Spaces:
Runtime error
Runtime error
Update model.py
Browse files
model.py
CHANGED
@@ -3,32 +3,22 @@ import torchvision
|
|
3 |
|
4 |
from torch import nn
|
5 |
|
6 |
-
|
7 |
-
def create_effnetb2_model(num_classes:int=3,
|
8 |
seed:int=42):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
"""
|
18 |
-
# Create EffNetB2 pretrained weights, transforms and model
|
19 |
-
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
20 |
-
transforms = weights.transforms()
|
21 |
-
model = torchvision.models.efficientnet_b2(weights=weights)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
torch.manual_seed(seed)
|
29 |
-
model.classifier = nn.Sequential(
|
30 |
-
nn.Dropout(p=0.3, inplace=True),
|
31 |
-
nn.Linear(in_features=1408, out_features=num_classes),
|
32 |
-
)
|
33 |
-
|
34 |
-
return model, transforms
|
|
|
3 |
|
4 |
from torch import nn
|
5 |
|
6 |
+
def create_effnetb2_model(num_classes:int=3, # default output classes = 3 (pizza, steak, sushi)
|
|
|
7 |
seed:int=42):
|
8 |
+
# 1, 2, 3 Create EffNetB2 pretrained weights, transforms and model
|
9 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
10 |
+
transforms = weights.transforms()
|
11 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
12 |
+
|
13 |
+
# 4. Freeze all layers in the base model
|
14 |
+
for param in model.parameters():
|
15 |
+
param.requires_grad = False
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# 5. Change classifier head with random seed for reproducibility
|
18 |
+
torch.manual_seed(seed)
|
19 |
+
model.classifier = nn.Sequential(
|
20 |
+
nn.Dropout(p=0.3, inplace=True),
|
21 |
+
nn.Linear(in_features=1408, out_features=num_classes)
|
22 |
+
)
|
23 |
|
24 |
+
return model, transforms
|
|
|
|
|
|
|
|
|
|
|
|
|
|