Spaces:
Running
Running
import os | |
import logging | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
from requests.exceptions import ConnectionError | |
# Configure logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Initialize the Hugging Face Inference Client | |
try: | |
client = InferenceClient( | |
model="mistralai/Mistral-7B-Instruct-v0.3", | |
token=os.getenv("HF_TOKEN"), # Ensure HF_TOKEN is set in your environment | |
timeout=30, | |
) | |
except Exception as e: | |
logger.error(f"Failed to initialize InferenceClient: {e}") | |
raise | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
try: | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
logger.info("Sending request to Hugging Face API") | |
stream = client.text_generation( | |
formatted_prompt, | |
**generate_kwargs, | |
stream=True, | |
details=True, | |
return_full_text=False, | |
) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
except ConnectionError as e: | |
logger.error(f"Network error: {e}") | |
yield "Error: Unable to connect to the Hugging Face API. Please check your internet connection and try again." | |
except Exception as e: | |
logger.error(f"Error during text generation: {e}") | |
yield f"Error: {str(e)}" | |
# Define additional inputs for Gradio interface | |
additional_inputs = [ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=512, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum number of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
), | |
] | |
# Create a Chatbot object | |
chatbot = gr.Chatbot(height=450, layout="bubble") | |
# Build the Gradio interface | |
with gr.Blocks() as demo: | |
gr.HTML("<h1><center>🤖 Mistral-7B-Chat 💬</center></h1>") | |
gr.ChatInterface( | |
fn=generate, | |
chatbot=chatbot, | |
additional_inputs=additional_inputs, | |
examples=[ | |
["Give me the code for Binary Search in C++"], | |
["Explain the chapter of The Grand Inquisitor from The Brothers Karamazov."], | |
["Explain Newton's second law."], | |
], | |
) | |
if __name__ == "__main__": | |
logger.info("Starting Gradio application") | |
demo.launch() |