Spaces:
Paused
Paused
Update backend/server/server_utils.py
Browse files- backend/server/server_utils.py +259 -259
backend/server/server_utils.py
CHANGED
|
@@ -1,259 +1,259 @@
|
|
| 1 |
-
import json
|
| 2 |
-
import os
|
| 3 |
-
import re
|
| 4 |
-
import time
|
| 5 |
-
import shutil
|
| 6 |
-
from typing import Dict, List, Any
|
| 7 |
-
from fastapi.responses import JSONResponse, FileResponse
|
| 8 |
-
from gpt_researcher.document.document import DocumentLoader
|
| 9 |
-
from backend.utils import write_md_to_pdf, write_md_to_word, write_text_to_md
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
from datetime import datetime
|
| 12 |
-
from fastapi import HTTPException
|
| 13 |
-
import logging
|
| 14 |
-
|
| 15 |
-
logging.basicConfig(level=logging.DEBUG)
|
| 16 |
-
logger = logging.getLogger(__name__)
|
| 17 |
-
|
| 18 |
-
class CustomLogsHandler:
|
| 19 |
-
"""Custom handler to capture streaming logs from the research process"""
|
| 20 |
-
def __init__(self, websocket, task: str):
|
| 21 |
-
self.logs = []
|
| 22 |
-
self.websocket = websocket
|
| 23 |
-
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
| 24 |
-
self.log_file = os.path.join("outputs", f"{sanitized_filename}.json")
|
| 25 |
-
self.timestamp = datetime.now().isoformat()
|
| 26 |
-
# Initialize log file with metadata
|
| 27 |
-
os.makedirs("outputs", exist_ok=True)
|
| 28 |
-
with open(self.log_file, 'w') as f:
|
| 29 |
-
json.dump({
|
| 30 |
-
"timestamp": self.timestamp,
|
| 31 |
-
"events": [],
|
| 32 |
-
"content": {
|
| 33 |
-
"query": "",
|
| 34 |
-
"sources": [],
|
| 35 |
-
"context": [],
|
| 36 |
-
"report": "",
|
| 37 |
-
"costs": 0.0
|
| 38 |
-
}
|
| 39 |
-
}, f, indent=2)
|
| 40 |
-
|
| 41 |
-
async def send_json(self, data: Dict[str, Any]) -> None:
|
| 42 |
-
"""Store log data and send to websocket"""
|
| 43 |
-
# Send to websocket for real-time display
|
| 44 |
-
if self.websocket:
|
| 45 |
-
await self.websocket.send_json(data)
|
| 46 |
-
|
| 47 |
-
# Read current log file
|
| 48 |
-
with open(self.log_file, 'r') as f:
|
| 49 |
-
log_data = json.load(f)
|
| 50 |
-
|
| 51 |
-
# Update appropriate section based on data type
|
| 52 |
-
if data.get('type') == 'logs':
|
| 53 |
-
log_data['events'].append({
|
| 54 |
-
"timestamp": datetime.now().isoformat(),
|
| 55 |
-
"type": "event",
|
| 56 |
-
"data": data
|
| 57 |
-
})
|
| 58 |
-
else:
|
| 59 |
-
# Update content section for other types of data
|
| 60 |
-
log_data['content'].update(data)
|
| 61 |
-
|
| 62 |
-
# Save updated log file
|
| 63 |
-
with open(self.log_file, 'w') as f:
|
| 64 |
-
json.dump(log_data, f, indent=2)
|
| 65 |
-
logger.debug(f"Log entry written to: {self.log_file}")
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
class Researcher:
|
| 69 |
-
def __init__(self, query: str, report_type: str = "research_report"):
|
| 70 |
-
self.query = query
|
| 71 |
-
self.report_type = report_type
|
| 72 |
-
# Generate unique ID for this research task
|
| 73 |
-
self.research_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hash(query)}"
|
| 74 |
-
# Initialize logs handler with research ID
|
| 75 |
-
self.logs_handler = CustomLogsHandler(self.research_id)
|
| 76 |
-
self.researcher = GPTResearcher(
|
| 77 |
-
query=query,
|
| 78 |
-
report_type=report_type,
|
| 79 |
-
websocket=self.logs_handler
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
async def research(self) -> dict:
|
| 83 |
-
"""Conduct research and return paths to generated files"""
|
| 84 |
-
await self.researcher.conduct_research()
|
| 85 |
-
report = await self.researcher.write_report()
|
| 86 |
-
|
| 87 |
-
# Generate the files
|
| 88 |
-
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{self.query}")
|
| 89 |
-
file_paths = await generate_report_files(report, sanitized_filename)
|
| 90 |
-
|
| 91 |
-
# Get the JSON log path that was created by CustomLogsHandler
|
| 92 |
-
json_relative_path = os.path.relpath(self.logs_handler.log_file)
|
| 93 |
-
|
| 94 |
-
return {
|
| 95 |
-
"output": {
|
| 96 |
-
**file_paths, # Include PDF, DOCX, and MD paths
|
| 97 |
-
"json": json_relative_path
|
| 98 |
-
}
|
| 99 |
-
}
|
| 100 |
-
|
| 101 |
-
def sanitize_filename(filename: str) -> str:
|
| 102 |
-
# Split into components
|
| 103 |
-
prefix, timestamp, *task_parts = filename.split('_')
|
| 104 |
-
task = '_'.join(task_parts)
|
| 105 |
-
|
| 106 |
-
# Calculate max length for task portion
|
| 107 |
-
# 255 - len("outputs/") - len("task_") - len(timestamp) - len("_.json") - safety_margin
|
| 108 |
-
max_task_length = 255 - 8 - 5 - 10 - 6 - 10 # ~216 chars for task
|
| 109 |
-
|
| 110 |
-
# Truncate task if needed
|
| 111 |
-
truncated_task = task[:max_task_length] if len(task) > max_task_length else task
|
| 112 |
-
|
| 113 |
-
# Reassemble and clean the filename
|
| 114 |
-
sanitized = f"{prefix}_{timestamp}_{truncated_task}"
|
| 115 |
-
return re.sub(r"[^\w\s-]", "", sanitized).strip()
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
async def handle_start_command(websocket, data: str, manager):
|
| 119 |
-
json_data = json.loads(data[6:])
|
| 120 |
-
task, report_type, source_urls, document_urls, tone, headers, report_source = extract_command_data(
|
| 121 |
-
json_data)
|
| 122 |
-
|
| 123 |
-
if not task or not report_type:
|
| 124 |
-
print("Error: Missing task or report_type")
|
| 125 |
-
return
|
| 126 |
-
|
| 127 |
-
# Create logs handler with websocket and task
|
| 128 |
-
logs_handler = CustomLogsHandler(websocket, task)
|
| 129 |
-
# Initialize log content with query
|
| 130 |
-
await logs_handler.send_json({
|
| 131 |
-
"query": task,
|
| 132 |
-
"sources": [],
|
| 133 |
-
"context": [],
|
| 134 |
-
"report": ""
|
| 135 |
-
})
|
| 136 |
-
|
| 137 |
-
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
| 138 |
-
|
| 139 |
-
report = await manager.start_streaming(
|
| 140 |
-
task,
|
| 141 |
-
report_type,
|
| 142 |
-
report_source,
|
| 143 |
-
source_urls,
|
| 144 |
-
document_urls,
|
| 145 |
-
tone,
|
| 146 |
-
websocket,
|
| 147 |
-
headers
|
| 148 |
-
)
|
| 149 |
-
report = str(report)
|
| 150 |
-
file_paths = await generate_report_files(report, sanitized_filename)
|
| 151 |
-
# Add JSON log path to file_paths
|
| 152 |
-
file_paths["json"] = os.path.relpath(logs_handler.log_file)
|
| 153 |
-
await send_file_paths(websocket, file_paths)
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
async def handle_human_feedback(data: str):
|
| 157 |
-
feedback_data = json.loads(data[14:]) # Remove "human_feedback" prefix
|
| 158 |
-
print(f"Received human feedback: {feedback_data}")
|
| 159 |
-
# TODO: Add logic to forward the feedback to the appropriate agent or update the research state
|
| 160 |
-
|
| 161 |
-
async def handle_chat(websocket, data: str, manager):
|
| 162 |
-
json_data = json.loads(data[4:])
|
| 163 |
-
print(f"Received chat message: {json_data.get('message')}")
|
| 164 |
-
await manager.chat(json_data.get("message"), websocket)
|
| 165 |
-
|
| 166 |
-
async def generate_report_files(report: str, filename: str) -> Dict[str, str]:
|
| 167 |
-
pdf_path = await write_md_to_pdf(report, filename)
|
| 168 |
-
docx_path = await write_md_to_word(report, filename)
|
| 169 |
-
md_path = await write_text_to_md(report, filename)
|
| 170 |
-
return {"pdf": pdf_path, "docx": docx_path, "md": md_path}
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
async def send_file_paths(websocket, file_paths: Dict[str, str]):
|
| 174 |
-
await websocket.send_json({"type": "path", "output": file_paths})
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
def get_config_dict(
|
| 178 |
-
langchain_api_key: str, openai_api_key: str, tavily_api_key: str,
|
| 179 |
-
google_api_key: str, google_cx_key: str, bing_api_key: str,
|
| 180 |
-
searchapi_api_key: str, serpapi_api_key: str, serper_api_key: str, searx_url: str
|
| 181 |
-
) -> Dict[str, str]:
|
| 182 |
-
return {
|
| 183 |
-
"LANGCHAIN_API_KEY": langchain_api_key or os.getenv("LANGCHAIN_API_KEY", ""),
|
| 184 |
-
"OPENAI_API_KEY": openai_api_key or os.getenv("OPENAI_API_KEY", ""),
|
| 185 |
-
"TAVILY_API_KEY": tavily_api_key or os.getenv("TAVILY_API_KEY", ""),
|
| 186 |
-
"GOOGLE_API_KEY": google_api_key or os.getenv("GOOGLE_API_KEY", ""),
|
| 187 |
-
"GOOGLE_CX_KEY": google_cx_key or os.getenv("GOOGLE_CX_KEY", ""),
|
| 188 |
-
"BING_API_KEY": bing_api_key or os.getenv("BING_API_KEY", ""),
|
| 189 |
-
"SEARCHAPI_API_KEY": searchapi_api_key or os.getenv("SEARCHAPI_API_KEY", ""),
|
| 190 |
-
"SERPAPI_API_KEY": serpapi_api_key or os.getenv("SERPAPI_API_KEY", ""),
|
| 191 |
-
"SERPER_API_KEY": serper_api_key or os.getenv("SERPER_API_KEY", ""),
|
| 192 |
-
"SEARX_URL": searx_url or os.getenv("SEARX_URL", ""),
|
| 193 |
-
"LANGCHAIN_TRACING_V2": os.getenv("LANGCHAIN_TRACING_V2", "true"),
|
| 194 |
-
"DOC_PATH": os.getenv("DOC_PATH", "./my-docs"),
|
| 195 |
-
"RETRIEVER": os.getenv("RETRIEVER", ""),
|
| 196 |
-
"EMBEDDING_MODEL": os.getenv("OPENAI_EMBEDDING_MODEL", "")
|
| 197 |
-
}
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
def update_environment_variables(config: Dict[str, str]):
|
| 201 |
-
for key, value in config.items():
|
| 202 |
-
os.environ[key] = value
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
async def handle_file_upload(file, DOC_PATH: str) -> Dict[str, str]:
|
| 206 |
-
file_path = os.path.join(DOC_PATH, os.path.basename(file.filename))
|
| 207 |
-
with open(file_path, "wb") as buffer:
|
| 208 |
-
shutil.copyfileobj(file.file, buffer)
|
| 209 |
-
print(f"File uploaded to {file_path}")
|
| 210 |
-
|
| 211 |
-
document_loader = DocumentLoader(DOC_PATH)
|
| 212 |
-
await document_loader.load()
|
| 213 |
-
|
| 214 |
-
return {"filename": file.filename, "path": file_path}
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
async def handle_file_deletion(filename: str, DOC_PATH: str) -> JSONResponse:
|
| 218 |
-
file_path = os.path.join(DOC_PATH, os.path.basename(filename))
|
| 219 |
-
if os.path.exists(file_path):
|
| 220 |
-
os.remove(file_path)
|
| 221 |
-
print(f"File deleted: {file_path}")
|
| 222 |
-
return JSONResponse(content={"message": "File deleted successfully"})
|
| 223 |
-
else:
|
| 224 |
-
print(f"File not found: {file_path}")
|
| 225 |
-
return JSONResponse(status_code=404, content={"message": "File not found"})
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
async def execute_multi_agents(manager) -> Any:
|
| 229 |
-
websocket = manager.active_connections[0] if manager.active_connections else None
|
| 230 |
-
if websocket:
|
| 231 |
-
report = await run_research_task("Is AI in a hype cycle?", websocket, stream_output)
|
| 232 |
-
return {"report": report}
|
| 233 |
-
else:
|
| 234 |
-
return JSONResponse(status_code=400, content={"message": "No active WebSocket connection"})
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
async def handle_websocket_communication(websocket, manager):
|
| 238 |
-
while True:
|
| 239 |
-
data = await websocket.receive_text()
|
| 240 |
-
if data.startswith("start"):
|
| 241 |
-
await handle_start_command(websocket, data, manager)
|
| 242 |
-
elif data.startswith("human_feedback"):
|
| 243 |
-
await handle_human_feedback(data)
|
| 244 |
-
elif data.startswith("chat"):
|
| 245 |
-
await handle_chat(websocket, data, manager)
|
| 246 |
-
else:
|
| 247 |
-
print("Error: Unknown command or not enough parameters provided.")
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
def extract_command_data(json_data: Dict) -> tuple:
|
| 251 |
-
return (
|
| 252 |
-
json_data.get("task"),
|
| 253 |
-
json_data.get("report_type"),
|
| 254 |
-
json_data.get("source_urls"),
|
| 255 |
-
json_data.get("document_urls"),
|
| 256 |
-
json_data.get("tone"),
|
| 257 |
-
json_data.get("headers", {}),
|
| 258 |
-
json_data.get("report_source")
|
| 259 |
-
)
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
import re
|
| 4 |
+
import time
|
| 5 |
+
import shutil
|
| 6 |
+
from typing import Dict, List, Any
|
| 7 |
+
from fastapi.responses import JSONResponse, FileResponse
|
| 8 |
+
from gpt_researcher.document.document import DocumentLoader
|
| 9 |
+
from backend.utils import write_md_to_pdf, write_md_to_word, write_text_to_md
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from datetime import datetime
|
| 12 |
+
from fastapi import HTTPException
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
logging.basicConfig(level=logging.DEBUG)
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
class CustomLogsHandler:
|
| 19 |
+
"""Custom handler to capture streaming logs from the research process"""
|
| 20 |
+
def __init__(self, websocket, task: str):
|
| 21 |
+
self.logs = []
|
| 22 |
+
self.websocket = websocket
|
| 23 |
+
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
| 24 |
+
self.log_file = os.path.join("/tmp/outputs", f"{sanitized_filename}.json")
|
| 25 |
+
self.timestamp = datetime.now().isoformat()
|
| 26 |
+
# Initialize log file with metadata
|
| 27 |
+
os.makedirs("/tmp/outputs", exist_ok=True)
|
| 28 |
+
with open(self.log_file, 'w') as f:
|
| 29 |
+
json.dump({
|
| 30 |
+
"timestamp": self.timestamp,
|
| 31 |
+
"events": [],
|
| 32 |
+
"content": {
|
| 33 |
+
"query": "",
|
| 34 |
+
"sources": [],
|
| 35 |
+
"context": [],
|
| 36 |
+
"report": "",
|
| 37 |
+
"costs": 0.0
|
| 38 |
+
}
|
| 39 |
+
}, f, indent=2)
|
| 40 |
+
|
| 41 |
+
async def send_json(self, data: Dict[str, Any]) -> None:
|
| 42 |
+
"""Store log data and send to websocket"""
|
| 43 |
+
# Send to websocket for real-time display
|
| 44 |
+
if self.websocket:
|
| 45 |
+
await self.websocket.send_json(data)
|
| 46 |
+
|
| 47 |
+
# Read current log file
|
| 48 |
+
with open(self.log_file, 'r') as f:
|
| 49 |
+
log_data = json.load(f)
|
| 50 |
+
|
| 51 |
+
# Update appropriate section based on data type
|
| 52 |
+
if data.get('type') == 'logs':
|
| 53 |
+
log_data['events'].append({
|
| 54 |
+
"timestamp": datetime.now().isoformat(),
|
| 55 |
+
"type": "event",
|
| 56 |
+
"data": data
|
| 57 |
+
})
|
| 58 |
+
else:
|
| 59 |
+
# Update content section for other types of data
|
| 60 |
+
log_data['content'].update(data)
|
| 61 |
+
|
| 62 |
+
# Save updated log file
|
| 63 |
+
with open(self.log_file, 'w') as f:
|
| 64 |
+
json.dump(log_data, f, indent=2)
|
| 65 |
+
logger.debug(f"Log entry written to: {self.log_file}")
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class Researcher:
|
| 69 |
+
def __init__(self, query: str, report_type: str = "research_report"):
|
| 70 |
+
self.query = query
|
| 71 |
+
self.report_type = report_type
|
| 72 |
+
# Generate unique ID for this research task
|
| 73 |
+
self.research_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{hash(query)}"
|
| 74 |
+
# Initialize logs handler with research ID
|
| 75 |
+
self.logs_handler = CustomLogsHandler(self.research_id)
|
| 76 |
+
self.researcher = GPTResearcher(
|
| 77 |
+
query=query,
|
| 78 |
+
report_type=report_type,
|
| 79 |
+
websocket=self.logs_handler
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
async def research(self) -> dict:
|
| 83 |
+
"""Conduct research and return paths to generated files"""
|
| 84 |
+
await self.researcher.conduct_research()
|
| 85 |
+
report = await self.researcher.write_report()
|
| 86 |
+
|
| 87 |
+
# Generate the files
|
| 88 |
+
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{self.query}")
|
| 89 |
+
file_paths = await generate_report_files(report, sanitized_filename)
|
| 90 |
+
|
| 91 |
+
# Get the JSON log path that was created by CustomLogsHandler
|
| 92 |
+
json_relative_path = os.path.relpath(self.logs_handler.log_file)
|
| 93 |
+
|
| 94 |
+
return {
|
| 95 |
+
"output": {
|
| 96 |
+
**file_paths, # Include PDF, DOCX, and MD paths
|
| 97 |
+
"json": json_relative_path
|
| 98 |
+
}
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
def sanitize_filename(filename: str) -> str:
|
| 102 |
+
# Split into components
|
| 103 |
+
prefix, timestamp, *task_parts = filename.split('_')
|
| 104 |
+
task = '_'.join(task_parts)
|
| 105 |
+
|
| 106 |
+
# Calculate max length for task portion
|
| 107 |
+
# 255 - len("/tmp/outputs/") - len("task_") - len(timestamp) - len("_.json") - safety_margin
|
| 108 |
+
max_task_length = 255 - 8 - 5 - 10 - 6 - 10 # ~216 chars for task
|
| 109 |
+
|
| 110 |
+
# Truncate task if needed
|
| 111 |
+
truncated_task = task[:max_task_length] if len(task) > max_task_length else task
|
| 112 |
+
|
| 113 |
+
# Reassemble and clean the filename
|
| 114 |
+
sanitized = f"{prefix}_{timestamp}_{truncated_task}"
|
| 115 |
+
return re.sub(r"[^\w\s-]", "", sanitized).strip()
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
async def handle_start_command(websocket, data: str, manager):
|
| 119 |
+
json_data = json.loads(data[6:])
|
| 120 |
+
task, report_type, source_urls, document_urls, tone, headers, report_source = extract_command_data(
|
| 121 |
+
json_data)
|
| 122 |
+
|
| 123 |
+
if not task or not report_type:
|
| 124 |
+
print("Error: Missing task or report_type")
|
| 125 |
+
return
|
| 126 |
+
|
| 127 |
+
# Create logs handler with websocket and task
|
| 128 |
+
logs_handler = CustomLogsHandler(websocket, task)
|
| 129 |
+
# Initialize log content with query
|
| 130 |
+
await logs_handler.send_json({
|
| 131 |
+
"query": task,
|
| 132 |
+
"sources": [],
|
| 133 |
+
"context": [],
|
| 134 |
+
"report": ""
|
| 135 |
+
})
|
| 136 |
+
|
| 137 |
+
sanitized_filename = sanitize_filename(f"task_{int(time.time())}_{task}")
|
| 138 |
+
|
| 139 |
+
report = await manager.start_streaming(
|
| 140 |
+
task,
|
| 141 |
+
report_type,
|
| 142 |
+
report_source,
|
| 143 |
+
source_urls,
|
| 144 |
+
document_urls,
|
| 145 |
+
tone,
|
| 146 |
+
websocket,
|
| 147 |
+
headers
|
| 148 |
+
)
|
| 149 |
+
report = str(report)
|
| 150 |
+
file_paths = await generate_report_files(report, sanitized_filename)
|
| 151 |
+
# Add JSON log path to file_paths
|
| 152 |
+
file_paths["json"] = os.path.relpath(logs_handler.log_file)
|
| 153 |
+
await send_file_paths(websocket, file_paths)
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
async def handle_human_feedback(data: str):
|
| 157 |
+
feedback_data = json.loads(data[14:]) # Remove "human_feedback" prefix
|
| 158 |
+
print(f"Received human feedback: {feedback_data}")
|
| 159 |
+
# TODO: Add logic to forward the feedback to the appropriate agent or update the research state
|
| 160 |
+
|
| 161 |
+
async def handle_chat(websocket, data: str, manager):
|
| 162 |
+
json_data = json.loads(data[4:])
|
| 163 |
+
print(f"Received chat message: {json_data.get('message')}")
|
| 164 |
+
await manager.chat(json_data.get("message"), websocket)
|
| 165 |
+
|
| 166 |
+
async def generate_report_files(report: str, filename: str) -> Dict[str, str]:
|
| 167 |
+
pdf_path = await write_md_to_pdf(report, filename)
|
| 168 |
+
docx_path = await write_md_to_word(report, filename)
|
| 169 |
+
md_path = await write_text_to_md(report, filename)
|
| 170 |
+
return {"pdf": pdf_path, "docx": docx_path, "md": md_path}
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
async def send_file_paths(websocket, file_paths: Dict[str, str]):
|
| 174 |
+
await websocket.send_json({"type": "path", "output": file_paths})
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def get_config_dict(
|
| 178 |
+
langchain_api_key: str, openai_api_key: str, tavily_api_key: str,
|
| 179 |
+
google_api_key: str, google_cx_key: str, bing_api_key: str,
|
| 180 |
+
searchapi_api_key: str, serpapi_api_key: str, serper_api_key: str, searx_url: str
|
| 181 |
+
) -> Dict[str, str]:
|
| 182 |
+
return {
|
| 183 |
+
"LANGCHAIN_API_KEY": langchain_api_key or os.getenv("LANGCHAIN_API_KEY", ""),
|
| 184 |
+
"OPENAI_API_KEY": openai_api_key or os.getenv("OPENAI_API_KEY", ""),
|
| 185 |
+
"TAVILY_API_KEY": tavily_api_key or os.getenv("TAVILY_API_KEY", ""),
|
| 186 |
+
"GOOGLE_API_KEY": google_api_key or os.getenv("GOOGLE_API_KEY", ""),
|
| 187 |
+
"GOOGLE_CX_KEY": google_cx_key or os.getenv("GOOGLE_CX_KEY", ""),
|
| 188 |
+
"BING_API_KEY": bing_api_key or os.getenv("BING_API_KEY", ""),
|
| 189 |
+
"SEARCHAPI_API_KEY": searchapi_api_key or os.getenv("SEARCHAPI_API_KEY", ""),
|
| 190 |
+
"SERPAPI_API_KEY": serpapi_api_key or os.getenv("SERPAPI_API_KEY", ""),
|
| 191 |
+
"SERPER_API_KEY": serper_api_key or os.getenv("SERPER_API_KEY", ""),
|
| 192 |
+
"SEARX_URL": searx_url or os.getenv("SEARX_URL", ""),
|
| 193 |
+
"LANGCHAIN_TRACING_V2": os.getenv("LANGCHAIN_TRACING_V2", "true"),
|
| 194 |
+
"DOC_PATH": os.getenv("DOC_PATH", "./my-docs"),
|
| 195 |
+
"RETRIEVER": os.getenv("RETRIEVER", ""),
|
| 196 |
+
"EMBEDDING_MODEL": os.getenv("OPENAI_EMBEDDING_MODEL", "")
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def update_environment_variables(config: Dict[str, str]):
|
| 201 |
+
for key, value in config.items():
|
| 202 |
+
os.environ[key] = value
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
async def handle_file_upload(file, DOC_PATH: str) -> Dict[str, str]:
|
| 206 |
+
file_path = os.path.join(DOC_PATH, os.path.basename(file.filename))
|
| 207 |
+
with open(file_path, "wb") as buffer:
|
| 208 |
+
shutil.copyfileobj(file.file, buffer)
|
| 209 |
+
print(f"File uploaded to {file_path}")
|
| 210 |
+
|
| 211 |
+
document_loader = DocumentLoader(DOC_PATH)
|
| 212 |
+
await document_loader.load()
|
| 213 |
+
|
| 214 |
+
return {"filename": file.filename, "path": file_path}
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
async def handle_file_deletion(filename: str, DOC_PATH: str) -> JSONResponse:
|
| 218 |
+
file_path = os.path.join(DOC_PATH, os.path.basename(filename))
|
| 219 |
+
if os.path.exists(file_path):
|
| 220 |
+
os.remove(file_path)
|
| 221 |
+
print(f"File deleted: {file_path}")
|
| 222 |
+
return JSONResponse(content={"message": "File deleted successfully"})
|
| 223 |
+
else:
|
| 224 |
+
print(f"File not found: {file_path}")
|
| 225 |
+
return JSONResponse(status_code=404, content={"message": "File not found"})
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
async def execute_multi_agents(manager) -> Any:
|
| 229 |
+
websocket = manager.active_connections[0] if manager.active_connections else None
|
| 230 |
+
if websocket:
|
| 231 |
+
report = await run_research_task("Is AI in a hype cycle?", websocket, stream_output)
|
| 232 |
+
return {"report": report}
|
| 233 |
+
else:
|
| 234 |
+
return JSONResponse(status_code=400, content={"message": "No active WebSocket connection"})
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
async def handle_websocket_communication(websocket, manager):
|
| 238 |
+
while True:
|
| 239 |
+
data = await websocket.receive_text()
|
| 240 |
+
if data.startswith("start"):
|
| 241 |
+
await handle_start_command(websocket, data, manager)
|
| 242 |
+
elif data.startswith("human_feedback"):
|
| 243 |
+
await handle_human_feedback(data)
|
| 244 |
+
elif data.startswith("chat"):
|
| 245 |
+
await handle_chat(websocket, data, manager)
|
| 246 |
+
else:
|
| 247 |
+
print("Error: Unknown command or not enough parameters provided.")
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
def extract_command_data(json_data: Dict) -> tuple:
|
| 251 |
+
return (
|
| 252 |
+
json_data.get("task"),
|
| 253 |
+
json_data.get("report_type"),
|
| 254 |
+
json_data.get("source_urls"),
|
| 255 |
+
json_data.get("document_urls"),
|
| 256 |
+
json_data.get("tone"),
|
| 257 |
+
json_data.get("headers", {}),
|
| 258 |
+
json_data.get("report_source")
|
| 259 |
+
)
|