54 |
+
return torch_update_gpu_status()
|
| 55 |
+
|
| 56 |
+
def torch_update_gpu_status():
|
| 57 |
+
if torch.cuda.is_available():
|
| 58 |
+
gpu_info = torch.cuda.get_device_name(0)
|
| 59 |
+
gpu_memory = torch.cuda.mem_get_info(0)
|
| 60 |
+
total_memory = gpu_memory[1] / (1024 * 1024)
|
| 61 |
+
free_memory=gpu_memory[0] /(1024 *1024)
|
| 62 |
+
used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024)
|
| 63 |
+
|
| 64 |
+
gpu_status = f"GPU: {gpu_info} Free Memory:{free_memory}MB Total Memory: {total_memory:.2f} MB Used Memory: {used_memory:.2f} MB"
|
| 65 |
+
else:
|
| 66 |
+
gpu_status = "No GPU available"
|
| 67 |
+
return gpu_status
|
| 68 |
+
|
| 69 |
+
def update_cpu_status():
|
| 70 |
+
import datetime
|
| 71 |
+
# Get the current time
|
| 72 |
+
current_time = datetime.datetime.now().time()
|
| 73 |
+
# Convert the time to a string
|
| 74 |
+
time_str = current_time.strftime("%H:%M:%S")
|
| 75 |
+
|
| 76 |
+
cpu_percent = psutil.cpu_percent()
|
| 77 |
+
cpu_status = f"CPU Usage: {cpu_percent}% {time_str}"
|
| 78 |
+
return cpu_status
|
| 79 |
+
|
| 80 |
+
def update_status():
|
| 81 |
+
gpu_status = update_gpu_status()
|
| 82 |
+
cpu_status = update_cpu_status()
|
| 83 |
+
sys_status=gpu_status+"\n\n"+cpu_status
|
| 84 |
+
return sys_status
|
| 85 |
+
|
| 86 |
+
def refresh_status():
|
| 87 |
+
return update_status()
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@spaces.GPU
|
| 91 |
+
def transcribe(audio_path, model_name):
|
| 92 |
+
print(str(time.time())+' start transcribe ')
|
| 93 |
+
|
| 94 |
+
if audio_path is None:
|
| 95 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
| 96 |
+
|
| 97 |
+
audio_path=audio_path.strip()
|
| 98 |
+
model_name=model_name.strip()
|
| 99 |
+
|
| 100 |
+
global pipe
|
| 101 |
+
if model_name != pipe.model.name_or_path:
|
| 102 |
+
print("old model is:"+ pipe.model.name_or_path )
|
| 103 |
+
if model_name=="ivrit-ai/whisper-13-v2-e2":
|
| 104 |
+
pipe=openai_pipe
|
| 105 |
+
print(str(time.time())+" use openai model " + pipe.model.name_or_path)
|
| 106 |
+
elif model_name==DEFAULT_MODEL_NAME:
|
| 107 |
+
pipe=default_pipe
|
| 108 |
+
print(str(time.time())+" use default model " + pipe.model.name_or_path)
|
| 109 |
+
else:
|
| 110 |
+
print(str(time.time())+' start load model ' + model_name)
|
| 111 |
+
pipe = load_pipeline(model_name)
|
| 112 |
+
print(str(time.time())+' finished load model ' + model_name)
|
| 113 |
+
|
| 114 |
+
start_time = time.time() # Record the start time
|
| 115 |
+
print(str(time.time())+' start processing and set recording start time point')
|
| 116 |
+
# Load the audio file and calculate its duration
|
| 117 |
+
audio = mp.AudioFileClip(audio_path)
|
| 118 |
+
audio_duration = audio.duration
|
| 119 |
+
print(str(time.time())+' start pipe ')
|
| 120 |
+
text = pipe(audio_path, batch_size=BATCH_SIZE, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
|
| 121 |
+
end_time = time.time() # Record the end time
|
| 122 |
+
|
| 123 |
+
transcription_time = end_time - start_time # Calculate the transcription time
|
| 124 |
+
|
| 125 |
+
# Create the transcription time output with additional information
|
| 126 |
+
transcription_time_output = (
|
| 127 |
+
f"Transcription Time: {transcription_time:.2f} seconds\n"
|
| 128 |
+
f"Audio Duration: {audio_duration:.2f} seconds\n"
|
| 129 |
+
f"Model Used: {model_name}\n"
|
| 130 |
+
f"Device Used: {'GPU' if torch.cuda.is_available() else 'CPU'}"
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
print(str(time.time())+' return transcribe '+ text )
|
| 134 |
+
|
| 135 |
+
return text, transcription_time_output
|
| 136 |
+
|
| 137 |
+
@spaces.GPU
|
| 138 |
+
def handle_upload_audio(audio_path,model_name,old_transcription=''):
|
| 139 |
+
print('old_trans:' + old_transcription)
|
| 140 |
+
(text,transcription_time_output)=transcribe(audio_path,model_name)
|
| 141 |
+
return text+'\n\n'+old_transcription, transcription_time_output
|
| 142 |
+
|
| 143 |
+
graudio=gr.Audio(type="filepath",show_download_button=True)
|
| 144 |
+
grmodel_textbox=gr.Textbox(
|
| 145 |
+
label="Model Name",
|
| 146 |
+
value=DEFAULT_MODEL_NAME,
|
| 147 |
+
placeholder="Enter the model name",
|
| 148 |
+
info="Some available models: distil-whisper/distil-large-v3 distil-whisper/distil-medium.en Systran/faster-distil-whisper-large-v3 Systran/faster-whisper-large-v3 Systran/faster-whisper-medium openai/whisper-tiny, openai/whisper-base, openai/whisper-medium, openai/whisper-large-v3",
|
| 149 |
+
)
|
| 150 |
+
groutputs=[gr.TextArea(label="Transcription",elem_id="transcription_textarea",interactive=True,lines=20,show_copy_button=True),
|
| 151 |
+
gr.TextArea(label="Transcription Info",interactive=True,show_copy_button=True)]
|
| 152 |
+
|
| 153 |
+
mf_transcribe = gr.Interface(
|
| 154 |
+
fn=handle_upload_audio,
|
| 155 |
+
inputs=[
|
| 156 |
+
graudio, #"numpy" or filepath
|
| 157 |
+
#gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
|
| 158 |
+
grmodel_textbox,
|
| 159 |
+
],
|
| 160 |
+
outputs=groutputs,
|
| 161 |
+
theme="huggingface",
|
| 162 |
+
title="Whisper Transcription",
|
| 163 |
+
description=(
|
| 164 |
+
"Scroll to Bottom to show system status. "
|
| 165 |
+
"Transcribe long-form microphone or audio file after uploaded audio! "
|
| 166 |
+
),
|
| 167 |
+
allow_flagging="never",
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
demo = gr.Blocks()
|
| 172 |
+
|
| 173 |
+
|
| 174 |
+
with demo:
|
| 175 |
+
gr.TabbedInterface([mf_transcribe, ], ["Audio",])
|
| 176 |
+
|
| 177 |
+
with gr.Row():
|
| 178 |
+
refresh_button = gr.Button("Refresh Status") # Create a refresh button
|
| 179 |
+
|
| 180 |
+
sys_status_output = gr.Textbox(label="System Status", interactive=False)
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
# Link the refresh button to the refresh_status function
|
| 184 |
+
refresh_button.click(refresh_status, None, [sys_status_output])
|
| 185 |
+
|
| 186 |
+
# Load the initial status using update_status function
|
| 187 |
+
demo.load(update_status, inputs=None, outputs=[sys_status_output], every=2, queue=False)
|
| 188 |
+
|
| 189 |
+
graudio.stop_recording(handle_upload_audio,inputs=[graudio,grmodel_textbox,groutputs[0]],outputs=groutputs)
|
| 190 |
+
graudio.upload(handle_upload_audio,inputs=[graudio,grmodel_textbox,groutputs[0]],outputs=groutputs)
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# Launch the Gradio app
|
| 194 |
+
demo.launch(share=True)
|
| 195 |
+
|
| 196 |
+
print('launched\n\n')
|