Shreyas094's picture
Update app.py
e45e26b verified
import os
import json
import gradio as gr
import pandas as pd
from tempfile import NamedTemporaryFile
from typing import List
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_core.output_parsers import StrOutputParser
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceHub
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from langchain_core.documents import Document
huggingface_token = os.environ.get("HUGGINGFACE_TOKEN")
def load_and_split_document_basic(file):
"""Loads and splits the document into pages."""
loader = PyPDFLoader(file.name)
data = loader.load_and_split()
return data
def load_and_split_document_recursive(file: NamedTemporaryFile) -> List[Document]:
"""Loads and splits the document into chunks."""
loader = PyPDFLoader(file.name)
pages = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
)
chunks = text_splitter.split_documents(pages)
return chunks
def get_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def create_or_update_database(data, embeddings):
if os.path.exists("faiss_database"):
db = FAISS.load_local("faiss_database", embeddings, allow_dangerous_deserialization=True)
db.add_documents(data)
else:
db = FAISS.from_documents(data, embeddings)
db.save_local("faiss_database")
def clear_cache():
if os.path.exists("faiss_database"):
os.remove("faiss_database")
return "Cache cleared successfully."
else:
return "No cache to clear."
prompt = """
Answer the question based only on the following context:
{context}
Question: {question}
Provide a concise and direct answer to the question:
"""
def get_model(temperature, top_p, repetition_penalty):
return HuggingFaceHub(
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
model_kwargs={
"temperature": temperature,
"top_p": top_p,
"repetition_penalty": repetition_penalty,
"max_length": 1000
},
huggingfacehub_api_token=huggingface_token
)
def generate_chunked_response(model, prompt, max_tokens=1000, max_chunks=5):
full_response = ""
for i in range(max_chunks):
chunk = model(prompt + full_response, max_new_tokens=max_tokens)
full_response += chunk
if chunk.strip().endswith((".", "!", "?")):
break
return full_response.strip()
def response(database, model, question):
prompt_val = ChatPromptTemplate.from_template(prompt)
retriever = database.as_retriever()
context = retriever.get_relevant_documents(question)
context_str = "\n".join([doc.page_content for doc in context])
formatted_prompt = prompt_val.format(context=context_str, question=question)
ans = generate_chunked_response(model, formatted_prompt)
return ans
def update_vectors(files, use_recursive_splitter):
if not files:
return "Please upload at least one PDF file."
embed = get_embeddings()
total_chunks = 0
for file in files:
if use_recursive_splitter:
data = load_and_split_document_recursive(file)
else:
data = load_and_split_document_basic(file)
create_or_update_database(data, embed)
total_chunks += len(data)
return f"Vector store updated successfully. Processed {total_chunks} chunks from {len(files)} files."
def ask_question(question, temperature, top_p, repetition_penalty):
if not question:
return "Please enter a question."
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
model = get_model(temperature, top_p, repetition_penalty)
return response(database, model, question)
def extract_db_to_excel():
embed = get_embeddings()
database = FAISS.load_local("faiss_database", embed, allow_dangerous_deserialization=True)
documents = database.docstore._dict.values()
data = [{"page_content": doc.page_content, "metadata": json.dumps(doc.metadata)} for doc in documents]
df = pd.DataFrame(data)
with NamedTemporaryFile(delete=False, suffix='.xlsx') as tmp:
excel_path = tmp.name
df.to_excel(excel_path, index=False)
return excel_path
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Chat with your PDF documents")
with gr.Row():
file_input = gr.Files(label="Upload your PDF documents", file_types=[".pdf"])
update_button = gr.Button("Update Vector Store")
use_recursive_splitter = gr.Checkbox(label="Use Recursive Text Splitter", value=False)
update_output = gr.Textbox(label="Update Status")
update_button.click(update_vectors, inputs=[file_input, use_recursive_splitter], outputs=update_output)
with gr.Row():
question_input = gr.Textbox(label="Ask a question about your documents")
temperature_slider = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.5, step=0.1)
top_p_slider = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
repetition_penalty_slider = gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, value=1.0, step=0.1)
submit_button = gr.Button("Submit")
answer_output = gr.Textbox(label="Answer")
submit_button.click(ask_question, inputs=[question_input, temperature_slider, top_p_slider, repetition_penalty_slider], outputs=answer_output)
extract_button = gr.Button("Extract Database to Excel")
excel_output = gr.File(label="Download Excel File")
extract_button.click(extract_db_to_excel, inputs=[], outputs=excel_output)
clear_button = gr.Button("Clear Cache")
clear_output = gr.Textbox(label="Cache Status")
clear_button.click(clear_cache, inputs=[], outputs=clear_output)
if __name__ == "__main__":
demo.launch()